Lyle Tavernier is an educational technology specialist at NASA's Jet Propulsion Laboratory. When he’s not busy working in the areas of distance learning and instructional technology, you might find him running with his dog, cooking or planning his next trip.


Animation showing a total lunar eclipse. Credit: NASA Goddard Media Studios

There’s no better time to learn about the Moon than during a lunar eclipse. Here’s how to get students watching and exploring more.

This article has been updated to include information about the visibility and timing of the total lunar eclipse on May 26, 2021. See the "What to Expect" section below for details.


A full moon is always a good reason to go outside and look up, but a total or partial lunar eclipse is an awe-inspiring sight that gives students a great opportunity to engage in practical sky watching. Whether it’s the Moon's reddish hue during a total lunar eclipse or the "bite" taken out of the Moon during a partial lunar eclipse, there's always something exciting to observe during these celestial events. Read on to see what to expect during the next lunar eclipse. Plus, explore resources you can use at home or in the classroom to teach students about moon phases, craters, and more!

How It Works

Side-by-side images showing how the Moon, Sun and Earth align during an lunar eclipse versus a standard full moon

These side-by-side graphics show how the Moon, Sun, and Earth align during a lunar eclipse (left) versus a non-eclipse full moon (right). Credit: NASA Goddard Visualization Studio | + Enlarge image

Eclipses can occur when the Sun, the Moon, and Earth align. Lunar eclipses can only happen during the full moon phase, when the Moon and the Sun are on opposite sides of Earth. At that point, the Moon could move into the shadow cast by Earth, resulting in a lunar eclipse. However, most of the time, the Moon’s slightly tilted orbit brings it above or below the shadow of Earth.

The time period when the Moon, Earth, and the Sun are lined up and on the same plane – allowing for the Moon to pass through Earth’s shadow – is called an eclipse season. Eclipse seasons last about 34 days and occur just shy of every six months. When a full moon occurs during an eclipse season, the Moon travels through Earth’s shadow, creating a lunar eclipse.

Graphic showing the alignment of the Sun, Earth and Moon when a full moon occurs during an eclipse season versus a non-eclipse season

When a full moon occurs during an eclipse season, the Moon travels through Earth's shadow, creating a lunar eclipse. Credit: NASA/JPL-Caltech | + Enlarge image

Unlike solar eclipses, which require special glasses to view and can only be seen for a few short minutes in a very limited area, a total lunar eclipse can be seen for up to an hour by anyone on the nighttime side of Earth – as long as skies are clear!

Why It’s Important

Lunar eclipses have long played an important role in understanding Earth and its motions in space.

In ancient Greece, Aristotle noted that the shadows on the Moon during lunar eclipses were round, regardless of where an observer saw them. He realized that only if Earth were a spheroid would its shadows be round – a revelation that he and others had many centuries before the first ships sailed around the world.

Earth wobbles on its axis like a spinning top that’s about to fall over, a phenomenon called precession. Earth completes one wobble, or precession cycle, over the course of 26,000 years. Greek astronomer Hipparchus made this discovery by comparing the position of stars relative to the Sun during a lunar eclipse to those recorded hundreds of years earlier. A lunar eclipse allowed him to see the stars and know exactly where the Sun was for comparison – directly opposite the Moon. If Earth didn’t wobble, the stars would appear to be in the same place they were hundreds of years earlier. When Hipparchus saw that the stars’ positions had indeed moved, he knew that Earth must wobble on its axis!

Additionally, modern-day astronomers have used ancient eclipse records and compared them with computer simulations. These comparisons helped scientists determine the rate at which Earth’s rotation is slowing.

What to Expect

Graphic showing the positions of the Moon, Earth and Sun during a partial lunar eclipse

During a total lunar eclipse, the Moon first enters into the penumbra, or the outer part of Earth's shadow, where the shadow is still penetrated by some sunlight. Credit: NASA | + Enlarge image

The Moon as seen during a partial lunar eclipse

As the Moon starts to enter into the umbra, the inner and darker part of Earth's shadow, it appears as if a bite has been taken out of the Moon. This "bite" will grow until the Moon has entered fully into the umbra. Credit: NASA | + Enlarge image

Graphic showing the Moon inside the umbra

The total lunar eclipse starts once the moon is completely inside the umbra. And the moment of greatest eclipse happens with the Moon is halfway through the umbra as shown in this graphic. Credit: NASA | + Enlarge image

The Moon as seen during a total lunar eclipse at the point of greatest eclipse

As the Moon moves completely into the umbra, it turns a reddish-orange color. Credit: NASA | + Enlarge image

The Moon passes through two distinct parts of Earth’s shadow during a lunar eclipse. The outer part of the cone-shaped shadow is called the penumbra. The penumbra is less dark than the inner part of the shadow because it’s penetrated by some sunlight. (You have probably noticed that some shadows on the ground are darker than others, depending on how much outside light enters the shadow; the same is true for the outer part of Earth’s shadow). The inner part of the shadow, known as the umbra, is much darker because Earth blocks additional sunlight from entering the umbra.

Here's what to expect during the total lunar eclipse on May 26, 2021, which will be visible in western North and South America, as well as in eastern Asia, Australia, and the Pacific Ocean. Note: Viewers in the Midwest and the eastern U.S. can still look up to see a partial eclipse grace the sky.

At 1:47 a.m. PDT, the edge of the Moon will begin entering the penumbra. The Moon will dim very slightly for the next 57 minutes as it moves deeper into the penumbra. Because this part of Earth’s shadow is not fully dark, you may only notice some dim shading (if anything at all) on the Moon near the end of this part of the eclipse. Should you decide to sleep in during this time, you won’t miss much.

At 2:45 a.m. PDT, the edge of the Moon will begin entering the umbra. As the Moon moves into the darker shadow, significant darkening will be noticeable. Some say that during this part of the eclipse, the Moon looks as if it has had a bite taken out of it. That “bite” gets bigger and bigger as the Moon moves deeper into the shadow. During this part, viewers in most of the eastern U.S. will see the Moon as it moves into the umbra but lose visibility once the Moon dips below the horizon and the Sun rises.

At 4:11 a.m. PDT, the Moon will be completely inside the umbra, marking the beginning of the total lunar eclipse. The moment of greatest eclipse, when the Moon is halfway through its path across the umbra, occurs at 4:19 a.m. PDT.

As the Moon moves completely into the umbra, something interesting happens: The Moon begins to turn reddish-orange. The reason for this phenomenon? Earth’s atmosphere. As sunlight passes through it, the small molecules that make up our atmosphere scatter blue light, which is why the sky appears blue. This leaves behind mostly red light that bends, or refracts, into Earth’s shadow. We can see the red light during an eclipse as it falls onto the Moon in Earth’s shadow. This same effect is what gives sunrises and sunsets a reddish-orange color.

A variety of factors affect the appearance of the Moon during a total lunar eclipse. Clouds, dust, ash, photochemical droplets, and organic material in the atmosphere can change how much light is refracted into the umbra. Additionally, the May 2021 lunar eclipse takes place when the full moon is at or near the closest point in its orbit to Earth (popularly known as a supermoon). This means it is deeper inside the umbra shadow and therefore may appear darker. The potential for variation provides a great opportunity for students to observe and classify the lunar eclipse based on its brightness. Details can be found below in the “Teach It” section.

At 4:25 a.m. PDT, the edge of the Moon will begin exiting the umbra and moving into the opposite side of the penumbra. This marks the end of the total lunar eclipse.

At 5:52 a.m. PDT, the Moon will be completely outside of the umbra and will begin exiting the penumbra until the eclipse ends at 6:49 a.m. PDT.

Teach It

Ask students to observe the lunar eclipse and evaluate the Moon’s brightness using the Danjon Scale of Lunar Eclipse Brightness. The Danjon scale illustrates the range of colors and brightness the Moon can take on during a total lunar eclipse and is a tool observers can use to characterize the appearance of an eclipse. View the lesson guide here. After the eclipse, have students compare and justify their evaluations of the eclipse.

Use these standards-aligned lessons and related activities to get your students excited about the eclipse, moon phases, and Moon observations.

Educator Guides & Resources

Student Activities

Explore More

TAGS: Lunar Eclipse, Moon, Super Blue Blood Moon, Observe the Moon, Eclipse, K-12, Classroom Activities, Teaching

  • Lyle Tavernier
READ MORE

The Millennium Falcon takes on TIE fighters in a scene from 'Star Wars: The Force Awakens.'

Science fiction meets science fact in this Star Wars inspired Teachable Moment all about ion propulsion and Newton’s Laws.

In the News

What do "Star Wars," NASA's Dawn spacecraft and Newton's Laws of Motion have in common? An educational lesson that turns science fiction into science fact using spreadsheets – a powerful tool for developing the scientific models addressed in the Next Generation Science Standards. Keep reading to learn more and find out how to get students weilding the force.

Why It's Important

The TIE (Twin Ion Engine) fighter is a staple of the "Star Wars" universe. Darth Vader flew one in "A New Hope." Poe Dameron piloted one in "The Force Awakens." And many, many Imperial pilots met their fates in them. While the fictional TIE fighters in "Star Wars" flew a long time ago in a galaxy far, far away, ion engines are a reality in this galaxy today – and have a unique connection to NASA’s Jet Propulsion Laboratory.

Launched in 1998, the first spacecraft to use an ion engine was Deep Space 1, which flew by asteroid 9969 Braille and comet Borrelly. Fueled by the success of Deep Space 1, engineers at JPL set forth to develop the next spacecraft that would use ion propulsion. This mission, called Dawn, would take ion-powered spacecraft to the next level by allowing Dawn to go into orbit twice – around the two largest objects in the asteroid belt: Vesta and Ceres.

How It Works

Ion engines rely on two principles that Isaac Newton first described in 1687. First, a positively charged atom (ion) is pushed out of the engine at a high velocity. Newton’s Third Law of Motion states that for every action there is an equal and opposite reaction, so then a small force pushes back on the spacecraft in the opposite direction – forward! According to Newton’s Second Law of Motion, there is a relationship between the force (F) exerted on an object, its mass (m) and its acceleration (a). The equation F=ma describes that relationship and tells us that the small force applied to the spacecraft by the exiting atom provides a small amount of acceleration to the spacecraft. Push enough atoms out, and you'll get enough acceleration to really speed things up.


Why is It Important?

Compared with traditional chemical rockets, ion propulsion is faster, cheaper and safer:

  • Faster: Spacecraft powered by ion engines can reach speeds of up to 90,000 meters per second (more than 201,000 mph!)
  • Cheaper: When it comes to fuel efficiency, ion engines can reach more than 90 percent fuel efficiency, while chemical rockets are only about 35 percent efficient.
  • Safer: Ion thrusters are fueled by inert gases. Most of them use xenon, which is a non-toxic, chemically inert (no risk of exploding), odorless, tasteless and colorless gas.

These properties make ion propulsion a very attractive solution when engineers are designing spacecraft. While not every spacecraft can use ion propulsion – some need greater rates of acceleration than ion propulsion can provide – the number and types of missions using these efficient engines is growing. In addition to being used on the Dawn spacecraft and communication satellites orbiting Earth, ion propulsion could be used to boost the International Space Station into higher orbits and will likely be a part of many future missions exploring our own solar system.

Teach It

Newton’s Laws of Motion are an important part of middle and high school physical science and are addressed specifically by the Next Generation Science Standards as well as Common Core Math standards. The lesson "Ion Propulsion: Using Spreadsheets to Model Additive Velocity" lets students study the relationship between force, mass and acceleration as described by Newton's Second Law as they develop spreadsheet models that apply those principles to real-world situations.

Educator Guides

Student Activities

Explore More


This feature was originally published on May 3, 2016.

TAGS: May the Fourth, Star Wars Day, F=ma, ion propulsion, Dawn, Deep Space 1, lesson, classroom activity, NGSS, Common Core Math

  • Lyle Tavernier
READ MORE

Illustration of spacecraft on a light blue background that reads "NASA Pi Day Challenge"

Cartoonish illustration of spacecraft on a dark purple background with various pi formulas

Update: March 15, 2021 – The answers are here! Visit the NASA Pi Day Challenge slideshow to view the illustrated answer keys (also available as a text-only doc) with each problem.


Learn about pi and the history of Pi Day before exploring some of the ways the number is used at NASA. Then, try the math for yourself in our Pi Day Challenge.

Infographic of all of the Pi in the Sky 7 graphics and problems

Visit the Pi in the Sky 8 lesson page to explore classroom resources and downloads for the 2021 NASA Pi Day Challenge. Image credit: NASA/JPL-Caltech | + Expand image

In this black and white animated image, a circular device stretched out from a robotic arm descends quickly toward a rocky surface, touches it, and then ascends as debris flies all around.

Captured on Oct. 20, 2020, during the OSIRIS-REx mission’s Touch-And-Go (TAG) sample collection event, this series of images shows the SamCam imager’s field of view as the NASA spacecraft approached and touched asteroid Bennu’s surface. Image credit: NASA/Goddard/University of Arizona | › Full image and caption

The Ingenuity Mars helicopter has a small box-like body topped by two sets of oblong blades. Four stick-like legs extend from the body of the helicopter.

In this illustration, NASA's Ingenuity Mars Helicopter stands on the Red Planet's surface as NASA's Perseverance rover (partially visible on the left) rolls away. Image credit: NASA/JPL-Caltech | › Full image and caption

A giant dish with a honeycomb-patterned device at its center is shown in a desert landscape.

This artist's concept shows what Deep Space Station-23, a new antenna dish capable of supporting both radio wave and laser communications, will look like when completed at the Deep Space Network's Goldstone, California, complex. Image credit: NASA/JPL-Caltech | + Expand image

A swirling fabric of glowing neon green, orange, and pink extends above Earth's limb. A partial silhouette of the ISS frames the right corner of the image.

Expedition 52 Flight Engineer Jack Fischer of NASA shared photos and time-lapse video of a glowing green aurora seen from his vantage point 250 miles up, aboard the International Space Station. This aurora photo was taken on June 26, 2017. Image credit: NASA | › Full image and caption

In the News

As March 14 approaches, it’s time to get ready to celebrate Pi Day! It’s the annual holiday that pays tribute to the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.

Pi Day comes around only once a year, giving us a reason to chow down on our favorite sweet and savory pies while we appreciate the mathematical marvel that helps NASA explore Earth, the solar system, and beyond. There’s no better way to observe this day than by getting students exploring space right along with NASA by doing the math in our Pi Day Challenge. Keep reading to find out how students – and you – can put their math mettle to the test and solve real problems faced by NASA scientists and engineers as they explore the cosmos!

How It Works

Dividing any circle’s circumference by its diameter gives us pi, which is often rounded to 3.14. However, pi is an irrational number, meaning its decimal representation goes on forever and never repeats. Pi has been calculated to 50 trillion digits, but NASA uses far fewer for space exploration.

Some people may think that a circle has no points. In fact, a circle does have points, and knowing what pi is and how to use it is far from pointless. Pi is used for calculating the area and circumference of circular objects and the volume of shapes like spheres and cylinders. So it's useful for everyone from farmers storing crops in silos to manufacturers of water storage tanks to people who want to find the best value when ordering a pizza. At NASA, we use pi to find the best place to touch down on Mars, study the health of Earth's coral reefs, measure the size of a ring of planetary debris light years away, and lots more.

In the United States, one format to write March 14 is 3.14, which is why we celebrate on that date. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi. And you're in luck, because that's precisely what the NASA Pi Day Challenge is all about.

The Science Behind the 2021 NASA Pi Day Challenge

This year, the NASA Pi Day Challenge offers up four brain-ticklers that will require students to use pi to collect samples from an asteroid, fly a helicopter on Mars for the first time, find efficient ways to talk with distant spacecraft, and study the forces behind Earth's beautiful auroras. Learn more about the science and engineering behind the problems below or click the link below to jump right into the challenge. Be sure to check back on March 15 for the answers to this year’s challenge.

› Take the NASA Pi Day Challenge

› Educators, get the lesson here!

Sample Science

NASA’s OSIRIS-REx mission has flown to an asteroid and collected a sample of surface material to bring back to Earth. (It will arrive back at Earth in 2023.) The mission is designed to help scientists understand how planets form and add to what we know about near-Earth asteroids, like the one visited by OSIRIS-REx, asteroid Bennu. Launched in 2016, OSIRIS-REx began orbiting Bennu in 2018 and successfully performed its maneuver to retrieve a sample on October 20, 2020. In the Sample Science problem, students use pi to determine how much of the spacecraft's sample-collection device needs to make contact with the surface of Bennu to meet mission requirements for success.

Whirling Wonder

Joining the Perseverance rover on Mars is the first helicopter designed to fly on another planet. Named Ingenuity, the helicopter is a technology demonstration, meaning it's a test to see if a similar device could be used for a future Mars mission. To achieve the first powered flight on another planet, Ingenuity must spin its blades at a rapid rate to generate lift in Mars’ thin atmosphere. In Twirly Whirly, students use pi to compare the spin rate of Ingenuity’s blades to those of a typical helicopter on Earth.

Signal Solution

NASA uses radio signals to communicate with spacecraft across the solar system and in interstellar space. As more and more data flows between Earth and these distant spacecraft, NASA needs new technologies to improve how quickly data can be received. One such technology in development is Deep Space Optical Communications, which will use near-infrared light instead of radio waves to transmit data. Near-infrared light, with its higher frequency than radio waves, allows for more data to be transmitted per second. In Signal Solution, students can compare the efficiency of optical communication with radio communication, using pi to crunch the numbers.

Force Field

Earth’s magnetic field extends from within the planet to space, and it serves as a protective shield, blocking charged particles from the Sun. Known as the solar wind, these charged particles of helium and hydrogen race from the Sun at hundreds of miles per second. When they reach Earth, they would bombard our planet and orbiting satellites were it not for the magnetic field. Instead, they are deflected, though some particles become trapped by the field and are directed toward the poles, where they interact with the atmosphere, creating auroras. Knowing how Earth’s magnetic field shifts and how particles interact with the field can help keep satellites in safe orbits. In Force Field, students use pi to calculate how much force a hydrogen atom would experience at different points along Earth’s magnetic field.

Teach It

Pi Day is a fun and engaging way to get students thinking like NASA scientists and engineers. By solving the NASA Pi Day Challenge problems below, reading about other ways NASA uses pi, and doing the related activities, students can see first hand how math is an important part of STEM.

Pi Day Resources

Plus, join the conversation using the hashtag #NASAPiDayChallenge on Facebook, Twitter, and Instagram.

Related Lessons for Educators

Related Activities for Students

TAGS: Pi, Pi Day, NASA Pi Day Challenge, Math, Mars, Perseverance, Ingenuity, Mars Helicopter, OSIRIS-REx, Bennu, Asteroid, Auroras, Earth, Magnetic Field, DSOC, Light Waves, DSN, Deep Space Network, Space Communications

  • Lyle Tavernier
READ MORE

Collage of images and graphics representing the science goals of the Sentinel-6 Michael Freilich mission

Learn about the mission and find out how to make classroom connections to NASA Earth science – plus explore related teaching and learning resources.


In the News

A new spacecraft that will collect vital sea-surface measurements for better understanding climate change and improving weather predictions is joining the fleet of Earth science satellites monitoring our changing planet from space. A U.S.-European partnership, the Sentinel-6 Michael Freilich satellite continues a long tradition of collecting scientific data from Earth orbit. It’s named in honor of NASA’s former Earth Science Division director and a leading advocate for ocean measurements from space.

Read on to find out how the mission will measure sea-surface height for the next 10 years and provide atmospheric data to help better predict weather. Plus, find out how to watch the launch online and explore related teaching resources to bring NASA Earth science into the classroom and incorporate sea level data into your instruction.

How It Works

The Sentinel-6 Michael Freilich satellite is designed to measure sea-surface height and improve weather predictions. Once in orbit, it will be able to measure sea-surface height – with accuracy down to the centimeter – over 90% of the world’s oceans every 10 days. It will do this using a suite of onboard science tools, or instruments.

To measure sea-surface height, a radar altimeter will send a pulse of microwave energy to the ocean’s surface and record how long it takes for the energy to return. The time it takes for the signal to return varies depending on the height of the ocean – a higher ocean surface results in a shorter return time, while a lower ocean surface results in a longer return time. A microwave radiometer will measure delays that take place as the signal travels through the atmosphere to correct for this effect and provide an even more precise measurement of sea-surface height.

A blue beam extends from the spacecraft down toward Earth as a red dot pulses back and forth between the spacecraft and the surface of the planet.

This animation shows the radar pulse from the Sentinel-6 Michael Freilich satellite's altimeter bouncing off the sea surface in order to measure the height of the ocean. Image credit: NASA/JPL-Caltech | + Expand image

To measure atmospheric data, Sentinel-6 Michael Freilich is equipped with the Global Navigation Satellite System - Radio Occultation, or GNSS-RO, instrument, which will measure signals from GPS satellites – the same ones you use to navigate on Earth. As these satellites move below or rise above the horizon from Sentinel-6 Michael Freilich's perspective, their signals slow down, change frequency and bend as a result of the phenomenon known as refraction. Scientists can use these changes in the GPS signal to measure small shifts in temperature, moisture content, and density in the atmosphere. These measurements can help meteorologists improve weather forecasts.

Why It's Important

Scientists from around the world have been collecting sea level measurements for more than a century. The data – gathered from tide gauges, sediment cores, and space satellites – paint a clear picture: sea level is rising. Looking at the average height of the sea across the planet, we see that in the last 25 years global sea level has been rising an average of 0.13 inches (3.3 mm) per year. This average is increasing each year (in the 2000s, it was 0.12 inches, or 3.0 mm, per year) as is the rate at which it’s increasing. That means that sea level is rising, and it’s rising faster and faster. Since 1880, global sea level has risen more than eight inches (20 cm). By 2100, it is projected to rise another one to four feet (30 to 122 cm).

This satellite data show the change in Earth's global sea level since 1993. Roll over the chart to see the various data points. For more Earth vital signs, visit NASA's Global Climate Change website

Measuring sea level from space provides scientists with global measurements of Earth’s oceans in a matter of days, including areas far from shore where measurements aren’t practical or possible. Starting in 1992 with the launch of the TOPEX/Poseidon mission, the record of sea level measurements from space has continued uninterrupted, providing an increasingly detailed picture of Earth’s rising seas. The Sentinel-6 Michael Freilich satellite – and its twin, which will launch in 2025 – will extend those measurements to 2030, allowing scientists to continue collecting vital information about Earth’s changing oceans and climate.

Unlike previous satellites that measured sea level, Sentinel-6 Michael Freilich has the capability to measure sea level variations more accurately near coastlines, giving scientists insight into changes that can have direct impacts on communities and livelihoods, such as commercial fishing and ship navigation.

This playlist for students and teachers features explainers about the causes and effects of sea level rise and how NASA is studying our changing planet – plus related STEM activities and experiments for students. | Watch on YouTube

With rising seas already impacting people and communities, it's important to understand not just how much seas are rising, but also where and how quickly they are rising. Data from instruments on Sentinel-6 Michael Freilich can be combined with data from other satellites to get a clearer picture of what's contributing to sea level rise and where. For example, by looking at the satellite's radar altimeter measurements along with gravity measurements from the GRACE-FO mission, scientists can better determine how melting ice and thermal expansion are contributing to sea level rise. And by tracking the movement of warm water (which stands taller than cold water), scientists can better predict the rapid expansion of hurricanes.

Watch the Launch

Scheduled to launch at 9:17 a.m. PST (12:17 p.m. EST) on November 21, Sentinel-6 Michael Freilich will launch atop a SpaceX Falcon 9 rocket from Vandenberg Air Force Base in California.

Watch a live broadcast of the launch from the Vandenberg Air Force Base on NASA TV and the agency’s website. Visit the Sentinel-6 Michael Freilich website to explore more news about the mission. Follow launch updates on NASA's Twitter, Facebook and Instagram accounts.

Teach It

Make classroom connections to NASA Earth science with lessons about rising seas, thermal expansion and ice melt, data collection and graphing, and engineering. Plus explore independent activities and experiments students can do at home, video playlists, and more:

Explore More

Recursos en Español

TAGS: Teachable Moments, Educators, Teachers, Parents, K-12 Education, Launch, Mission, Earth, Satellite, Earth Science, Climate Change, Sentinel-6 Michael Freilich, Sea Level, Sea Level Rise,

  • Lyle Tavernier
READ MORE

Collage of NASA-JPL education resources

Whether your school will be welcoming students back to campus in the upcoming school year or you're preparing for remote instruction, the Education Office at NASA’s Jet Propulsion Laboratory has several resources you and your students can use to launch back into STEM.

Resources for Teachers

On July 30, NASA launched the Perseverance Mars rover and its companion Ingenuity – the first helicopter designed to fly on the Red Planet. With the two officially on their journey to Mars for a scheduled landing in February 2021, now is a great time to catch up with our new education webinar series, Teaching Space With NASA. In our first three webinars, NASA experts and education specialists introduced Perseverance, offered a look at the engineering behind the rover, and shared some of the exciting science goals for the mission. Visit the Teaching Space With NASA page to watch recordings of the webinars, download a certificate of participation, and explore a cache of resources you can use in your instruction.

During the 2020-21 school year, we’ll be continuing the series, offering monthly live-stream presentations from NASA scientists and engineers, hosted by JPL education specialists. Teaching Space With NASA live streams are open to all audiences, including informal educators and students. Join us for our next live stream on August 19 all about what's next for NASA Mars exploration. Register to join the Q&A at the link below. (Note: You do not need to register to watch – only to ask questions.)

Educators will also have a chance to take a deeper dive into the topic and associated educational resources with our interactive, virtual workshops. Attendance at virtual workshops is limited, so be sure to keep an eye out for new events announced to our email subscribers. Subscribe for "JPL Education Updates" here and check the Events page for the latest workshops.

Also, be sure to keep an eye out for new additions to our searchable catalog of nearly 200 standards-aligned STEM activities in the Teach section of this website. In addition to new lessons, some of your favorite existing lessons will now include tips for virtual instruction, as well as links to projects that students can do independently or with the help of family members.

Resources for Students

Learning Space with NASA at Home features standards-based activities students can do at home with inexpensive materials they may already have on hand. The page also features video tutorials (available with subtitles en Español) and an FAQ for families working with students at home. Check back as new activities featuring the latest NASA missions and science are added throughout the school year.

Explore More

TAGS: Educators, Teachers, K-12 Education, STEM, Educator Resources, Lessons, Student Activities, Parents, Webinars, Workshops

  • Lyle Tavernier
READ MORE

Artist's concept of the Perseverance rover on Mars

Update: July 6, 2020 – Due to processing delays in preparations to unite the spacecraft with the rocket, the first launch attempt will be no earlier than July 30 at 4:50 a.m. PDT (7:50 a.m. EDT). The launch period has been expanded to Aug. 15. Dates updated below. › Read more


Perseverance, NASA's most advanced Mars rover yet, is scheduled to leave Earth for its seven-month journey to the Red Planet this summer.

Only the fifth NASA rover destined for Mars, Perseverance is designed to build on the work and scientific discoveries of its predecessors. Find out more about the rover's science goals and new technologies below. Plus, learn how you can bring the exciting engineering and science of this mission to students with lessons and DIY projects covering topics like biology, geology, physics, mathematics, engineering, coding and language arts.

Why It's Important

Perseverance may look similar to Curiosity – the NASA rover that's been exploring Mars since 2012 – but the latest rover's new science instruments, upgraded cameras, improved onboard computers and new landing technologies make it uniquely capable of accomplishing the science goals planned for the mission.

Diagram of the Perseverance Mars rover's science instruments. Credit: NASA/JPL-Caltech | + Expand image

Looking for signs of habitability

The first of the rover's four science goals deals with studying the habitability of Mars. The mission is designed to look for environments that could have supported life in the past.

Perseverance will land in Jezero Crater, a 28-mile-wide (45-kilometer-wide) crater that scientists believe was once filled with water. Data from orbiters at the Red Planet suggest that water once flowed into the crater, carrying clay minerals from the surrounding area, depositing them in the crater and forming a delta. We find similar conditions on Earth, where the right combination of water and minerals can support life. By comparing these to the conditions we find on Mars, we can better understand the Red Planet's ability to support life. The Perseverance rover is specially designed to study the habitability of Mars' Jezero Crater using a suite of scientific instruments, or tools, that can evaluate the environment and the processes that influence it.

This animated flyover shows the area where Perseverance will land in February 2021 and is narrated by the mission's project scientist, Ken Farley. Credit: NASA/JPL-Caltech | › Learn more about the mission's landing site | Watch on YouTube

Seeking signs of ancient life

The rover's second science goal is closely linked with its first: Perseverance will seek out evidence that microbial life once existed on Mars in the past. In doing so, the mission could make progress in understanding the origin, evolution and distribution of life in the universe – the scientific field known as astrobiology.

It's important to note that the rover won't be looking for present-day life. Instead, its instruments are designed to look for clues left behind by ancient life. We call those clues biosignatures. A biosignature might be a pattern, object or substance that was created by life in the past and can be identified by certain properties, such as chemical composition, mineralogy or structure.

To better understand if a possible biosignature is really a clue left behind by ancient life, we need to look for biosignatures and study the habitability of the environment. Discovering that an environment is habitable does not automatically mean life existed there and some geologic processes can leave behind biosignature-like signs in non-habitable environments.

Collecting samples

Perseverance's third science goal is to gather samples of Martian rocks and soil. The rover will leave the samples on Mars, where future missions could collect them and bring them back to Earth for further study.

Scientists can learn a lot about Mars with a rover like Perseverance that can take in situ (Latin for "on-site") measurements. But examining samples from Mars in full-size laboratories on Earth can provide far more information about whether life ever existed on Mars than studying them on the Martian surface.

Perseverance will take the first step toward making a future sample return possible. The rover is equipped with special coring drill bits that will collect scientifically interesting samples similar in size to a piece of chalk. Each sample will be capped and sealed in individual collection tubes. The tubes will be stored aboard the rover until the mission team determines the best strategic locations on the planet's surface to leave them. The collection tubes will stay on the Martian surface until a potential future campaign collects them for return to Earth. NASA and the European Space Agency are solidifying concepts for the missions that will complete this campaign.

Preparing for future astronauts

Astronauts, an exploration vehicle and a habitat are shown among a rich orange landscape

This artist's concept depicts astronauts and human habitats on Mars. The Perseverance Mars rover will carry a number of technologies that could pave the way for astronauts to explore Mars. Credit: NASA | + Expand image

Like the robotic spacecraft that landed on the Moon to prepare for the Apollo astronauts, the Perseverance rover's fourth science goal will help pave the way for humans to eventually visit Mars.

Before humans can set foot on the Red Planet, we need to know more about conditions there and demonstrate that technologies needed for returning to Earth, and survival, will work. That’s where MOXIE comes in. Short for Mars Oxygen In-Situ Resource Utilization Experiment, MOXIE is designed to separate oxygen from carbon dioxide (CO2) in Mars' atmosphere. The atmosphere that surrounds the Red Planet is 96% CO2. But there's very little oxygen – only 0.13%, compared with the 21% in Earth’s atmosphere.

Oxygen is a crucial ingredient in rocket fuel and is essential for human survival. MOXIE could show how similar systems sent to Mars ahead of astronauts could generate rocket fuel to bring astronauts back to Earth and even create oxygen for breathing.

Join JPL mechanical engineer Mike Meacham to find out how the MOXIE instrument on NASA's Perseverance Mars rover is designed to convert carbon dioxide from Mars' atmosphere into oxygen. Credit: NASA/JPL-Caltech | Watch on YouTube

Flying the first Mars helicopter

Joining the Perseverance rover on Mars is the first helicopter designed to fly on another planet. Dubbed Ingenuity, the Mars Helicopter is a technology demonstration that will be the first test of powered flight on another planet.

The lightweight helicopter rides to Mars attached to the belly of the rover. After Perseverance is on Mars, the helicopter will be released from the rover and will attempt up to five test flights in the thin atmosphere of Mars. After a successful first attempt at lifting off, hovering a few feet above the ground for 20 to 30 seconds and landing, the operations team can attempt incrementally higher and longer-distance flights. Ingenuity is designed to fly for up to 90 seconds, reach an altitude of 15 feet and travel a distance of nearly 980 feet. Sending commands to the helicopter and receiving information about the flights relayed through the rover, the helicopter team hopes to collect valuable test data about how the vehicle performs in Mars’ thin atmosphere. The results of the Mars Helicopter's test flights will help inform the development of future vehicles that could one day explore Mars from the air. Once Ingenuity has completed its technology demonstration, Perseverance will continue its mission on the surface of the Red Planet.

Join JPL mechanical engineer Mike Meacham to learn about the first helicopter designed for Mars. Credit: NASA/JPL-Caltech | Watch on YouTube

How It Works

Before any of that can happen, the Perseverance Mars rover needs to successfully lift off from Earth and begin its journey to the Red Planet. Here's how the launch is designed to ensure that the spacecraft and Mars are at the same place on landing day.

About every 26 months, Mars and Earth are at points in their orbits around the Sun that allow us to launch spacecraft to Mars most efficiently. This span of time, called a launch period, lasts several weeks. For Perseverance, the launch period is targeted to begin at 4:50 a.m. PDT (7:50 a.m. EDT) on July 30 and end on Aug. 15. Each day, there is a launch window lasting about two hours. If all conditions are good, we have liftoff! If there's a little too much wind or other inclement weather, or perhaps engineers want to take a look at something on the rocket during the window, the countdown can be paused, and teams will try again the next day.

Regardless of when Perseverance launches during this period, the rover will land on Mars on Feb. 18, 2021, at around 12:30 PST. Engineers can maintain this fixed landing date because when the rover launches, it will go into what's called a parking orbit around Earth. Depending on when the launch happens, the rover will coast in the temporary parking orbit for 24 to 36 minutes. Then, the upper stage of the rocket will ignite for about seven minutes, giving the spacecraft the velocity it needs to reach Mars.

Like the Curiosity rover, Perseverance will launch from Launch Complex 41 at Cape Canaveral Air Force Station in Florida on an Atlas V 541 rocket – one of the most powerful rockets available for interplanetary spacecraft.

Watch a live broadcast of the launch from the Kennedy Space Center on NASA TV and the agency’s website. Visit the Perseverance rover mission website to explore a full listing of related virtual events and programming, including education workshops, news briefings and conversations with mission experts. Follow launch updates on NASA's Twitter, Facebook and Instagram accounts.

Teach It

The launch of NASA's next Mars rover and the first Mars Helicopter is a fantastic opportunity to engage students in real-world problem solving across the STEM fields. Check out some of the resources below to see how you can bring NASA missions and science to students in the classroom and at home.

Virtual Education Workshops

Lessons for Educators

Activities for Students

Explore More


TAGS: Mars, Mars 2020, Perseverance, Mars Rover, launch, Teach, teachers, educators, parents, lessons, activities, resources, K-12, STEM, events, students, science, engineering

  • Lyle Tavernier
READ MORE

Illustration of spacecraft on a light purple background that reads "NASA Pi Day Challenge"

Update: March 16, 2020 – The answers to the 2020 NASA Pi Day Challenge are here! View the illustrated answer key (also available as a text-only doc).


In the News

Our annual opportunity to indulge in a shared love of space exploration, mathematics and sweet treats has come around again! Pi Day is the March 14 holiday that celebrates the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.

Infographic of all of the Pi in the Sky 7 graphics and problems

Visit the Pi in the Sky 7 lesson page to explore classroom resources and downloads for the 2019 NASA Pi Day Challenge. Image credit: NASA/JPL-Caltech | + Expand image

Overhead view of Mars with a comparison of the smaller landing ellipse made possible by Range Trigger technology

A new Mars landing technique called Range Trigger is reducing the size of the ellipse where spacecraft touch down. Image credit: NASA/JPL-Caltech | › Full image and caption

Composite image of the Kuiper Belt object Arrokoth from NASA's New Horizons spacecraft. Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Roman Tkachenko | › Full image and caption

Diagram of an airplane flying over a section of ocean with an example of the spectral data that CORAL collects

The CORAL mission records the spectra of light reflected from the ocean to study the composition and health of Earth's coral reefs. Image credit: NASA | + Expand image

Rays of bright orange and red shoot out diagonally from a blue circle surrounding the star Beta Pictoris

The star Beta Pictoris and its surrounding debris disk in near-infrared light. Image credit: ESO/A.-M. Lagrange et al. | › Full image and caption

Besides providing an excuse to eat all varieties of pie, Pi Day gives us a chance to appreciate some of the ways NASA uses pi to explore the solar system and beyond. You can do the math for yourself – or get students doing it – by taking part in the NASA Pi Day Challenge. Find out below how to test your pi skills with real-world problems faced by NASA space explorers, plus get lessons and resources for educators.

How It Works

The ratio of any circle's circumference to its diameter is equal to pi, which is often rounded to 3.14. But pi is what is known as an irrational number, so its decimal representation never ends, and it never repeats. Though it has been calculated to trillions of digits, we use far fewer at NASA.

Pi is useful for all sorts of things, like calculating the circumference and area of circular objects and the volume of cylinders. That's helpful information for everyone from farmers irrigating crops to tire manufacturers to soup-makers filling their cans. At NASA, we use pi to calculate the densities of planets, point space telescopes at distant stars and galaxies, steer rovers on the Red Planet, put spacecraft into orbit and so much more! With so many practical applications, it's no wonder so many people love pi!

In the U.S., 3.14 is also how we refer to March 14, which is why we celebrate the mathematical marvel that is pi on that date each year. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.

The NASA Pi Day Challenge

This year's NASA Pi Day Challenge poses four puzzlers that require pi to compare the sizes of Mars landing areas, calculate the length of a year for one of the most distant objects in the solar system, measure the depth of the ocean from an airplane, and determine the diameter of a distant debris disk. Learn more about the science and engineering behind the problems below or click the link to jump right into the challenge.

› Take the NASA Pi Day Challenge
› Educators, get the lesson here!

Mars Maneuver

Long before a Mars rover touches down on the Red Planet, scientists and engineers must determine where to land. Rather than choosing a specific landing spot, NASA selects an area known as a landing ellipse. A Mars rover could land anywhere within this ellipse. Choosing where the landing ellipse is located requires compromising between getting as close as possible to interesting science targets and avoiding hazards like steep slopes and large boulders, which could quickly bring a mission to its end. In the Mars Maneuver problem, students use pi to see how new technologies have reduced the size of landing ellipses from one Mars rover mission to the next.

Cold Case

In January 2019, NASA's New Horizons spacecraft sped past Arrokoth, a frigid, primitive object that orbits within the Kuiper Belt, a doughnut-shaped ring of icy bodies beyond the orbit of Neptune. Arrokoth is the most distant Kuiper Belt object to be visited by a spacecraft and only the second object in the region to have been explored up close. To get New Horizons to Arrokoth, mission navigators needed to know the orbital properties of the object, such as its speed, distance from the Sun, and the tilt and shape of its orbit. This information is also important for scientists studying the object. In the Cold Case problem, students can use pi to determine how long it takes the distant object to make one trip around the Sun.

Coral Calculus

Coral reefs provide food and shelter to many ocean species and protect coastal communities against extreme weather events. Ocean warming, invasive species, pollutants, and acidification caused by climate change can harm the tiny living coral organisms responsible for building coral reefs. To better understand the health of Earth's coral reefs, NASA's COral Reef Airborne Laboratory, or CORAL, mission maps them from the air using spectroscopy, studying how light interacts with the reefs. To make accurate maps, CORAL must be able to differentiate among coral, algae and sand on the ocean floor from an airplane. And to do that, it needs to calculate the depth of the ocean at every point it maps by measuring how much sunlight passes through the ocean and is reflected upward from the ocean floor. In Coral Calculus, students use pi to measure the water depth of an area mapped by the CORAL mission and help scientists better understand the status of Earth's coral reefs.

Planet Pinpointer

Our galaxy contains billions of stars, many of which are likely home to exoplanets – planets outside our solar system. So how do scientists decide where to look for these worlds? Using data gathered by NASA's Spitzer Space Telescope, researchers found that they're more likely to find giant exoplanets around young stars surrounded by debris disks, which are made up of material similar to what's found in the asteroid belt and Kuiper Belt in our solar system. Sure enough, after discovering a debris disk around the star Beta Pictoris, researchers later confirmed that it is home to at least two giant exoplanets. Learning more about Beta Pictoris' debris disk could give scientists insight into the formation of these giant worlds. In Planet Pinpointer, put yourself in the role of a NASA scientist to learn more about Beta Pictoris' debris disk, using pi to calculate the distance across it.

Participate

Join the conversation and share your Pi Day Challenge answers with @NASAJPL_Edu on social media using the hashtag #NASAPiDayChallenge

Blogs and Features

Related Lessons for Educators

Related Activities for Students

NOAA Video Series: Coral Comeback

Multimedia

Facts and Figures

Missions and Instruments

Websites

TAGS: K-12 Education, Math, Pi Day, Pi, NASA Pi Day Challenge, Events, Space, Educators, Teachers, Parents, Students, STEM, Lessons, Problem Set, Mars 2020, Perseverance, Curiosity, Mars rovers, Mars landing, MU69, Arrokoth, New Horizons, Earth science, Climate change, CORAL, NASA Expeditions, coral reefs, oceans, Spitzer, exoplanets, Beta Pictoris, stars, universe, space telescope

  • Lyle Tavernier
READ MORE

Animated illustration of Earth orbiting the Sun

You may have noticed that there's an extra day on your calendar this year. That's not a typo; it's leap day! Leap day is another name for Feb. 29, a date that typically comes around every four years, during a leap year. Why doesn't Feb. 29 appear on the calendar every year? Read on to find out how the imperfect match between the length of a calendar year and Earth's orbit results in the need to make small adjustments to our calendar on a regular basis. Explore leap day resources for students, too.

The length of a year is based on how long it takes a planet to revolve around the Sun. Earth takes about 365.2422 days to make one revolution around the Sun. That's about six hours longer than the 365 days that we typically include in a calendar year. As a result, every four years we have about 24 extra hours that we add to the calendar at the end of February in the form of leap day. Without leap day, the dates of annual events, such as equinoxes and solstices, would slowly shift to later in the year, changing the dates of each season. After only a century without leap day, summer wouldn’t start until mid-July!

But the peculiar adjustments don't end there. If Earth revolved around the Sun in exactly 365 days and six hours, this system of adding a leap day every four years would need no exceptions. However, Earth takes a little less time than that to orbit the Sun. Rounding up and inserting a 24-hour leap day every four years adds about 45 extra minutes to every four-year leap cycle. That adds up to about three days every 400 years. To correct for that, years that are divisible by 100 don't have leap days unless they’re also divisible by 400. If you do the math, you'll see that the year 2000 was a leap year, but 2100, 2200 and 2300 will not be.

After learning more about leap years with this article from NASA's Space Place, students can do the math for themselves with this leap day problem set. Follow that up with writing a letter or poem to be opened on the next leap day. And since we've got an extra 24 hours this year, don't forget to take a little time to relax!

Explore More

Check out these related resources for kids from NASA Space Place:

TAGS: K-12 Education, Math, Leap Day, Leap Year, Events, Space, Educators, Teachers, Parents, Students, STEM, Lessons, Earth Science, Earth

  • Lyle Tavernier
READ MORE

NASA astronaut Mike Hopkins

Update: Feb. 11, 2020 – NASA will be accepting applications for its next class of astronauts from March 2 to 31, 2020. 

› Read the full press release


Originally published Nov. 4, 2015:

Maybe you've seen astronauts working on the International Space Station, or heard about NASA's plans to send humans back to the Moon or maybe you've been following the ongoing exploration of Mars and want to visit the planet for yourself one day! Whatever your inspiration has been, you know you want to become an astronaut. So how do you get there, and what can you do to make it possible?

Let's start with the basic requirements:

  • Master's degree in a STEM field, or
    • Two years of work toward a Ph.D. program in a related science, technology, engineering or math field;
    • A completed doctor of medicine or doctor of osteopathic medicine degree;
    • Completion (by June 2021) of a nationally recognized test pilot school program.
  • Two years of related professional experience, or at least 1,000 hours of pilot-in-command time in jet aircraft.
  • Pass the NASA long-duration spaceflight physical.

Not every STEM (science, technology, engineering and math) degree will qualify you to be an astronaut. NASA is looking for people with a degree in engineering, biological science, physical science (like physics, chemistry or geology), computer science or mathematics. If you're in high school, middle school or even elementary school, now is a great time to explore all of these fields of study to help you better understand the ones you like most, the ones for which you might have a natural talent, and even the ones you don't find as interesting.

How do you explore these fields?

If you have the ability to choose your elective classes, take the challenging math, science and computer programming courses. This will help you to learn the fundamentals of science and math. If your school doesn't offer those classes, look online. There are many free online courses covering a wide range of math, science and programming topics.

What else can you do?

  • Join a school or community math, science, engineering or robotics club. If there are none in your school or community, start one!
  • Participate in science and engineering fairs. (There is a great "how to" video series to help you develop your project here.)
  • Attend maker fairs and develop the skills to design solutions to a variety of problems.
  • Plan to apply for an internship at JPL or NASA. You can apply for opportunities as early as your freshman year of college when you are working toward a degree in a STEM major.

These are some of the steps you can take to better prepare yourself as you enter college. They just happen to be some of the same types of things many JPL scientists and engineers did before starting their college careers that led them to a job with NASA.

Additional Resources:

TAGS: career advice, astronaut, STEM careers

  • Lyle Tavernier
READ MORE