Collage of intern photos that appear in this article

Most years, summertime at NASA's Jet Propulsion Laboratory arrives with an influx of more than 800 interns, raring to play a hands-on role in exploring Earth and space with robotic spacecraft.

Perhaps as exciting as adding NASA to their resumes and working alongside the scientists and engineers they have long admired is the chance to explore the laboratory's smorgasbord of science labs, spacecraft assembly facilities, space simulators, the historic mission control center and a place called the Mars Yard, where engineers test drive Mars rovers.

But this year, as the summer internship season approached with most of JPL's more than 6,000 employees still on mandatory telework, the laboratory – and the students who were offered internships at the Southern California center – had a decision to make.

"We asked the students and the mentors [the employees bringing them in] whether their projects could still be achieved remotely and provide the educational component we consider to be so crucial to these experiences," said Adrian Ponce, deputy section manager of JPL's Education Office, which runs the laboratory's STEM internship programs.

The answer was a resounding yes, which meant the laboratory had just a matter of weeks to create virtual alternatives for every aspect of the internship experience, from accessing specialized software for studying Earth and planetary science to testing and fine-tuning the movements of spacecraft in development and preparing others for launch to attending enrichment activities like science talks and team building events.

“We were able to transition almost all of the interns to aspects of their projects that are telework-compatible. Others agreed to a future start date,” said Ponce, adding that just 2% of the students offered internships declined to proceed or had their projects canceled.

Now, JPL's 600-plus summer interns – some who were part-way through internships when the stay-at-home orders went into effect, others who are returning and many who are first-timers – are getting an extended lesson in the against-the-odds attitude on which the laboratory prides itself.

We wanted to hear about their experiences as JPL's first class of remote interns. What are their routines and home offices like in cities across the country? How have their teams adapted to building spacecraft and doing science remotely? Read a collection of their responses below to learn how JPL interns are finding ways to persevere, whether it's using their engineering skills to fashion homemade desks, getting accustomed to testing spacecraft from 2,000 miles away or working alongside siblings, kids, and pets.


In the image on the left, Jennifer Brag stands in front of a series of observatories. In the image on the right, her bird is pirched on top of open laptop.

Courtesy of Jennifer Bragg | + Expand image

"I am working with an astronomer on the NEOWISE project, which is an automated system that detects near-Earth objects, such as asteroids. The goal of my project is to identify any objects missed by the automated system and use modeling to learn more about their characteristics. My average day consists of writing scripts in Python to manipulate the NEOWISE data and visually vet that the objects in the images are asteroids and not noise or stars.

My office setup consists of a table with scattered books, papers, and pencils, a laptop, television, a child in the background asking a million questions while I work, and a bird on my shoulder that watches me at times."

– Jennifer Bragg will be studying optics at the University of Arizona as an incoming graduate student starting this August. She is completing her summer internship from Pahoa, Hawaii.


Radina Yanakieva poses in front of a model of the Curiosity Mars rover at JPL

Courtesy of Radina Yanakieva | + Expand image

"I'm helping support the Perseverance Mars rover launch this summer. So far, I have been working remotely, but I'm lucky enough to have the opportunity to go to Pasadena, California, in late July to support the launch from JPL! On launch day, I will be in the testbed, where myself and a few other members of my group will be 'shadowing' the spacecraft. This means that when operators send their commands to the actual spacecraft, when it’s on the launch pad and during its first day or so in space, we'll send the same instructions to the test-bed version. This way, if anything goes wrong, we'll have a high-fidelity simulation ready for debugging.

I have a desk in my bedroom, so my office setup is decent enough. I bought a little whiteboard to write myself notes. As for my average working day, it really depends on what I'm doing. Some days, I'm writing procedures or code, so it's a text editor, a hundred internet tabs, and a messenger to ask my team members questions. Other days, I'm supporting a shift in the test bed, so I'm on a web call with a few other people talking about the test we're doing. Luckily, a large portion of my team's work can be done on our personal computers. The biggest change has been adding the ability to operate the test bed remotely. I'm often amazed that from New York, I can control hardware in California.

I was ecstatic that I was still able to help with the Perseverance Mars rover mission! I spent the second half of 2019 working on launch and cruise testing for the mission, so I'm happy to be able to see it through."

– Radina Yanakieva is an undergraduate student studying aerospace engineering at Georgia Tech and interning from Staten Island, New York.


Aditya Khuller stands with his arms outstretched and poses in front of a model Mars rover in a garage at JPL.

Courtesy of Aditya Khuller | + Expand image

"Our team is using radar data [from the European Space Agency’s Mars Express spacecraft] to find out what lies beneath the large icy deposits on Mars' south pole. My average day consists of analyzing this radar data on my computer to find and map the topography of an older surface that lies below the ice on Mars’ south pole, while my plants look on approvingly.

I was delighted to be offered the chance to work at JPL again. (This is my fourth JPL internship.) Even though it's better to be 'on lab,' it is an honor to get to learn from the coolest and smartest people in the world."

– Aditya Khuller is a graduate student working toward a Ph.D. in planetary science at Arizona State University and interning from Tempe, Arizona.


Breanna Ivey wears a Georgia Tech T-Shirt and poses in front of a river with her arms outstretched on concrete railing.

Courtesy of Breanna Ivey | + Expand image

"I am working on the Perseverance Mars rover mission [launching this summer]. As a member of the mobility team, I am testing the rover's auto-navigation behaviors. If given a specific location, flight software should be able to return data about where that location is relative to the rover. My project is to create test cases and develop procedures to verify the data returned by the flight software when this feature is used.

My average day starts with me eating breakfast with my mom who is also working from home. Then, I write a brief plan for my day. Next, I meet with my mentor to discuss any problems and/or updates. I spend the rest of my day at my portable workstation working on code to test the rover's behaviors and analyzing the data from the tests. I have a mini desk that I either set up in my bedroom in front of my Georgia Tech Buzz painting or in the dining room.

If I could visit in person, the first thing I would want to see is the Mars rover engineering model "Scarecrow." I would love to visit the Mars Yard [a simulated Mars environment at JPL] and watch Scarecrow run through different tests. It would be so cool to see a physical representation of the things that I've been working on."

– Breanna Ivey is an undergraduate student studying electrical engineering at the Georgia Institute of Technology and interning from Macon, Georgia.


Kaelan Oldani wears her graduation gown and holds her cap while posing in front of a sign that reads 'Michigan Union.'

Courtesy of Kaelan Oldani | + Expand image

"I am working on the Psyche mission as a member of the Assembly Test and Launch Operations team, also known as ATLO. (We engineers love our acronyms!) Our goal is to assemble and test the Psyche spacecraft to make sure everything works correctly so that the spacecraft will be able to orbit and study its target, a metal asteroid also called Psyche. Scientists theorize that the asteroid is actually the metal core of what was once another planet. By studying it, we hope to learn more about the formation of Earth.

I always start out my virtual work day by giving my dog a hug, grabbing a cup of coffee and heading up to my family's guest bedroom, which has turned into my office for the summer. On the window sill in my office are a number of space-themed Lego sets including the 'Women of NASA' set, which helps me get into the space-exploration mood! Once I have fueled up on coffee, my brain is ready for launch, and I log in to the JPL virtual network to start writing plans for testing Psyche's propulsion systems. While the ATLO team is working remotely, we are focused on writing test plans and procedures so that they can be ready as soon as the Psyche spacecraft is in the lab for testing. We have a continuous stream of video calls set up throughout the week to meet virtually with the teams helping to build the spacecraft."

– Kaelan Oldani is a master's student studying aerospace engineering at the University of Michigan and interning from Ann Arbor, Michigan. She recently accepted a full-time position at JPL and is starting in early 2021.


In the image on the left, Richardo Isai Melgar poses in front of a model of the Curiosity Mars rover at JPL. In the image on the right, he kneels in front of a model Mars rover in the Mars Yard at JPL.

Courtesy of Ricardo Isai Melgar | + Expand image

"NASA's Deep Space Network is a system of antennas positioned around the world – in Australia, Spain, and Goldstone, California – that's used to communicate with spacecraft. My internship is working on a risk assessment of the hydraulic system for the 70-meter antenna at the Goldstone facility. The hydraulic system is what allows the antenna and dish surrounding it to move so it can accurately track spacecraft in flight. The ultimate goal of the work is to make sure the antenna's hydraulic systems meet NASA standards.

My average day starts by getting ready for work (morning routine), accessing my work computer through a virtual interface and talking with my mentor on [our collaboration tool]. Then, I dive into work, researching hydraulic schematics, JPL technical drawings of the antenna, and NASA standards, and adding to a huge spreadsheet that I use to track every component of the antenna's hydraulic system. Currently, I'm tracking every flexible hydraulic fluid hose on the system and figuring out what dangers a failure of the hose could have on personnel and the mission."

– Ricardo Isai Melgar is an undergraduate student studying mechanical engineering at East Los Angeles College and interning from Los Angeles.


Susanna Eschbach poses in front of a mirrored background.

Courtesy of Susanna Eschbach | + Expand image

"My project this summer is to develop a network of carbon-dioxide sensors to be used aboard the International Space Station for monitoring the levels of carbon dioxide that crewmembers experience.

My 'office setup' is actually just a board across the end of my bed balanced on the other side by a small dresser that I pull into the middle of the room every day so that I can sit and have a hard surface to work on.

At first I wasn't sure if I was interested in doing a virtual engineering internship. How would that even work? But after talking to my family, I decided to accept. Online or in person, getting to work at JPL is still a really cool opportunity."

– Susanna Eschbach is an undergraduate student studying electrical and computer engineering at Northern Illinois University and interning from DeKalb, Illinois.


Izzie Torres poses in front of an ancient pyramid.

Courtesy of Izzie Torres | + Expand image

"I'm planning test procedures for the Europa Clipper mission [which is designed to make flybys of Jupiter's moon Europa]. The end goal is to create a list of tests we can perform that will prove that the spacecraft meets its requirements and works as a whole system.

I was very excited when I got the offer to do a virtual internship at JPL. My internship was originally supposed to be with the Perseverance Mars rover mission, but it required too much in-person work, so I was moved to the Europa Clipper project. While I had been looking forward to working on a project that was going to be launching so soon, Jupiter's moon Europa has always captured my imagination because of the ocean under its surface. It was an added bonus to know I had an internship secured for the summer."

– Izzie Torres is an undergraduate student studying aerospace engineering and management at MIT and interning from Seattle.


Jared Blanchard poses in front of a visualization in the VIVID lab at JPL.

Courtesy of Jared Blanchard | + Expand image

"I am investigating potential spacecraft trajectories to reach the water worlds orbiting the outer planets, specifically Jupiter's moon Europa. If you take both Jupiter and Europa into account, their gravitational force fields combine to allow for some incredibly fuel-efficient maneuvers between the two. The ultimate goal is to make it easier for mission designers to use these low-energy trajectories to develop mission plans that use very little fuel.

I'm not a gamer, but I just got a new gaming laptop because it has a nice graphics processing unit, or GPU. During my internship at JPL last summer, we used several GPUs and a supercomputer to make our trajectory computations 10,000 times faster! We plan to use the GPU to speed up my work this summer as well. I have my laptop connected to a second monitor up in the loft of the cabin where my wife and I are staying. We just had a baby two months ago, so I have to make the most of the quiet times when he's napping!"

– Jared Blanchard is a graduate student working toward a Ph.D. in aeronautics and astronautics at Stanford University.


Yohn Ellis, wearing a suit and tie, poses in front of yellow and gold balloons.

Courtesy of Yohn I. Ellis Jr. | + Expand image

"I'm doing a theory-based project on the topic of nanotechnology under the mentorship of Mohammad Ashtijou and Eric Perez.

I vividly remember being infatuated with NASA as a youth, so much so that my parents ordered me a pamphlet from Space Center Houston with posters and stickers explaining all of the cool things happening across NASA. I will never forget when I was able to visit Space Center Houston on spring break in 2009. It was by far the most amazing thing I have ever witnessed as a youth. When I was offered the internship at JPL, I was excited, challenged, and motivated. There is a great deal of respect that comes with being an NASA intern, and I look forward to furthering my experiences.

But the challenges are prevalent, too. Unfortunately, the internship is completely virtual and there are limitations to my experience. It is hard working at home with the multiple personalities in my family. I love them, but have you attempted to conduct research with a surround system of romantic comedies playing in the living room, war video games blasting grenades, and the sweet voice of your grandmother asking for help getting pans from the top shelf?"

– Yohn I. Ellis Jr. is a graduate student studying electrical engineering at Prairie View A&M University and interning from Houston.


Mina Cezairli wears a NASA hat and poses in front of a landscape of green mountains a turqoise ocean and puffy white and grey clouds.

Courtesy of Mina Cezairli | + Expand image

"This summer, I am supporting the proposal for a small satellite mission concept called Cupid’s Arrow. Cupid’s Arrow would be a small probe designed to fly through Venus’ atmosphere and collect samples. The ultimate goal of the project is to understand the “origin story” of Venus' atmosphere and how, despite their comparable sizes, Earth and Venus evolved so differently geologically, with the former being the habitable, friendly planet that we call home and the latter being the hottest planet in our solar system with a mainly carbon dioxide atmosphere.

While ordinary JPL meetings include discussions of space probes, rockets, and visiting other planets, my working day rarely involves leaving my desk. Because all of my work can be done on my computer, I have a pretty simple office setup: a desk, my computer, and a wall full of posters of Earth and the Solar System. An average day is usually a combination of data analysis, reading and learning about Venus, and a number of web meetings. The team has several different time zones represented, so a morning meeting in Pacific time accommodates all of Pacific, Eastern and European time zones that exist within the working hours of the team."

– Mina Cezairli is an undergraduate student studying mechanical engineering at Yale University and is interning from New Haven, Connecticut.


Izabella Zamora sits on steps leading up to a building with pumpkins decorating the steps to her right.

Courtesy of Izabella Zamora | + Expand image

“I'm characterizing the genetic signatures of heat-resistant bacteria. The goal is to improve the techniques we use to sterilize spacecraft to prevent them from contaminating other worlds or bringing contaminants back to Earth. Specifically, I'm working to refine the amount of time spacecraft need to spend getting blasted by dry heat as a sanitation method.

"As someone who has a biology-lab heavy internship, I was quite skeptical of how an online internship would work. There was originally supposed to be lab work, but I think the project took an interesting turn into research and computational biology. It has been a really cool intersection to explore, and I have gained a deeper understanding of the math and analysis involved in addition to the biology concepts."

– Izabella Zamora is an undergraduate student studying biology and computer science at the Massachusetts Institute of Technology and interning from Brimfield, Massachusetts.


Leilani Trautman poses for a photo at an outside table. The back of her open laptop has dozens of stickers attached to it, including a NASA meatball.

Courtesy of Leilani Trautman | + Expand image

"I am working on the engineering operations team for the Perseverance Mars rover. After the rover lands on Mars, it will send daily status updates. Every day, an engineer at JPL will need to make sure that the status update looks healthy so that the rover can continue its mission. I am writing code to make that process a lot faster for the engineers.

When I was offered the internship back in November, I thought I would be working on hardware for the rover. Once the COVID-19 crisis began ramping up and I saw many of my friends' internships get cancelled or shortened, I was worried that the same would happen to me. One day, I got a call letting me know that my previous internship wouldn't be possible but that there was an opportunity to work on a different team. I was so grateful to have the opportunity to retain my internship at JPL and get the chance to work with my mentor, Farah Alibay, who was once a JPL intern herself."

– Leilani Trautman is an undergraduate student studying electrical engineering and computer science at MIT and interning from San Diego, California.


Kathryn Chamberlin poses for an outdoor photo in front of a green hedge.

Courtesy of Kathryn Chamberlin | + Expand image

"I am working on electronics for the coronagraph instrument that will fly aboard the Nancy Grace Roman Space Telescope. The Roman Space Telescope will study dark energy, dark matter, and exoplanets [planets outside our solar system]. The science instrument I'm working on will be used to image exoplanets. It's also serving as a technology demonstration to advance future coronagraphs [which are instruments designed to observe objects close to bright stars].

I was both nervous and excited to have a virtual internship. I’m a returning intern, continuing my work on the coronagraph instrument. I absolutely love my work and my project at JPL, so I was really looking forward to another internship. Since I’m working with the same group, I was relieved that I already knew my team, but nervous about how I would connect with my team, ask questions, and meet other 'JPLers.' But I think my team is just as effective working virtually as we were when working 'on lab.' My mentor and I have even figured out how to test hardware virtually by video calling the engineer in the lab and connecting remotely into the lab computer."

– Kathryn Chamberlin is an undergraduate student studying electrical engineering at Arizona State University and interning from Phoenix.


Daniel Stover is shown in a screengrab from a web meeting app pointing to an illustration of the Perseverance Mars rover.

Courtesy of Daniel Stover | + Expand image

"I am working on the flight system for the Perseverance Mars rover. The first half of my internship was spent learning the rules of the road for the entire flight system. My first task was updating command-line Python scripts, which help unpack the data that is received from the rover. After that, I moved on to testing a part of the flight software that manages which mechanisms and instruments the spacecraft can use at a certain time. I have been so grateful to contribute to the Perseverance Mars rover project, especially during the summer that it launches!

I have always been one to be happy with all the opportunities I am granted, but I do have to say it was hard to come to the realization that I would not be able to step foot on the JPL campus. However, I was truly grateful to receive this opportunity, and I have been so delighted to see the JPL spirit translate to the online video chats and communication channels. It's definitely the amazing people who make JPL into the place that everybody admires. Most important, I would like to thank my mentor, Jessica Samuels, for taking the time to meet with me every day and show me the true compassion and inspiration of the engineers at JPL."

– Daniel Stover is an undergraduate student studying electrical and computer engineering at Virginia Tech and interning from Leesburg, Virginia.


In the image on the left, Sophia Yoo poses for a selfie. In the image on the right, her laptop, mouse, headphones and open notebook are shown at a table outside surrounded by a wooden porch and a green landscape.

Courtesy of Sophia Yoo | + Expand image

"I'm working on a project called the Multi-Angle Imager for Aerosols, or MAIA. It's an instrument that will go into lower Earth orbit and collect images of particulate matter to learn about air pollution and its effects on health. I'm programming some of the software used to control the instrument's electronics. I'm also testing the simulated interface used to communicate with the instrument.

I was ecstatic to still have my internship! I'm very blessed to be able to do all my work remotely. It has sometimes proven to be a challenge when I find myself more than four layers deep in virtual environments. And it can be confusing to program hardware on the West Coast with software that I wrote all the way over here on the East Coast. However, I've learned so much and am surprised by and grateful for the meaningful relationships I've already built."

– Sophia Yoo is an incoming graduate student studying electrical and computer engineering at Princeton University and is interning from Souderton, Pennsylvania.


Natalie Maus can be seen in the right corner of the image as she looks at a graph on her laptop.

Courtesy of Natalie Maus | + Expand image

"My summer research project is focused on using machine-learning algorithms to make predictions about the density of electrons in Earth’s ionosphere [a region of the planet's upper atmosphere]. Our work seeks to allow scientists to forecast this electron density, as it has important impacts on things such as GPS positioning and aircraft navigation.

Despite the strangeness of working remotely, I have learned a ton about the research process and what it is like to be part of a real research team. Working alongside my mentors to adapt to the unique challenges of working remotely has also been educational. In research, and in life, there will always be new and unforeseen problems and challenges. This extreme circumstance is valuable in that it teaches us interns the importance of creative problem solving, adaptability, and making the most out of the situation we are given."

– Natalie Maus is an undergraduate student studying astrophysics and computer science at Colby College and interning from Evergreen, Colorado.


Lucas Lange wears hiking gear and poses next to an American Flag at the top of a mountain with a valley visible in the background.

Courtesy of Lucas Lange | + Expand image

"I have two projects at JPL. My first project focuses on the Europa Clipper mission [designed to make flybys of Jupiter's moon Europa]. I study how the complex topography on the icy moon influences the temperature of the surface. This work is crucial to detect 'hot spots,' which are areas the mission (and future missions) aim to study because they might correspond to regions that could support life! My other work consists of studying frost on Mars and whether it indicates the presence of water-ice below the surface.

JPL and NASA interns are connected through social networks, and it's impressive to see the diversity. Some talks are given by 'JPLers' who make themselves available to answer questions. When I came to JPL, I expected to meet superheroes. This wish has been entirely fulfilled. Working remotely doesn't mean working alone. On the contrary, I think it increases our connections and solidarity."

– Lucas Lange is an undergraduate student studying aerospace engineering and planetary science at ISAE-SUPAERO [aerospace institute in France] and interning from Pasadena, California.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, College Students, Virtual Internships, Telework, Mars 2020 interns, Mars 2020, Perseverance, DSN, Deep Space Network, Mars, Asteroids, NEOWISE, Science, Technology, Engineering, Computer Science, Psyche, International Space Station, ISS, Europa, Jupiter, Europa Clipper, trajectory, nanotechnology, Cupid's Arrow, Proposal, Venus, Planetary Protection, Biology, Nancy Grace Roman Space Telescope, Dark Matter, Exoplanets, Multi-Angle Imager for Aerosols, MAIA, Earth, Earth science, air pollution, Hispanic Heritage Month, Black History Month, Asian Pacific American Heritage Month

  • Kim Orr
READ MORE

Michela Muñoz Fernández stands on the dish of one of NASA's Deep Space Network (DSN) antennas in Goldstone, California

It started as a technology test mission, but NASA's Deep Space 1 had become much more. In 1999, having already made a historic up-close encounter with asteroid 9669 Braille, the "spacecraft that could" was being pushed ever further with an extended mission to encounter two comets in a single year.

But in November of that year, something went wrong. The star tracker, a device that acts as a sort of spacecraft compass, failed, rendering the craft blind in the stellar abyss with no way of relaying its valuable reserve of science data back to Earth.

For Michela Muñoz Fernández, it was a chance to do something big.

In February 2000, Muñoz Fernández, then a master's student at France's International Space University, arrived at NASA's Jet Propulsion Laboratory in Pasadena, Calif., for the start of her three-month internship. Her task was to help analyze communications between Deep Space 1 and the ground stations that make up NASA's Deep Space Network (DSN) -- a global system of powerful antennas for spacecraft communication and navigation.

As the NASA lab that had pioneered deep space communication and managed the DSN, JPL was a mecca for aspiring telecommunications engineers like Muñoz Fernández.

"My dream was always to work on telecom, doing telecom analysis for a deep space mission," said Muñoz Fernández, who before starting her master's program had worked for the company that manages the DSN complex in her native Madrid. "So for me, it was like a dream to work on Deep Space 1."

Her dream quickly evolved into a career's worth of real-world experience when, soon after starting her internship, she was thrust into a team tasked with wrenching the science data from the wayward Deep Space 1 and potentially rescuing the mission altogether.

Working with her mentor, Jim Taylor, and the flight team, Muñoz Fernández and the group quickly devised a strategy. If mission controllers could temporarily point the spacecraft close enough toward Earth, the telecom team could send commands through the spacecraft's high-gain antenna. The strategy required that Muñoz Fernández and Taylor analyze the signals coming from the spacecraft and send commands during the small window when the antenna was pointed toward Earth. If all went according to plan, a new software package would be radioed to the spacecraft instructing it to use its onboard camera as a de facto navigation tool.

"Initially, the probability of getting the high-gain antenna pointed on Earth and keeping it there for a typical communications pass was significantly below 50 percent," said Marc Rayman, who at the time was Deep Space 1's Mission Manager. "But there were two mottos I tried to get the team to adopt: 'If it isn't impossible, it isn't worth doing,' and, 'Never give up. Never surrender.' I took the second one from the movie 'Galaxy Quest.'"

The plan worked. In 2001, Deep Space 1 made a successful flyby of comet Borrelly, snapping hundreds of up-close photos of the comet. And the operation to save the mission went down as one of the most successful robotic spacecraft rescues in history.

"I got so much done in three months. It's unbelievable what we got accomplished," said Muñoz Fernández.

Having been accepted to a doctoral program at Caltech just before the start of her JPL internship, Muñoz Fernández carried the momentum from her experience into earning her doctorate in optical communications. When she came back to JPL in 2006, she was hired as a flight and project systems engineer for the Space Interferometry Mission.

These days, she divides her time between a busy schedule of research in deep space communications, techniques for model-based systems engineering for NASA missions, and task managing information architecture standards for space systems. And she says the lessons from her internship still play an essential role in her work - as does the mentoring she received from Taylor and Kar-Ming Cheung.

"I had the best mentors, that's for sure," said Muñoz Fernández. "You work with many different people, and I realize how fortunate I was that the first time I came here, I got to work with these amazing people - not just nice people, but so knowledgeable technically."

This summer Muñoz Fernández is preparing to mentor her own students, and she says she has plenty of advice from her experience to pass along to the next generation.

"It's exciting to be able to teach new generations the knowledge that you have," she said. "And it's not only that the student learns from the mentor, but the mentor can also learn from the student. They can think of something that someone who was working here for a long time didn't think about because they come with a new perspective."


Michela Munoz Fernandez in JPL mission control with a model of the Juno spacecraftDr. Michela Muñoz Fernández is a principal investigator at JPL. She has also worked as a systems engineer and science payload engineer on instruments and operations for the Juno mission. She currently directs research for model-based systems engineering for NASA space missions, is a task manager for information and architecture standards, conducts research on optical communications in deep space, and studies the complexity of DSN links.

TAGS: Women in STEM, Deep Space Network, Deep Space 1, Internships & Fellowships, Career Guidance, Women in STEM, Hispanic Heritage Month

  • Kim Orr
READ MORE

Andrew Crawford looks out over the Goldstone Deep Space Communications Complex sign

Beep-beep ... incoming transmission:

Transmission Source: NASA's Dawn spacecraft on its final approach to the giant asteroid Vesta, situated between Mars and Jupiter.
Date of orbital insertion: Friday, July 15, 2011.
Mission status: Orbital insertion confirmed.

On July 15, history was made when NASA's Dawn spacecraft became the first probe to enter into a prolonged orbit around a celestial body in the asteroid belt. With telemetry and deep space communication provided by NASA's Deep Space Network, Dawn closed in on Vesta, a 330-mile wide asteroid, after four years and 1.7 billion miles of travel. This mission has huge significance for humankind, but also a particular significance to my job and internship with the Deep Space Network's Antenna Mechanical and Structural Analysis group because it is responsible for the vital design and engineering components that make communication with the Dawn spacecraft possible.

Recently, I had the chance to visit the Goldstone, Calif., Deep Space Network Tracking facility (check out my photo album on Facebook!), one of the three sites around the world that houses the network's massive antennas. And just when I thought my mind could not absorb and process any more surreal advanced technological wizardry and human determination, NASA, JPL and the Deep Space Network again exposed me to new horizons.

To provide you with a brief 101 of the Deep Space Network, or DSN: It is the largest and most sensitive scientific international telecommunications system in the world, charged with interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe.  How's that for a job title!  In other words, it is responsible for communicating with and guiding spacecraft, probes and NASA missions sent into space, (including the rovers on Mars, whose driving team will be featured in a special guest interview for my next post). The DSN monitors asteroids and celestial objects and their proximity to Earth, searches for signals and anomalies from outer space, performs interferometry observations, measures variations in radio waves for science experiments and provides the vital two-way communication link that guides, controls, and brings back images and science data from planetary explorers.

There are three large deep-space communications facilities strategically placed approximately 120 degrees apart around the world: at Goldstone, in California's Mojave Desert; near Madrid, Spain; and near Canberra, Australia. This strategic placement permits constant observation of spacecraft as the Earth rotates and has been in constant operation monitoring the night skies with the first antenna being constructed in the '60s.

The roots for what would eventually become the DSN began in 1958 with the establishment of an antenna and tracking system to receive telemetry and plot the orbit of NASA's Explorer 1, the first successful U.S. satellite. Shortly after, NASA established the concept of the DSN as a separately managed and operated communications facility that would accommodate all deep space missions, thereby avoiding the need for each flight project to acquire and operate its own specialized space communications network.

The component of the DSN that I'm working with, Antenna Mechanical and Structural Analysis, is a phenomenal team that provides ground support and engineering, and builds, designs, and fabricates the antennas and components that make up these massive spacecraft-tracking facilities. In particular, my task this summer is to design, model, and fabricate the future addition of a platform to hold the cryogenic equipment and processing hardware on a brand new, 34-meter beam-waveguide antenna being built in Australia! 

Even cooler - literally -- is the fact that the incoming signals from the Mars rovers and interplanetary spacecraft are funneled down these giant antennas through a network of mirrors, then cooled to cryogenic states where molecules can actually be separated and extracted from the "noise" of other space signals, processed in a maze of computers and analyzed for whomever or whatever that signal is for or from.  I must admit that gathering the seismic, vibration dampening tolerances and heat exchange data for the build requirements was a little nerve-racking, yet also so exciting!  Basically, I was charged with gathering data such as Australia seismic codes, dampening and vibration tolerances for the feed cone, material strength and human "live-load" factors of safety, all of which are used in international engineering projects. Luckily, my group members are an amazing and highly encouraging team who help me out tremendously and guide me with precision and experienced accuracy.

To help gain a better perspective on and appreciation for the magnitude and caliber of the Deep Space Network's responsibilities, we took a trip to one of the three DSN tracking facilities: Goldstone, Calif. And boy did it give me goose-bumps -- in a good way!  After several military checkpoints, security screenings and identity checks, we soon arrived at what can only be described as something straight out of "Star Wars" or some other sci-fi movie, a site fittingly called "Mars," with antennas that seem as big as my hometown pointed at the sky. My jaw dropped, my mentor Jason laughed, and we stepped out of the car to look straight up at what looked like part of the Death Star aimed into outer space. 


A view of the 70 meter DSN antenna and Andrew Crawford below the antenna
If you can spot me just below NASA's Deep Space Network antenna (left), you'll get an idea of just how big these things really are. One highlight of my visit was a trip below the antenna (right) to view the inner-workings of how the DSN tracks and communicates with spacecraft throughout the solar system. Image credit: NASA/JPL-Caltech

This particular antenna at the Goldstone site is among the biggest and most sensitive of all of the DSN antennas, spanning 70 meters (230 feet) across and capable of tracking a spacecraft traveling more than 10 billion miles from Earth. The precision across the antenna surface is maintained within one centimeter (0.4 inch) of the signal wavelength, an amazing feat that reminds me what an incredible opportunity it is to be working with this team.

The day consisted of exploring and analyzing all the systems and subsystems that comprise the massive array of tracking antennas.  All the while, I couldn't help but think how cool it was that as Earth rotated, these can be programed to switch control to an antenna on the other side of the world in order to maintain constant contact with all the spacecraft and signals out there.

One highlight was walking down one of the antenna tunnels that led underground to the inside of the massive concrete pedestal that houses the huge 34-meter antenna above as well as the space-age cryogenic processing equipment and platforms that hold them. The signals are essentially funneled down the antenna structure and dish by a matrix of precisely aligned mirrors. They are then captured and funneled into a network called "wave guides." Radio waves coming from deep space and other sources, like spacecraft, are guided along this tubing, which gets smaller and smaller passing though filters that eventually lead to a certain bandwidth ready for a trip to cryogenic-ville. All of this takes place in preparation for a result that to me seems like black magic but is definitely the coolest thing I've heard about: molecular separation for extracting the desired signals from the rest of the "space noise."

As I contemplated the complexity and wonderment of how many people and years it must have taken to design and build all of this, an alarm and voice came on over the loudspeaker announcing that the antenna would be moving and tracking in two minutes, which was our cue to exit the premises. And it could only mean one thing: The antenna was adjusting to track some distant spacecraft or asteroid in the stars above, and once again, I couldn't help but smile and pinch myself at how amazing the universe and humankind can be.

Stay tuned for my next post on how the Deep Space Network and the Antenna Mechanical group contribute to navigating spacecraft and rovers 15 million miles away, when I interview the Mars rover driving team!


TAGS: Deep Space Network, Engineering, Space Communications

  • Andrew Crawford
READ MORE

Andrew Crawford with Dr. Charles Elachi at JPL

Beep-beep ... incoming transmission.

As I sit in the Deep Space Network's Telecommunications Laboratory, writing this special broadcast, the relativity and reality of this transmission takes precedence. Today I sat down with the director of NASA's Jet Propulsion Laboratory, Dr. Charles Elachi, on a search to see what drives JPL's spirit of exploration.

For a quick debriefing to bring you up to speed, space exploration has a certain magic and aura about it that's had an influence on me for a long time. First, from following the missions to Mars, and then with my engineering schooling, where I've paid much more attention to what JPL does and how it completely inspires me. When my phone rang one day in Montana and I was invited to come be a part of this workforce, it was a dream come true.

When I first arrived here, not only was the magic of this place confirmed, but it was also exponentially skyrocketing by the minute, so much so that it made me want to try my hardest, work my best and literally shoot for the stars. So I thought why not request an interview with my inspiration and the reason JPL is what it is today, the lab's director, Dr. Elachi.

Access: Granted.

As my mentor Jason Carlton and I step out of the elevator, the first thing that strikes our attention is the huge windows with a scene that stops us in our tracks: an aerial view looking down at the buildings that comprise the Jet Propulsion Laboratory with the San Gabriel Mountains in the distance. As we make our way down the hallway, I can't help but gaze at a huge picture from the surface of Mars with rover tracks disappearing into the distance, which seems to embody JPL's mission of exploration.

When the door to Dr. Elachi's office swings open, the director walks over to me quickly, shakes my hand with a smile, and says, "Andrew, come in, come in." Soon enough, we're seated at a large table in the middle of the room, and across the table looking at me, with eyes that have witnessed so much, is Dr. Elachi.


Andrew interviews Dr. Elachi
I catch a glimpse of Dr. Elachi's unflinching enthusiasm as he responds to my query about the aura that JPL seems to exude, the same aura that attracted me to this place. Image credit: NASA/JPL-Caltech

One of the driving factors that JPL seems to employ is giving scientists and engineers a certain autonomy, the freedom to tinker, think, imagine and then create. I see it every day, whether it's the engineers in my Deep Space Network Antenna Mechanical Group hashing out ideas on a white board or conversations in the lunchroom of creative ideas. This seems fundamental to life at JPL, and I soon learn that Dr. Elachi feels the same way. "You probably know a lot more about mechanical engineering than I do," he says. "I have to rely on the experts and talent we bring in to make these advances."

He recalls that his "first tinkering as a boy was taking apart our family's handheld radio to see how it worked. I was never able to put it back together," he says. I laugh with a tremendous smile, not only because his story parallels the curiosity that JPLers seem to have, but also because my father would constantly ask me as a boy why I was so good at taking things apart, yet never putting them back together. Glad I'm not the only one.

My mentor Jason Carlton, a mechanical engineer who graduated from Cal Poly Pomona, chimes in on the subject of tinkering, saying he's concerned about students having enough hands-on experiences in school. Dr. Elachi and I could not agree more on the importance of this kind of education.

"It's really an investment in the future. The more we can tell leaders that's what got us here, the better off we'll be. I've always said that when things are tough, it's time to invest in your future because that's how you get out of tough times. If you look at history, the people who invested in technology were the ones who succeeded."

We all take a second to reflect on this point and silently nod in agreement at the need to convey the importance of this kind of education in the future. I decide to take the opportunity to ask a question that has always piqued my interest: What is it about JPL that attracts such scientific, engineering and research talent from around the world?

"There are two things," he says. "First, is the kind of work we do, where you can come here and be working on exploring the universe. Second, is the talent that comes here with the mindset that anything is possible. There are places that humans currently cannot go, and we get to explore those places. A new-hire once said to me, 'At JPL, we get together in the morning and talk about what's impossible and then do it in the afternoon.'"

This statement resonates with me profoundly, knowing that my internship and job this summer, with the Deep Space Network's Antenna Mechanical Group, are directly connected and responsible for the exploration of places we have not yet charted or visited.

As our time draws to a close, I ask him one final question: "Who is the first person you would call if one of JPL's missions finds evidence of life on Mars or beyond? Is there a special 'red-phone' hotline for that?"

There are laughs and smiles all around the table, and then a moment of silence while he pauses and thinks. He says there's no "red-phone" hotline. In all seriousness, he would call NASA Administrator Charles Bolden, who would then call the White House. This statement causes a few goosebumps to rise on my neck as I consider the magnitude of calling the White House and the conversation that would follow. The interview comes to a close, and I can't help but smile and say thank you as I shake Dr. Elachi's hand. He opens the door, smiles and says thank you in return. And as he begins his next meeting of the day, what I'm sure is one of many, the generosity of his time truly becomes apparent.

I find myself strolling back to the office with the excitement and wonderment reminiscent of when I was a little boy dreaming of space, yet this time with a newfound and non-diminishing source of inspiration. Knowing that I get to be part of something special - and am microscopically responsible for structures monitoring that big night sky -- is enough to keep me fueled for eternity.

TAGS: Charles Elachi, Deep Space Network

  • Andrew Crawford
READ MORE