Michela Muñoz Fernández stands on the dish of one of NASA's Deep Space Network (DSN) antennas in Goldstone, California

It started as a technology test mission, but NASA's Deep Space 1 had become much more. In 1999, having already made a historic up-close encounter with asteroid 9669 Braille, the "spacecraft that could" was being pushed ever further with an extended mission to encounter two comets in a single year.

But in November of that year, something went wrong. The star tracker, a device that acts as a sort of spacecraft compass, failed, rendering the craft blind in the stellar abyss with no way of relaying its valuable reserve of science data back to Earth.

For Michela Muñoz Fernández, it was a chance to do something big.

In February 2000, Muñoz Fernández, then a master's student at France's International Space University, arrived at NASA's Jet Propulsion Laboratory in Pasadena, Calif., for the start of her three-month internship. Her task was to help analyze communications between Deep Space 1 and the ground stations that make up NASA's Deep Space Network (DSN) -- a global system of powerful antennas for spacecraft communication and navigation.

As the NASA lab that had pioneered deep space communication and managed the DSN, JPL was a mecca for aspiring telecommunications engineers like Muñoz Fernández.

"My dream was always to work on telecom, doing telecom analysis for a deep space mission," said Muñoz Fernández, who before starting her master's program had worked for the company that manages the DSN complex in her native Madrid. "So for me, it was like a dream to work on Deep Space 1."

Her dream quickly evolved into a career's worth of real-world experience when, soon after starting her internship, she was thrust into a team tasked with wrenching the science data from the wayward Deep Space 1 and potentially rescuing the mission altogether.

Working with her mentor, Jim Taylor, and the flight team, Muñoz Fernández and the group quickly devised a strategy. If mission controllers could temporarily point the spacecraft close enough toward Earth, the telecom team could send commands through the spacecraft's high-gain antenna. The strategy required that Muñoz Fernández and Taylor analyze the signals coming from the spacecraft and send commands during the small window when the antenna was pointed toward Earth. If all went according to plan, a new software package would be radioed to the spacecraft instructing it to use its onboard camera as a de facto navigation tool.

"Initially, the probability of getting the high-gain antenna pointed on Earth and keeping it there for a typical communications pass was significantly below 50 percent," said Marc Rayman, who at the time was Deep Space 1's Mission Manager. "But there were two mottos I tried to get the team to adopt: 'If it isn't impossible, it isn't worth doing,' and, 'Never give up. Never surrender.' I took the second one from the movie 'Galaxy Quest.'"

The plan worked. In 2001, Deep Space 1 made a successful flyby of comet Borrelly, snapping hundreds of up-close photos of the comet. And the operation to save the mission went down as one of the most successful robotic spacecraft rescues in history.

"I got so much done in three months. It's unbelievable what we got accomplished," said Muñoz Fernández.

Having been accepted to a doctoral program at Caltech just before the start of her JPL internship, Muñoz Fernández carried the momentum from her experience into earning her doctorate in optical communications. When she came back to JPL in 2006, she was hired as a flight and project systems engineer for the Space Interferometry Mission.

These days, she divides her time between a busy schedule of research in deep space communications, techniques for model-based systems engineering for NASA missions, and task managing information architecture standards for space systems. And she says the lessons from her internship still play an essential role in her work - as does the mentoring she received from Taylor and Kar-Ming Cheung.

"I had the best mentors, that's for sure," said Muñoz Fernández. "You work with many different people, and I realize how fortunate I was that the first time I came here, I got to work with these amazing people - not just nice people, but so knowledgeable technically."

This summer Muñoz Fernández is preparing to mentor her own students, and she says she has plenty of advice from her experience to pass along to the next generation.

"It's exciting to be able to teach new generations the knowledge that you have," she said. "And it's not only that the student learns from the mentor, but the mentor can also learn from the student. They can think of something that someone who was working here for a long time didn't think about because they come with a new perspective."

Michela Munoz Fernandez in JPL mission control with a model of the Juno spacecraftDr. Michela Muñoz Fernández is a principal investigator at JPL. She has also worked as a systems engineer and science payload engineer on instruments and operations for the Juno mission. She currently directs research for model-based systems engineering for NASA space missions, is a task manager for information and architecture standards, conducts research on optical communications in deep space, and studies the complexity of DSN links.

TAGS: Women in STEM, Deep Space Network, Deep Space 1, Internships & Fellowships, Career Guidance, Women in STEM

  • Kim Orr

Andrew Crawford looks out over the Goldstone Deep Space Communications Complex sign

Beep-beep ... incoming transmission:

Transmission Source: NASA's Dawn spacecraft on its final approach to the giant asteroid Vesta, situated between Mars and Jupiter.
Date of orbital insertion: Friday, July 15, 2011.
Mission status: Orbital insertion confirmed.

On July 15, history was made when NASA's Dawn spacecraft became the first probe to enter into a prolonged orbit around a celestial body in the asteroid belt. With telemetry and deep space communication provided by NASA's Deep Space Network, Dawn closed in on Vesta, a 330-mile wide asteroid, after four years and 1.7 billion miles of travel. This mission has huge significance for humankind, but also a particular significance to my job and internship with the Deep Space Network's Antenna Mechanical and Structural Analysis group because it is responsible for the vital design and engineering components that make communication with the Dawn spacecraft possible.

Recently, I had the chance to visit the Goldstone, Calif., Deep Space Network Tracking facility (check out my photo album on Facebook!), one of the three sites around the world that houses the network's massive antennas. And just when I thought my mind could not absorb and process any more surreal advanced technological wizardry and human determination, NASA, JPL and the Deep Space Network again exposed me to new horizons.

To provide you with a brief 101 of the Deep Space Network, or DSN: It is the largest and most sensitive scientific international telecommunications system in the world, charged with interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe.  How's that for a job title!  In other words, it is responsible for communicating with and guiding spacecraft, probes and NASA missions sent into space, (including the rovers on Mars, whose driving team will be featured in a special guest interview for my next post). The DSN monitors asteroids and celestial objects and their proximity to Earth, searches for signals and anomalies from outer space, performs interferometry observations, measures variations in radio waves for science experiments and provides the vital two-way communication link that guides, controls, and brings back images and science data from planetary explorers.

There are three large deep-space communications facilities strategically placed approximately 120 degrees apart around the world: at Goldstone, in California's Mojave Desert; near Madrid, Spain; and near Canberra, Australia. This strategic placement permits constant observation of spacecraft as the Earth rotates and has been in constant operation monitoring the night skies with the first antenna being constructed in the '60s.

The roots for what would eventually become the DSN began in 1958 with the establishment of an antenna and tracking system to receive telemetry and plot the orbit of NASA's Explorer 1, the first successful U.S. satellite. Shortly after, NASA established the concept of the DSN as a separately managed and operated communications facility that would accommodate all deep space missions, thereby avoiding the need for each flight project to acquire and operate its own specialized space communications network.

The component of the DSN that I'm working with, Antenna Mechanical and Structural Analysis, is a phenomenal team that provides ground support and engineering, and builds, designs, and fabricates the antennas and components that make up these massive spacecraft-tracking facilities. In particular, my task this summer is to design, model, and fabricate the future addition of a platform to hold the cryogenic equipment and processing hardware on a brand new, 34-meter beam-waveguide antenna being built in Australia! 

Even cooler - literally -- is the fact that the incoming signals from the Mars rovers and interplanetary spacecraft are funneled down these giant antennas through a network of mirrors, then cooled to cryogenic states where molecules can actually be separated and extracted from the "noise" of other space signals, processed in a maze of computers and analyzed for whomever or whatever that signal is for or from.  I must admit that gathering the seismic, vibration dampening tolerances and heat exchange data for the build requirements was a little nerve-racking, yet also so exciting!  Basically, I was charged with gathering data such as Australia seismic codes, dampening and vibration tolerances for the feed cone, material strength and human "live-load" factors of safety, all of which are used in international engineering projects. Luckily, my group members are an amazing and highly encouraging team who help me out tremendously and guide me with precision and experienced accuracy.

To help gain a better perspective on and appreciation for the magnitude and caliber of the Deep Space Network's responsibilities, we took a trip to one of the three DSN tracking facilities: Goldstone, Calif. And boy did it give me goose-bumps -- in a good way!  After several military checkpoints, security screenings and identity checks, we soon arrived at what can only be described as something straight out of "Star Wars" or some other sci-fi movie, a site fittingly called "Mars," with antennas that seem as big as my hometown pointed at the sky. My jaw dropped, my mentor Jason laughed, and we stepped out of the car to look straight up at what looked like part of the Death Star aimed into outer space. 

A view of the 70 meter DSN antenna and Andrew Crawford below the antenna
If you can spot me just below NASA's Deep Space Network antenna (left), you'll get an idea of just how big these things really are. One highlight of my visit was a trip below the antenna (right) to view the inner-workings of how the DSN tracks and communicates with spacecraft throughout the solar system. Image credit: NASA/JPL-Caltech

This particular antenna at the Goldstone site is among the biggest and most sensitive of all of the DSN antennas, spanning 70 meters (230 feet) across and capable of tracking a spacecraft traveling more than 10 billion miles from Earth. The precision across the antenna surface is maintained within one centimeter (0.4 inch) of the signal wavelength, an amazing feat that reminds me what an incredible opportunity it is to be working with this team.

The day consisted of exploring and analyzing all the systems and subsystems that comprise the massive array of tracking antennas.  All the while, I couldn't help but think how cool it was that as Earth rotated, these can be programed to switch control to an antenna on the other side of the world in order to maintain constant contact with all the spacecraft and signals out there.

One highlight was walking down one of the antenna tunnels that led underground to the inside of the massive concrete pedestal that houses the huge 34-meter antenna above as well as the space-age cryogenic processing equipment and platforms that hold them. The signals are essentially funneled down the antenna structure and dish by a matrix of precisely aligned mirrors. They are then captured and funneled into a network called "wave guides." Radio waves coming from deep space and other sources, like spacecraft, are guided along this tubing, which gets smaller and smaller passing though filters that eventually lead to a certain bandwidth ready for a trip to cryogenic-ville. All of this takes place in preparation for a result that to me seems like black magic but is definitely the coolest thing I've heard about: molecular separation for extracting the desired signals from the rest of the "space noise."

As I contemplated the complexity and wonderment of how many people and years it must have taken to design and build all of this, an alarm and voice came on over the loudspeaker announcing that the antenna would be moving and tracking in two minutes, which was our cue to exit the premises. And it could only mean one thing: The antenna was adjusting to track some distant spacecraft or asteroid in the stars above, and once again, I couldn't help but smile and pinch myself at how amazing the universe and humankind can be.

Stay tuned for my next post on how the Deep Space Network and the Antenna Mechanical group contribute to navigating spacecraft and rovers 15 million miles away, when I interview the Mars rover driving team!

TAGS: Deep Space Network, Engineering, Space Communications

  • Andrew Crawford

Andrew Crawford with Dr. Charles Elachi at JPL

Beep-beep ... incoming transmission.

As I sit in the Deep Space Network's Telecommunications Laboratory, writing this special broadcast, the relativity and reality of this transmission takes precedence. Today I sat down with the director of NASA's Jet Propulsion Laboratory, Dr. Charles Elachi, on a search to see what drives JPL's spirit of exploration.

For a quick debriefing to bring you up to speed, space exploration has a certain magic and aura about it that's had an influence on me for a long time. First, from following the missions to Mars, and then with my engineering schooling, where I've paid much more attention to what JPL does and how it completely inspires me. When my phone rang one day in Montana and I was invited to come be a part of this workforce, it was a dream come true.

When I first arrived here, not only was the magic of this place confirmed, but it was also exponentially skyrocketing by the minute, so much so that it made me want to try my hardest, work my best and literally shoot for the stars. So I thought why not request an interview with my inspiration and the reason JPL is what it is today, the lab's director, Dr. Elachi.

Access: Granted.

As my mentor Jason Carlton and I step out of the elevator, the first thing that strikes our attention is the huge windows with a scene that stops us in our tracks: an aerial view looking down at the buildings that comprise the Jet Propulsion Laboratory with the San Gabriel Mountains in the distance. As we make our way down the hallway, I can't help but gaze at a huge picture from the surface of Mars with rover tracks disappearing into the distance, which seems to embody JPL's mission of exploration.

When the door to Dr. Elachi's office swings open, the director walks over to me quickly, shakes my hand with a smile, and says, "Andrew, come in, come in." Soon enough, we're seated at a large table in the middle of the room, and across the table looking at me, with eyes that have witnessed so much, is Dr. Elachi.

Andrew interviews Dr. Elachi
I catch a glimpse of Dr. Elachi's unflinching enthusiasm as he responds to my query about the aura that JPL seems to exude, the same aura that attracted me to this place. Image credit: NASA/JPL-Caltech

One of the driving factors that JPL seems to employ is giving scientists and engineers a certain autonomy, the freedom to tinker, think, imagine and then create. I see it every day, whether it's the engineers in my Deep Space Network Antenna Mechanical Group hashing out ideas on a white board or conversations in the lunchroom of creative ideas. This seems fundamental to life at JPL, and I soon learn that Dr. Elachi feels the same way. "You probably know a lot more about mechanical engineering than I do," he says. "I have to rely on the experts and talent we bring in to make these advances."

He recalls that his "first tinkering as a boy was taking apart our family's handheld radio to see how it worked. I was never able to put it back together," he says. I laugh with a tremendous smile, not only because his story parallels the curiosity that JPLers seem to have, but also because my father would constantly ask me as a boy why I was so good at taking things apart, yet never putting them back together. Glad I'm not the only one.

My mentor Jason Carlton, a mechanical engineer who graduated from Cal Poly Pomona, chimes in on the subject of tinkering, saying he's concerned about students having enough hands-on experiences in school. Dr. Elachi and I could not agree more on the importance of this kind of education.

"It's really an investment in the future. The more we can tell leaders that's what got us here, the better off we'll be. I've always said that when things are tough, it's time to invest in your future because that's how you get out of tough times. If you look at history, the people who invested in technology were the ones who succeeded."

We all take a second to reflect on this point and silently nod in agreement at the need to convey the importance of this kind of education in the future. I decide to take the opportunity to ask a question that has always piqued my interest: What is it about JPL that attracts such scientific, engineering and research talent from around the world?

"There are two things," he says. "First, is the kind of work we do, where you can come here and be working on exploring the universe. Second, is the talent that comes here with the mindset that anything is possible. There are places that humans currently cannot go, and we get to explore those places. A new-hire once said to me, 'At JPL, we get together in the morning and talk about what's impossible and then do it in the afternoon.'"

This statement resonates with me profoundly, knowing that my internship and job this summer, with the Deep Space Network's Antenna Mechanical Group, are directly connected and responsible for the exploration of places we have not yet charted or visited.

As our time draws to a close, I ask him one final question: "Who is the first person you would call if one of JPL's missions finds evidence of life on Mars or beyond? Is there a special 'red-phone' hotline for that?"

There are laughs and smiles all around the table, and then a moment of silence while he pauses and thinks. He says there's no "red-phone" hotline. In all seriousness, he would call NASA Administrator Charles Bolden, who would then call the White House. This statement causes a few goosebumps to rise on my neck as I consider the magnitude of calling the White House and the conversation that would follow. The interview comes to a close, and I can't help but smile and say thank you as I shake Dr. Elachi's hand. He opens the door, smiles and says thank you in return. And as he begins his next meeting of the day, what I'm sure is one of many, the generosity of his time truly becomes apparent.

I find myself strolling back to the office with the excitement and wonderment reminiscent of when I was a little boy dreaming of space, yet this time with a newfound and non-diminishing source of inspiration. Knowing that I get to be part of something special - and am microscopically responsible for structures monitoring that big night sky -- is enough to keep me fueled for eternity.

TAGS: Charles Elachi, Deep Space Network

  • Andrew Crawford