Lyle Tavernier is an educational technology specialist at NASA's Jet Propulsion Laboratory. When he’s not busy working in the areas of distance learning and instructional technology, you might find him running with his dog, cooking or planning his next trip.


Tonya Beatty stands with a model of the HAR-V rover she's helping design

All spacecraft are made for extreme environments. They travel through dark, frigid regions of space, battle intense radiation and, in some cases, perform daring feats to land on mysterious worlds. But the rover that Tonya Beatty is helping design for Venus – and other so-called extreme environments – is in a class all its own. Venus is so inhospitable that no spacecraft has ever lasted more than about two hours on the surface. So Beatty, an intern at NASA's Jet Propulsion Laboratory and an aerospace engineering student at College of the Canyons, is working to develop a new kind of rover that's powered mostly by gears rather than sensitive electronics. We caught up with Beatty just before she embarked on another engineering challenge – JPL's annual Halloween pumpkin-carving contest – to find out what it takes to turn an impossible idea into a reality.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What are you working on at JPL?

I'm working with a team on the HAR-V project, which stands for Hybrid Automaton Rover-Venus. It’s a study to develop a rover meant to go to Venus. I'm assisting in the development of mechanical systems and mechanisms on the prototype, using clockwork maneuvers. This rover will use minimal electronics, so when I say clockwork, I mean gears and anything that does not rely on electronics.

Why is this rover not relying on electronics and relying more on a gear system?

The environment on Venus includes sulfuric acid clouds, a surface pressure about 90 times what it is on Earth and a temperature that exceeds 800 degrees Fahrenheit. The materials in most electronics would melt in that extreme environment, so that's why we're trying to go mechanical. The previous landers that have gone to Venus have relied on electronics, and the one that lasted the longest only lasted 127 minutes, whereas ours, using the mechanical design, is projected to last about six months. So that's why we're going with this design.

What does a typical day look like for you?

A typical day for me consists of designing mechanisms, designing mechanical systems, ordering parts for those mechanical systems, testing them on the active prototype that we have and redesigning if necessary. It's kind of a mixture of all that, depending on where we're at in each step.

What is the ultimate goal of your project?

My personal goal with this internship is to connect the things I'm learning in school to real-world applications, as well as see what it would be like to be an aerospace engineer. Specific to the HAR-V study, my goals are to design a power-transfer mechanism, redesign the reversing mechanism on the rover itself, and redesign the obstacle avoidance mechanism. Those are all things that I'm now learning as I'm doing the internship, which is great. I love learning new things.

As for HAR-V itself, the goal is to be able to withstand those extreme environments for longer than 127 minutes and retrieve the groundbreaking data that we've been wanting from Venus but haven't been able to get because we haven't had the time we need [with previous landers].

Personally, at 19, I never thought that I would be working on a rover for Venus at NASA. By sharing my story, I hope people take away that some of the things they might think are impossible are really right there. They’ve just got to reach for it.

What's the most JPL or NASA unique experience that you've had so far?

As much as I'd like to say something cool like watching the rovers being tested, I have to say it's the deer. Every day, wherever I go – to laser-cut something or go get a coffee – I see deer. One day I saw six. I just think that's so unique because it’s something I never expected to get from this experience. And I think it’s unique to JPL.

Pumpkin modeled after Miguel from the movie 'Coco' strumming a guitar

Beatty participated in JPL's annual Halloween pumpkin-carving contest and, with her team, won first place with this pumpkin modeled after the character Miguel from the movie "Coco." Image credit: NASA/JPL-Caltech | + Expand image

Speaking of unique experiences, your group holds an annual pumpkin-carving contest and makes some amazing creations. Are you planning to participate in the contest this year?

I actually just got the emails today. I didn't know this was a JPL thing. It's a big deal! So, yes, I'd like to!

Do you know what your team is planning to make? Don’t worry, we won’t share this until after the contest, so it won't leak to any competitor.

We're making Miguel from [the movie] “Coco” with his guitar, and we're going to try and make it move.

How does designing a mechanical or creative pumpkin compare to designing a rover for Venus?

Well, with a pumpkin, I would care about how it looks, whereas with the rover, I care about how it functions. A pumpkin has real guts, and a rover has metaphorical guts. It's got to keep on going. But I think the biggest similarity is the creativeness between both of them, because you have to be creative to make an innovative pumpkin. Just like when you design a rover, you have to be creative; you can't just be smart. You have to have those creative ideas. You have to think outside of the box to actually design efficient and effective components, and you can't just give up. When you have a failed attempt, you try it again.

Do you have any tips for anyone who want to make a creative pumpkin?

JPL Interns

Create a Halloween Pumpkin Like a NASA Engineer

Get tips from NASA engineers on how to make an out-of-this-world Halloween pumpkin.

Don't be afraid of your ideas. Sometimes we limit ourselves because we're like, “You know that's too crazy. We shouldn't do that,” but it takes crazy ideas to be an engineer and it takes crazy ideas to carve a good pumpkin.

OK, back to your internship: How do you feel you're contributing to NASA missions and science?

I think my active participation in the rover study is helping contribute to NASA-JPL missions, because something I have designed could very well be on an actual rover that could go to Venus, that would retrieve data, that does help NASA. So I think in that sense, I am contributing.

One last fun question: If you could travel to any place in space, where would you go, and what would you do there?

I would go to Europa. I would like to see first-hand if there is an ocean and if there's an environment that could sustain life. Chemistry has always interested me, so I would love to see that up close and analyze everything.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, Students, Engineering, Rovers, Venus

  • Lyle Tavernier
READ MORE

JPL intern Omar Rehman

While the world of engineering is a familiar one to Omar Rehman (his major is transportation design and he comes from a family of engineers) his internship at NASA’s Jet Propulsion Laboratory is all about bridging the gap between form and function. NASA’s next Mars rover, currently in development and planned for launch in 2020, will acquire a set of carefully selected samples of rocks and surface material and store them in sealed tubes for possible return to Earth by a future mission. Returning samples from Mars is a complicated problem. So, a team at JPL is taking an in-depth look at how it could be done. In addition to using his transportation design background to help the team come up with ideas for a vessel that could bring the samples to Earth, Rehman is using visual arts to convey why a “sample-return mission” would be such a big deal. We caught up with the Art Center College of Design student to find out how he’s using art and design to help tell the story of how we're designing missions that might bring the first samples back from Mars.

What are you working on at JPL?

I am on a study team exploring options for a pair of missions that could take key next steps to bring samples back from Mars. I work in JPL’s Mobility and Robotics Systems section. I was primarily brought on to do visuals that translate what the mission concept is designed to do in a more cinematic and visual way so people can understand it. However, since getting here, I've been wearing multiple hats: working on visuals but also picking up my engineering hat from back in the day. I’m illustrating scenes for the Mars Sample Return study and conveying my ideas for a transportation vessel that could be used for the endeavor. The bit of engineering experience I had when I was younger has helped me understand and elaborate on the functional and mechanical side of these ideas. I'm absorbing all the knowledge, learning terminology and really getting into it – living the dream as an intern!

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What is a typical day like for you?

What's most important for a designer or design student is to get out your ideas. You've got to keep the practice up. So I actually sketch every morning. If you look at the wall above my desk, it's all sketches: random sketches and concept satellites, maybe some entertainment ideas, some cars here and there, spaceships – who knows? – just anything to keep my juices flowing and keep my creativity going. Then, I put that creative mind to rest for a little bit and start again.

I’ve also been working on matrices to evaluate the criteria of sample-return mission concepts and the types of innovative variations that would be compatible within the whole system. My work as a designer also comes into play when I create both visual and verbal documents that will help stakeholders understand technical aspects of the designs.

When I get home, I’ll maybe have a snack or relax and unwind, then sketch a little more before I go to bed, and do it all again.

What was the ultimate goal of your project?

I really want to convey the options for Mars Sample Return in a very cinematic way so that people can remember it. And then in terms of the engineering side, before I leave, I want to conceive a concept for a system to help transport the Mars samples once they have been captured that would be innovative but also be realistic and work within the aerospace parameters.

How might your project help the average person one day?

I'm conveying the entire story, from liftoff in 2020 to getting to Mars, collecting samples, potentially getting back up off the surface and heading back to Earth. I think it'll help people remember what Mars 2020 is all about and how it fits in the larger story of future missions that may return a sample to Earth. Hopefully they'll remember those images for years, along with the whole mission's success.

Omar Rehman works on an illustration at JPL

Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

What is the most JPL- or NASA-unique experience you've had so far?

So many! Meeting the awesome interns. Seeing everything around JPL that's being developed and tested. That's so cool. Also, the intern before me is now interning at NASA’s Armstrong Flight Research Center in the Mojave Desert. He invited the whole team to go visit. We got to see the F-15B Eagle that is being used for NASA research. We looked at concepts they're coming up with – just crazy stuff like you'd see in movies, but it's actually being built!

How do you think you're contributing to NASA/JPL missions and science?

I think bringing the visual-designer mentality to this engineering-driven community is really good. I think that designers can contribute to these kinds of communities. We can help engineers translate ideas really fast. Maybe there are some skills that engineers lack in design and some skills that designers lack in engineering, but when they come together there's a good balance of work output and ideas, and a good combination of solid engineering and design aesthetics coming together to create a beautiful machine. There's beauty in function, but there's also beauty in function being balanced with an appropriate aesthetic.

If you could travel to any place in space, where would you go and what would you do there?

I get really sci-fi about this stuff. Imagine a theoretical scenario in which you have infinite timelines moving in parallel. Let's say it's like a guitar, and each string is you on a different timeline, moving in different places with different stories. If there is somewhere I can go that's either inside this galaxy or outside that can bring me to these different timelines and lets me come back and explore my own reality or different realities, that's where I want to go.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Internships, Higher Education, Career Guidance, Mars 2020, Mars Sample Return

  • Lyle Tavernier
READ MORE

The Millennium Falcon takes on TIE fighters in a scene from 'Star Wars: The Force Awakens.'

This feature was originally published on May 3, 2016.


In the News

What do "Star Wars," NASA's Dawn spacecraft and Newton's Laws of Motion have in common? An educational lesson that turns science fiction into science fact using spreadsheets – a powerful tool for developing the scientific models addressed in the Next Generation Science Standards.

Animation of NASA's Dawn spacecraft in flight

May the 4th Lessons

Celebrate Star Wars Day with these standards-aligned lessons in motion and forces for grades K-12.

The TIE (Twin Ion Engine) fighter is a staple of the "Star Wars" universe. Darth Vader flew one in "A New Hope." Poe Dameron piloted one in "The Force Awakens." And many, many Imperial pilots met their fates in them. While the fictional TIE fighters in "Star Wars" flew a long time ago in a galaxy far, far away, ion engines are a reality in this galaxy today – and have a unique connection to NASA’s Jet Propulsion Laboratory.

Launched in 1998, the first spacecraft to use an ion engine was Deep Space 1, which flew by asteroid 9969 Braille and comet Borrelly. Fueled by the success of Deep Space 1, engineers at JPL set forth to develop the next spacecraft that would use ion propulsion. This mission, called Dawn, would take ion-powered spacecraft to the next level by allowing Dawn to go into orbit twice – around the two largest objects in the asteroid belt: Vesta and Ceres.

How Does It Work?

Ion engines rely on two principles that Isaac Newton first described in 1687. First, a positively charged atom (ion) is pushed out of the engine at a high velocity. Newton’s Third Law of Motion states that for every action there is an equal and opposite reaction, so then a small force pushes back on the spacecraft in the opposite direction – forward! According to Newton’s Second Law of Motion, there is a relationship between the force (F) exerted on an object, its mass (m) and its acceleration (a). The equation F=ma describes that relationship, and tells us that the small force applied to the spacecraft by the exiting atom provides a small amount of acceleration to the spacecraft. Push enough atoms out, and you'll get enough acceleration to really speed things up.


Why is It Important?

Compared with traditional chemical rockets, ion propulsion is faster, cheaper and safer:

  • Faster: Spacecraft powered by ion engines can reach speeds of up to 90,000 meters per second (more than 201,000 mph!)
  • Cheaper: When it comes to fuel efficiency, ion engines can reach more than 90 percent fuel efficiency, while chemical rockets are only about 35 percent efficient.
  • Safer: Ion thrusters are fueled by inert gases. Most of them use xenon, which is a non-toxic, chemically inert (no risk of exploding), odorless, tasteless and colorless gas.

These properties make ion propulsion a very attractive solution when engineers are designing spacecraft. While not every spacecraft can use ion propulsion – some need greater rates of acceleration than ion propulsion can provide – the number and types of missions using these efficient engines is growing. In addition to being used on the Dawn spacecraft and communication satellites orbiting Earth, ion propulsion could be used to boost the International Space Station into higher orbits and will likely be a part of many future missions exploring our own solar system.

Teach It

Newton’s Laws of Motion are an important part of middle and high school physical science and are addressed specifically by the Next Generation Science Standards as well as Common Core Math standards. The lesson "Ion Propulsion: Using Spreadsheets to Model Additive Velocity" lets students study the relationship between force, mass and acceleration as described by Newton's Second Law as they develop spreadsheet models that apply those principles to real-world situations.

This lesson meets the following Next Generation Science and Common Core Math Standards:

NGSS Standards:

  • MS-PS2-2: Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
  • HS-PS2-1: Analyze data to support the claim that Newton’s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
  • HS-PS2-1: Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

Common Core Math Standards:

  • Grade 8: Expressions and Equations A.4: Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.
  • High School: Algebra CED.A.4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
  • High School: Functions LE.A: Construct and compare linear, quadratic, and exponential models and solve problems.
  • High School: Functions BF.A.1: Write a function that describes a relationship between two quantities.
  • High School: Statistics and Probability ID.C: Interpret linear Models
  • High School: Number and Quantity Q.A.1: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays."

Explore More

TAGS: May the Fourth, Star Wars Day, F=ma, ion propulsion, Dawn, Deep Space 1, lesson, classroom activity, NGSS, Common Core Math

  • Lyle Tavernier
READ MORE

Pi in the Sky 5 promo graphic

Update: March 15, 2018 – The answers to the 2018 NASA Pi Day Challenge are here! View the illustrated answer key


In the News

Pi in the Sky 5

The 2018 NASA Pi Day Challenge

Can you solve these stellar mysteries with pi? Click to get started.

Pi Day, the annual celebration of one of mathematics’ most popular numbers, is back! Representing the ratio of a circle’s circumference to its diameter, pi has many practical applications, including the development and operation of space missions at NASA’s Jet Propulsion Laboratory.

The March 14 holiday is celebrated around the world by math enthusiasts and casual fans alike – from memorizing digits of pi (the current Pi World Ranking record is 70,030 digits) to baking and eating pies.

JPL is inviting people to participate in its 2018 NASA Pi Day Challenge – four illustrated math puzzlers involving pi and real problems scientists and engineers solve to explore space, also available as a free poster! Answers will be released on March 15. 

Why March 14?

Pi is what’s known as an irrational number, meaning its decimal representation never ends and it never repeats. It has been calculated to more than one trillion digits, but NASA scientists and engineers actually use far fewer digits in their calculations (see “How Many Decimals of Pi Do We Really Need?”). The approximation 3.14 is often precise enough, hence the celebration occurring on March 14, or 3/14 (when written in U.S. month/day format). The first known celebration occurred in 1988, and in 2009, the U.S. House of Representatives passed a resolution designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.

NASA’s Pi Day Challenge

Pi in the Sky 5

Lessons: Pi in the Sky

Explore the entire NASA Pi Day Challenge lesson collection, including free posters and handouts!

To show students how pi is used at NASA and give them a chance to do the very same math, the JPL Education Office has once again put together a Pi Day challenge featuring real-world math problems used for space exploration. This year’s challenge includes exploring the interior of Mars, finding missing helium in the clouds of Jupiter, searching for Earth-size exoplanets and uncovering the mysteries of an asteroid from outside our solar system.

Here’s some of the science behind this year’s challenge:

Scheduled to launch May 5, 2018, the InSight Mars lander will be equipped with several scientific instruments, including a heat flow probe and a seismometer. Together, these instruments will help scientists understand the interior structure of the Red Planet. It’s the first time we’ll get an in-depth look at what’s happening inside Mars. On Earth, seismometers are used to measure the strength and location of earthquakes. Similarly, the seismometer on Insight will allow us to measure marsquakes! The way seismic waves travel through the interior of Mars can tell us a lot about what lies beneath the surface. This year’s Quake Quandary problem challenges students to determine the distance from InSight to a hypothetical marsquake using pi!

Also launching in spring is NASA’s Transiting Exoplanet Survey Satellite, or TESS, mission. TESS is designed to build upon the discoveries made by NASA’s Kepler Space Telescope by searching for exoplanets – planets that orbit stars other than our Sun. Like Kepler, TESS will monitor hundreds of thousands of stars across the sky, looking for the temporary dips in brightness that occur when an exoplanet passes in front of its star from the perspective of TESS. The amount that the star dims helps scientists determine the radius of the exoplanet. Like those exoplanet-hunting scientists, students will have to use pi along with data from Kepler to find the size of an exoplanet in the Solar Sleuth challenge.

Jupiter is our solar system’s largest planet. Shrouded in clouds, the planet’s interior holds clues to the formation of our solar system. In 1995, NASA’s Galileo spacecraft dropped a probe into Jupiter’s atmosphere. The probe detected unusually low levels of helium in the upper atmosphere. It has been hypothesized that the helium was depleted out of the upper atmosphere and transported deeper inside the planet. The extreme pressure inside Jupiter condenses helium into droplets that form inside a liquid metallic hydrogen layer below. Because the helium is denser than the surrounding hydrogen, the helium droplets fall like rain through the liquid metallic hydrogen. In 2016, the Juno spacecraft, which is designed to study Jupiter’s interior, entered orbit around the planet. Juno’s initial gravity measurements have helped scientists better understand the inner layers of Jupiter and how they interact, giving them a clearer window into what goes on inside the planet. In the Helium Heist problem, students can use pi to find out just how much helium has been depleted from Jupiter’s upper atmosphere over the planet’s lifetime.

In October 2017, astronomers spotted a uniquely-shaped object traveling in our solar system. Its path and high velocity led scientists to believe ‘Oumuamua, as it has been dubbed, is actually an object from outside of our solar system – the first ever interstellar visitor to be detected – that made its way to our neighborhood thanks to the Sun’s gravity. In addition to its high speed, ‘Oumuamua is reflecting the Sun’s light with great variation as the asteroid rotates on its axis, causing scientists to conclude it has an elongated shape. In the Asteroid Ace problem, students can use pi to find the rate of rotation for ‘Oumuamua and compare it with Earth’s rotation rate.

Explore More

Join the Conversation

Standards-Aligned Lessons

Multimedia

Facts and Figures

Missions

Websites

TAGS: Pi Day, Math, Science, Engineering, NASA Pi Day Challenge, K-12, Lesson, Activity, Slideshow, Mars, Jupiter, Exoplanets, Kepler, Kepler-186f, Juno, InSight, TESS, ‘Oumuamua, asteroid, asteroids, NEO, Nearth Earth Object

  • Lyle Tavernier
READ MORE

Animation showing a total lunar eclipse. Credit: NASA Goddard Media Studios

In the News

A full moon is always a good reason to go outside and turn your head toward the sky, but those who do so early on January 31 will be treated to the sight of what’s being called the super blue blood moon! Super, because the moon will be closest to Earth in its orbit during the full moon (more on supermoons here); blue, because it’s the second full moon in a calendar month; and blood, because there will be a total lunar eclipse that will turn the moon a reddish hue. It’s the only total lunar eclipse (blood moon) visible from North America in 2018, so it’s a great opportunity for students to observe the Moon – and for teachers to make connections to in-class science content.

How It Works

Side-by-side images showing how the Moon, Sun and Earth align during an lunar eclipse versus a standard full moon

These side-by-side graphics show how the Moon, Sun and Earth align during a lunar eclipse (left) versus a non-eclipse full moon (right). Credit: NASA Goddard Visualization Studio | + Enlarge image

Eclipses can occur when the Sun, the Moon and Earth align. Lunar eclipses can only happen during the full moon phase, when the Moon and the Sun are on opposite sides of Earth. At that point, the Moon could move into the shadow cast by Earth, resulting in a lunar eclipse. However, most of the time, the Moon’s slightly tilted orbit brings it above or below the shadow of Earth.

The time period when the Moon, Earth and the Sun are lined up and on the same plane – allowing for the Moon to pass through Earth’s shadow – is called an eclipse season. Eclipse seasons last about 34 days and occur just shy of every six months. When a full moon occurs during an eclipse season, the Moon travels through Earth’s shadow, creating a lunar eclipse.

Graphic showing the alignment of the Sun, Earth and Moon when a full moon occurs during an eclipse season versus a non-eclipse season

When a full moon occurs during an eclipse season, the Moon travels through Earth's shadow, creating a lunar eclipse. Credit: NASA/JPL-Caltech | + Enlarge image

Unlike solar eclipses, which require special glasses to view and can only be seen for a few short minutes in a very limited area, a total lunar eclipse can be seen for about an hour by anyone on the nighttime side of Earth – as long as skies are clear!

Why It’s Important

Moon and Supermoon Lessons from NASA/JPL Edu

Lessons About the Moon

Explore our collection of standards-aligned lessons for grades 1-12.

Lunar eclipses have long played an important role in understanding Earth and its motions in space.

In ancient Greece, Aristotle noted that the shadows on the Moon during lunar eclipses were round, regardless of where an observer saw them. He realized that only if Earth were a spheroid would its shadows be round – a revelation that he and others had many centuries before the first ships sailed around the world.

Earth wobbles on its axis like a spinning top that’s about to fall over, a phenomenon called precession. Earth completes one wobble, or precession cycle, over the course of 26,000 years. Greek astronomer Hipparchus made this discovery by comparing the position of stars relative to the Sun during a lunar eclipse to those recorded hundreds of years earlier. A lunar eclipse allowed him to see the stars and know exactly where the Sun was for comparison – directly opposite the Moon. If Earth didn’t wobble, the stars would appear to be in the same place they were hundreds of years earlier. When Hipparchus saw that the stars’ positions had indeed moved, he knew that Earth must wobble on its axis!

Additionally, modern-day astronomers have used ancient eclipse records and compared them with computer simulations. These comparisons helped scientists determine the rate at which Earth’s rotation is slowing.

What to Expect

Graphic showing the positions of the Moon, Earth and Sun during a partial lunar eclipse

During a total lunar eclipse, the Moon first enters into the penumbra, or the outer part of Earth's shadow, where the shadow is still penetrated by some sunlight. Credit: NASA | + Enlarge image

The Moon as seen during a partial lunar eclipse

As the Moon starts to enter into the umbra, the inner and darker part of Earth's shadow, it appears as if a bite has been taken out of the Moon. This "bite" will grow until the Moon has entered fully into the umbra. Credit: NASA | + Enlarge image

Graphic showing the Moon inside the umbra

The total lunar eclipse starts once the moon is completely inside the umbra. And the moment of greatest eclipse happens with the Moon is halfway through the umbra as shown in this graphic. Credit: NASA | + Enlarge image

The Moon as seen during a total lunar eclipse at the point of greatest eclipse

As the Moon moves completely into the umbra, it turns a reddish-orange color. Credit: NASA | + Enlarge image

The Moon passes through two distinct parts of Earth’s shadow during a lunar eclipse. The outer part of the cone-shaped shadow is called the penumbra. The penumbra is less dark than the inner part of the shadow because it’s penetrated by some sunlight. (You have probably noticed that some shadows on the ground are darker than others, depending on how much outside light enters the shadow; the same is true for the outer part of Earth’s shadow). The inner part of the shadow, known as the umbra, is much darker because Earth blocks additional sunlight from entering the umbra.

At 2:51 a.m. PST on January 31, 2018, the edge of the Moon will begin entering the penumbra. The Moon will dim very slightly for the next 57 minutes as it moves deeper into the penumbra. Because this part of Earth’s shadow is not fully dark, you may only notice some dim shading (if anything at all) on the Moon near the end of this part of the eclipse. Should you decide to sleep in during this time, you won’t miss much.

At 3:48 a.m. PST, the edge of the Moon will begin entering the umbra. As the Moon moves into the darker shadow, significant darkening will be noticeable. Some say that during this part of the eclipse, the Moon looks as if it has had a bite taken out of it. That “bite” gets bigger and bigger as the Moon moves deeper into the shadow. If you will be on the East Coast of the United States, you might still be able to see the Moon just as it moves into the umbra before the Moon sets and the Sun rises.

At 4:51 a.m. PST, the Moon will be completely inside the umbra, marking the beginning of the total lunar eclipse. The moment of greatest eclipse, when the Moon is halfway through the umbra, occurs at 5:31 a.m. PST.

As the Moon moves completely into the umbra, something interesting happens: The Moon begins to turn reddish-orange. The reason for this phenomenon? Earth’s atmosphere. As sunlight passes through it, the small molecules that make up our atmosphere scatter blue light, which is why the sky appears blue. This leaves behind mostly red light that bends, or refracts, into Earth’s shadow. We can see the red light during an eclipse as it falls onto the Moon in Earth’s shadow. This same effect is what gives sunrises and sunsets a reddish-orange color.

A variety of factors affect the appearance of the Moon during a total lunar eclipse. Clouds, dust, ash, photochemical droplets and organic material in the atmosphere can change how much light is refracted into the umbra. Additionally, the January 2018 lunar eclipse takes place when the full moon is at or near the closest point in its orbit to Earth (popularly known as a supermoon). This means it is deeper inside the umbra shadow and therefore may appear darker. The potential for variation provides a great opportunity for students to observe and classify the lunar eclipse based on its brightness. Details can be found below in the “Teach It” section.

At 6:07 a.m. PST, the edge of the Moon will begin exiting the umbra and moving into the opposite side of the penumbra. This marks the end of the total lunar eclipse.

At 7:11 a.m. PST, the Moon will be completely outside of the umbra. It will continue moving out of the penumbra until the eclipse ends at 8:08 a.m.

Teach It

Ask students to observe the lunar eclipse and evaluate the Moon’s brightness using the Danjon Scale of Lunar Eclipse Brightness. The Danjon scale illustrates the range of colors and brightness the Moon can take on during a total lunar eclipse and is a tool observers can use to characterize the appearance of an eclipse. View the lesson guide here. After the eclipse, have students compare and justify their evaluations of the eclipse.

Use these standards-aligned lessons and related activities to get your students excited about the eclipse, moon phases and Moon observations.

  • *NEW* Evaluating a Lunar Eclipse (Grades 3-12) - Students use the Danjon Scale of Lunar Eclipse Brightness to illustrate the range of colors and brightness the Moon can take on during a total lunar eclipse.
  • Observing the Moon (Grades K-6) - Students identify the Moon’s location in the sky and record their observations in a journal over the course of the moon-phase cycle.
  • Moon Phases (Grades 1-6) - Students learn about the phases of the Moon by acting them out. In 30 minutes, they will act out one complete, 30-day, Moon cycle.
  • Measuring the Supermoon (Grades 5-12) - Students take measurements of the Moon during its full phase over multiple Moon cycles to compare and contrast results.
  • Modeling the Earth-Moon System (Grades 6-8) – Students learn about scale models and distance by creating a classroom-size Earth-Moon system.
  • Make a Moon Phases Calendar and Calculator – Like a decoder wheel for the Moon, this calendar will show you where and when to see the Moon and every moon phase throughout the year!

Explore More

TAGS: Lunar Eclipse, Moon, Super Blue Blood Moon, Observe the Moon, Eclipse, K-12, Classroom Activities, Teaching

  • Lyle Tavernier
READ MORE

Screen capture from the Exploring Mars With Scratch lesson from NASA/JPL Edu

Try this lesson from NASA/JPL Edu to get involved and bring the excitement of NASA Mars exploration to students:

TAGS: HourOfCode, Computer Science, Computer Science Education Week, Coding, Programming, Lessons, K-12, Classroom Activities, Mars Exploration, Technology

  • Lyle Tavernier
READ MORE

Image showing the difference in size and brightness between a full moon at apogee and a full moon at perigee, also called a "supermoon"

The term “supermoon” has been popping up a lot in the news and on social media over the past few years. But what are supermoons, why do they occur and how can they be used as an educational tool. Plus, are they really that super?

There’s a good chance you’ll hear even more about supermoons in the new year. There will be two supermoons in a row in January 2018! Now is a great time to learn about these celestial events and get students exploring more about Earth’s only natural satellite.

Moon and Supermoon Lessons from NASA/JPL Edu

Lessons About the Moon

Explore our collection of standards-aligned lessons for grades 1-12.

How it Works

As the Moon orbits Earth, it goes through phases, which are determined by its position relative to Earth and the Sun. When the Moon lines up on the opposite side of Earth from the Sun, we see a full moon. The new moon phase occurs when the Moon and the Sun are lined up on the same side of Earth.

The Moon doesn’t orbit in a perfect circle. Instead, it travels in an ellipse that brings the Moon closer to and farther from Earth in its orbit. The farthest point in this ellipse is called the apogee and is about 405,500 kilometers from Earth on average. Its closest point is the perigee, which is an average distance of about 363,300 kilometers from Earth. During every 27-day orbit around Earth, the Moon reaches both its apogee and perigee.

Full moons can occur at any point along the Moon’s elliptical path, but when a full moon occurs at or near the perigee, it looks slightly larger and brighter than a typical full moon. That’s what the term “supermoon" refers to.

What makes a supermoon super? Watch this short animation to find out. Credit: NASA/JPL-Caltech

Because supermoon is not an official astronomical term, there is no definition about just how close to perigee the full moon has to be in order to be called “super." Generally, supermoon is used to refer to a full moon 90 percent or closer to perigee. (When the term supermoon was originally coined, it was also used to describe a new moon in the same position, but since the new moon isn’t easily visible from Earth, it’s rarely used in that context anymore.)

A more accurate and scientific term is “perigee syzygy.” Syzygy is the alignment of three celestial bodies, in this case the Sun, Moon and Earth. But that doesn’t quite roll off the tongue as easily as supermoon.

Why It’s Important

Moon and Supermoon Lessons from NASA/JPL Edu

Make a Moon Phases Calendar

Use this Moon "decoder wheel" to see where and where to view the Moon all year!

As the largest and brightest object in the night sky, the Moon is a popular focal point for many amateur and professional astronomers pointing their telescopes to the sky, and the source of inspiration for everyone from aspiring space scientists to engineers to artists.

The supermoon is a great opportunity for teachers to connect concepts being taught in the classroom to something students will undoubtedly be hearing about. Students can practice writing skills in a Moon journal, study Moon phases and apply their math skills to observing the supermoon. (Click here for related activities from JPL’s Education Office.)

Incorrect and misleading information about the Moon (and supermoons) can lead to confusion and frustration. It’s important to help students understand what to expect and be able to identify inaccurate info.

What to Expect

Size

As with anything that moves closer to the person viewing it, the supermoon will appear bigger than an average full moon. At its largest, it can appear 14% larger in diameter than the smallest full moon. Keep in mind that a 14% increase in the apparent size of something that can be covered with a fingernail on an outstretched arm won’t seem significantly bigger. Unlike side-by-side comparisons made in science and everyday life, students will not have seen the full moon for at least 30 days, and won’t see another for at least 30 more days. Comparing a supermoon with a typical full moon from memory is very difficult.

A nearly full Moon sets as the space shuttle Discovery sits atop Launch pad 39A at the Kennedy Space Center in Cape Canaveral, Florida, Wednesday, March 11, 2009. Photo Credit: (NASA/Bill Ingalls

While they make for great photographs, images like this one that rely on a special photographic technique aren't an accurate representation of what the supermoon will look like to the naked eye. Credit: NASA/Bill Ingalls | Full image and caption on Flickr

Graphic showing the position of the moon at apogee and perigee

A supermoon looks bigger than a "micromoon" (when the full moon is at apogee) because it's about 40,000 kilometers closer to Earth on average. Credit: NASA/JPL-Caltech

Graphic showing the position of the moon at apogee and perigee

It's nearly impossible to compare the apparent size of the supermoon with a micromoon from memory, but when seen side-by-side as in this graphic, it becomes clear. Credit: NASA/JPL-Caltech

Leading up to a supermoon, there are often misleading images on popular media. A technique that involves using a long telephoto lens to take photographs of the Moon next to buildings or other objects makes the Moon look huge compared with its surroundings. This effect can make for great photographs, but it has nothing to do with the supermoon. In fact, these photos can be taken during any Moon phase, but they will likely be used in stories promoting the supermoon.

There are also images that have been edited to inaccurately dramatize the size of the supermoon. Both of these can lead students, and adults, taking pictures with their cell phone to think that they’ve done something wrong or just aren’t cut out for observing the sky, which isn’t true!

Your students may have noticed that when they see a full moon low on the horizon, it appears huge and then seems to shrink as it rises into the night sky. This can happen during any full moon. Known as the Moon Illusion, it has nothing to do with a supermoon. In fact, scientists still aren’t sure what causes the Moon Illusion.

Brightness

The full moon is bright and the supermoon is even brighter! Sunlight reflecting off the Moon during its full phase is bright enough to cast shadows on the ground. During a supermoon, that brightness can increase up to 30 percent as a result of the Moon being closer to Earth, a phenomenon explained by the inverse square law. (Introduce students to the inverse square law with this space-related math lesson for 6th- through 8th-graders.) As with the size of the Moon, students may not remember just how bright the last full moon was or easily be able to compare it. Powerful city lights can also diminish how bright a supermoon seems. Viewing it away from bright overhead street lights or outside the city can help viewers appreciate the increase in brightness.

What Not to Expect

A supermoon will not cause extreme flooding, earthquakes, fires, volcanic eruptions, severe weather, nor tsunamis, despite what incorrect and non-scientific speculators might suggest. Encourage your students to be good scientists and research this for themselves.

Teach It

The excitement and buzz surrounding a supermoon is a great opportunity to teach a variety of Moon topics with these lessons from JPL’s Education Office:

  • *NEW* Observing the Moon (Grades K-6) – Students identify the Moon’s location in the sky and record their observations over the course of the moon-phase cycle in a journal.
  • *NEW* Measuring the Supermoon (Grades 5-12) – Students take measurements of the Moon during its full phase over multiple Moon cycles to compare and contrast results.
  • *NEW* Moon Phases Calendar and Calculator – Like a decoder wheel for the Moon, this calendar will show you where and when to see the Moon and every moon phase throughout the year!
  • *NEW* Look at the Moon! Journaling Project – Draw what you see in a Moon Journal and see if you can predict the moon phase that comes next.
  • Moon Phases (Grades 1-6) – Students learn about the phases of the Moon by acting them out. In 30 minutes, they will act out one complete Moon cycle.
  • Whip Up a Moon-Like Crater (Grades 1-6) – Whip up a Moon-like crater with baking ingredients as a demonstration for students.
  • Modeling the Earth-Moon System (Grades 6-8) – Using an assortment of playground and toy balls, students will measure diameter, calculate distance and scale, and build a model of the Earth-Moon system.

Explore More


For the record: This story originally stated a supermoon would be visible in January and February 2018. The two supermoons of 2018 are both in January.

TAGS: Supermoon, Moon Phases, Moon, Earth's Moon, What's Up, Astronomy, K-12, Educators

  • Lyle Tavernier
READ MORE

Animation of two black holes merging

Update – Oct. 3, 2017: Researchers Kip Thorne and Barry Barish of Caltech and Rainer Weiss of MIT have been awarded the 2017 Nobel Prize in Physics for their “decisive contributions to the LIGO detector and the observation of gravitational waves.”

Thorne, Barish and Weiss played key roles in making the LIGO project a reality through their research, leadership and development of technology to detect gravitational waves.

In a statement to Caltech, Thorne said the prize also belongs to the more than 1,000 scientists and engineers around the world who play a part on LIGO, the result of a long-term partnership between Caltech, MIT and the National Science Foundation.

› Read the Caltech press release

This story was originally published on March 23, 2016.


In the News

A century ago, Albert Einstein theorized that when objects move through space they create waves in spacetime around them. These gravitational waves move outward, like ripples from a stone moving across the surface of a pond. Little did he know that 1.3 billion years earlier, two massive black holes collided. The collision released massive amounts of energy in a fraction of a second (about 50 times as much as all of the energy in the visible universe) and sent gravitational waves in all directions. On September 14, 2015 those waves reached Earth and were detected by researchers at the Laser Interferometer Gravitational-Wave Observatory (LIGO).

Why It's Important

Einstein published the Theory of General Relativity in 1915. In it, he predicted the existence of gravitational waves, which had never been directly detected until now. In 1974, physicists discovered that two neutron stars orbiting each other were getting closer in a way that matched Einstein’s predictions. But it wasn’t until 2015, when LIGO’s instruments were upgraded and became more sensitive, that they were able to detect the presence of actual gravitational waves, confirming the last important piece of Einstein’s theory.

It's also important because gravitational waves carry information about their inception and about the fundamental properties of gravity that can’t be seen through observations of the electromagnetic spectrum. Thanks to LIGO’s discovery, a new field of science has been born: gravitational wave astronomy.

How They Did It

LIGO consists of facilities in Washington and Louisiana. Each observatory uses a laser beam that is split and sent down 2.5-mile (4-kilometer) long tubes. The laser beams precisely indicate the distance between mirrors placed at the ends of each tube. When a gravitational wave passes by, the mirrors move a tiny amount, which changes the distance between them. LIGO is so sensitive that it can detect a change smaller than 1/10,000 the width of a proton (10-19 meter). Having two observatories placed a great distance apart allows researchers to approximate the direction the waves are coming from and confirm that the signal is coming from space rather than something nearby (such as a heavy truck or an earthquake).

Teach It

Creating a model that demonstrates gravitational waves traveling through spacetime is as simple as making a gelatin universe!

› See the activity!

Middle school students can develop a model that shows gravitational waves traveling through spacetime while working toward the following Next Generation Science Standard:

  • MS-PS4-2 - Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Explore More

TAGS: Gravitational Waves, Teachable Moment, LIGO, Black Holes, Einstein

  • Lyle Tavernier
READ MORE

Update – Aug. 17, 2017: Two new lessons ("Measuring Solar Energy During an Eclipse" and "Modeling the Earth-Moon System") were added to the Teach It section below.


In the News

A satellite image of the Moon's shadow on Earth during a total solar eclipse

The Moon casts a shadow on Earth during a total solar eclipse over Europe in this image taken by a French astronaut on the Mir Space Station. Credit: CNES

This month marks the first time in 38 years that one of nature’s most awe-inspiring sights, a total solar eclipse, will be visible from the continental United States. And unlike the 1979 eclipse, the one on August 21 can be seen from coast to coast – something that hasn’t happened since 1918.

Millions of people are expected to travel to the 14 states that are in the path of totality – where the Moon will completely cover the disk of the Sun – while hundreds of millions more in every other state of the U.S. will be able to see a partial eclipse.

Whether you live in or are traveling to the path of totality, or will be able to step outside and view the partial eclipse from the comfort of your own home or school, the eclipse provides both an inspiring reason to look to the sky and opportunities to engage in scientific observations and discovery.

Animation of the Aug. 21, 2017 eclipse – Pi in the Sky 4 math problem

Teach It

Use these standards-aligned lessons and related activities to get your students excited about the eclipse and the science that will be conducted during the eclipse.

› Get started!

How it Works

Eclipses occur as the result of an alignment between the Sun, the Moon and Earth. Solar eclipses can only happen during the new moon phase, when the Moon’s orbit brings it between Earth and the Sun. At this time, the shadow cast by the moon could land on Earth, resulting in an eclipse. But most of the time, because the moon’s orbit is slightly titled, the moon’s shadow falls above or below Earth.

The time period when the Moon, Earth and the Sun are lined up and on the same plane is called an eclipse season. Eclipse seasons last about 34 days and occur just shy of every six months. A new moon during an eclipse season will cause the Moon’s shadow to fall on Earth, creating a solar eclipse.

graphic showing eclipse seasons
An eclipse season is the time period when the Moon, Earth and the Sun are lined up on the same plane. A new moon during an eclipse season will cause the Moon's shadow to fall on Earth, creating a solar eclipse. Image credit: NASA/JPL-Caltech

In addition to the proper alignment required for an eclipse, the distance between Earth, the Moon and the Sun also plays an important role. Even though the Moon is much smaller than the Sun (about 400 times smaller in diameter), the Sun and Moon appear about the same size from Earth because the Sun is about 400 times farther away than the Moon. If the Moon were farther from Earth, it would appear smaller and not cover the disk of the Sun. Similarly, if the Sun were closer to Earth, it would appear larger and the Moon would not completely cover it.

Why It’s Important

Total solar eclipses provide a unique opportunity for scientists to study the Sun and Earth from land, air and space, and allow the public to engage in citizen science!

Total eclipse image taken March 20, 2015 in Svalbard, Norway. Credit: S. Habbal, M. Druckmüller and P. Aniol

The sun's outer atmosphere (corona) and thin lower atmosphere (chromosphere) can be seen streaming out from the covered disk of the sun during a solar eclipse on March 20, 2015. Credit: S. Habbal, M. Druckmüller and P. Aniol

On a typical day, the bright surface of the Sun, called the photosphere, is the only part of the Sun we can see. During a total solar eclipse, the photosphere is completely blocked by the Moon, leaving the outer atmosphere of the Sun (corona) and the thin lower atmosphere (chromosphere) visible. Studying these regions of the Sun’s atmosphere can help scientists understand solar radiation, why the corona is hotter than the photosphere, and the process by which the Sun sends a steady stream of material and radiation into space.

Scientists measure incoming solar radiation on Earth, also known as insolation, to better understand Earth’s radiation budget – the energy emitted, reflected and absorbed by Earth. Just as clouds block sunlight and reduce insolation, the eclipse will block sunlight, providing a great opportunity to study how increased cloud cover can impact weather and climate. (Learn more about insolation during the 2017 eclipse here.)

Citizen scientists can get involved in collecting data and participating in the scientific process, too, through NASA’s Global Learning and Observations to Benefit the Environment, or GLOBE, program. During the eclipse, citizen scientists in the path of totality and in partial eclipse areas can measure temperature and cloud cover data and report it using the GLOBE Observer app to help further the study of how eclipses affect Earth’s atmosphere.

You can learn more about the many ways scientists are using the eclipse to improve their understanding of Earth, the Moon and the Sun here.

How to View It

Important! Do not look directly at the Sun or view the partial eclipse without certified eclipse glasses or a solar filter. For more information on safe eclipse viewing, visit the NASA Eclipse website.

When following proper safety guidelines, witnessing an eclipse is an unparalleled experience. Many “eclipse chasers” have been known to travel the world to see total eclipses.

The start time of the partial eclipse, when the edge of the Moon first crosses in front of the disk of the Sun, will depend on your location. You can click on your location in this interactive eclipse map to create a pin, which will show you the start and end time for the eclipse in Universal Time. (To convert from Universal Time to your local time, subtract four hours for EDT, five hours for CDT, six hours for MDT, or seven hours for PDT.) Clicking on your location pin will also show you the percent of Sun that will be eclipsed in your area if you’re outside the path of totality.

Aug 2017 eclipse map
This graphic shows the path of the Moon and Sun across the US during the Aug. 21, 2017 eclipse. The gray line represents the path of totality, while the Sun and Moon graphics flowing from top to bottom represent the percent of coverage for areas outside the path of totality. Image credit: NASA

If you are inside the approximately 70-mile-wide strip known as the path of totality, where the shadow of the Moon, or umbra, will fall on Earth, the total eclipse will be visible starting about an hour to 1.5 hours after the partial eclipse begins.

Only when the eclipse is at totality – and the viewer is in the path of totality – can eclipse glasses be removed. Look at the eclipse for anywhere from a few seconds to more than 2.5 minutes to see the Sun’s corona and chromosphere, as well as the darkened near side of the Moon facing Earth. As before, your viewing location during the eclipse will determine how long you can see the eclipse in totality.

graphic showing when its safe to remove your eclipse glasses if you are in the path of totality
Viewers should wear eclipse glasses or use a pinhole camera for the entirety of the partial eclipse. Those in the path of totality can remove their glasses only when the eclipse is in totality, which may last from a few seconds to more than 2.5 minutes depending on your location. Image credit: NASA

After totality ends, a partial eclipse will continue for an hour to 1.5 hours, ending when the edge of the Moon moves off of the disk of the Sun. Remember, wear eclipse glasses or use a pinhole camera for the entirety of the partial eclipse. Do not directly view the partial eclipse.

Animation of the pinhole camera project from NASA-JPL Education

Make a Pinhole Camera

Find out how to make your very own pinhole camera to safely view the eclipse in action.

› Get started!

To get an idea of what the eclipse will look like from your location and explore the positions of the Moon, Sun and Earth throughout the eclipse, see this interactive simulation.

For more information about the start of the partial eclipse, the start and duration of totality, and the percentage of the Sun eclipsed outside the path of totality, find your location on this interactive eclipse map.

NASA Television will host a live broadcast beginning at 9 a.m. PDT on Aug. 21 showing the path of totality and featuring views from agency research aircraft, high-altitude balloons, satellites and specially-modified telescopes. Find out how and where to watch, here

Teach It

Use these standards-aligned lessons and related activities to get your students excited about the eclipse and the science that will be conducted during the eclipse.

  • Epic Eclipse – Students use the mathematical constant pi to approximate the area of land covered by the Moon’s shadow during the eclipse.
  • Pinhole Camera – Learn how to make your very own pinhole camera to safely see a solar eclipse in action from anywhere the eclipse is visible, partial or full!
  • Moon Phases - Students learn about the phases of the Moon by acting them out. In 30 minutes, they will act out one complete, 30-day, Moon cycle.
  • NEW! Measuring Solar Energy During an Eclipse – Students use mobile devices to measure the impact a solar eclipse has on the energy received at Earth’s surface.
  • NEW! Modeling the Earth-Moon System – Students learn about scale models and distance by creating a classroom-size Earth-Moon system.
  • NASA GLOBE Observer – Students can become citizen scientists and collect data for NASA’s GLOBE Program using this app available for iOS and Android devices (eclipse update available starting August 18, 2017).

Explore More

TAGS: Eclipse, Solar Eclipse, Science, Pinhole Camera, K-12, Students, Educators

  • Lyle Tavernier
READ MORE