Kim Orr is a web and content producer for the Education Office at NASA's Jet Propulsion Laboratory. Her pastimes are laughing and going on Indiana Jones style adventures.


NASA Astronaut Candidates Jessica Watkins and Loral O'Hara and Warren "Woody" Hoburg

Former JPL Interns Graduate From NASA Astronaut Class

Update: Jan. 10, 2020 – In a ceremony at NASA’s Johnson Space Center, Jessica Watkins, Loral O’Hara and Warren Hoburg graduated from basic training along with fellow astronaut candidates. As members of NASA’s Astronaut Corps, they are now eligible for spaceflight, including assignments to the International Space Station, Artemis missions to the Moon, and ultimately, missions to Mars.

› Read the full press release


Originally published June 15, 2017:

Three former interns of NASA’s Jet Propulsion Laboratory are joining the agency’s newest class of astronaut candidates. Jessica WatkinsLoral O’Hara and Warren "Woody" Hoburg were among 12 selected for the coveted spots announced by the agency on Wednesday.

Adrian Ponce, manager of JPL’s Higher Education Programs, congratulated the new astronaut candidates and emphasized the value of the laboratory’s internship programs, which bring in about 1,000 students each year to work with researchers in science, technology, engineering and mathematics (STEM) fields.

"JPL is recognized in the world as a place of innovation, and interns have the opportunity to operate alongside researchers, contribute to NASA missions and science, develop technology and participate in making new discoveries," said Ponce, adding that the internship experience serves as a pathway to careers at JPL, aerospace companies, tech giants – and now the NASA astronaut corps.

While there’s no single formula for becoming an astronaut, experience at a NASA center certainly helps. In fact, many NASA scientists and engineers already working in their dream jobs landing rovers on Mars or discovering planets beyond our solar system, still aspire to become astronauts.

Watkins, who as a graduate student participated in several internships at JPL that had her analyzing near-Earth asteroids and planning ground operations for the Mars Curiosity rover, says that becoming an astronaut was a childhood dream that just “never went away.” In a video interview during her internship with the Maximizing Student Potential, or MSP, program in 2014, she talked about how she saw her experiences at JPL as a key step to fulfilling her goal.

“When you walk away from having an internship at JPL, I think you just have a broader perspective on what’s possible and what’s feasible,” said Watkins, who in 2016 participated in another program from JPL’s Education Office, an intensive, one-week mission formulation program called Planetary Science Summer Seminar. “I think you set a new standard for yourself just by being around people who have set the standard really high for themselves. You learn to appreciate the possibilities and the things that you really are capable of achieving.”

Explore JPL’s internships programs and apply

Learn more about Watkins, O’Hara and Hoburg, and meet the rest of NASA’s new class of astronaut candidates

TAGS: Women in STEM, Astronaut, Internship, Career Advice, Jessica Watkins, Loral O'Hara

  • Kim Orr
READ MORE

Max Rudolph crosses his arms and smiles at the camera standing in front of a glass window that looks down on the In-Situ Instrument Laboratory

Max Rudolph has had Mars rovers on the brain for as long as he can remember, and this past summer, as an intern at NASA's Jet Propulsion Laboratory, he joined the team building the most advanced Mars rover ever. His role was to find bugs in the software that directs the precise movements of cameras that serve as the literal eyes of the rover and ensure that every swivel of the rover's cartoon-like "head" goes off without a hitch. For the Georgia Institute of Technology student, it was a step into a world beyond his electrical engineering major, but one to which he found he was well suited. We caught up with Rudolph between shifts in the In-Situ Instrument Laboratory, where engineers test spacecraft components in simulated otherworldly environments, to find out what an average day for him is like on the Mars 2020 mission and what brought him to JPL.

What are you working on at JPL?

I work on the Mars 2020 systems engineering testbed. I do mechanism integration and verification of flight software. Basically, I work with the remote-sensing mast on the rover, running tests to make sure everything works and try to find bugs in the software [we use to operate it].

What is the remote-sensing mast?

It's basically the head and neck of the rover. It kind of juts up off of the deck of the rover and makes it look a bit like WALL-E, the Pixar character. It has science instruments designed to measure the Martian wind and study the chemical composition of rocks and soil, as well as navigation cameras that serve as the "eyes" of the rover.

What kinds of tests are you running?

This summer, I've mostly been testing the cameras and the movements of the remote-sensing mast. So we move the remote-sensing mast around, use the cameras on the front of the mast to take pictures and see whether it can do what it's designed to do. We get instructions from the subsystem engineers, the people who designed and built different parts of the mast [such as the cameras and science instruments]. We try out the movements and commands they designed to see if they actually work when the whole system is together.

What's your average day like?

There are two types of days I have. Some days I have shifts in the testbed, and other days, I do work at my desk. When I'm in the testbed, I run tests and run through procedures with the remote-sensing mast on a replica [or engineering model] of the rover.

The rest of my time is spent preparing or wrapping up work I did when I was in the testbed. For example, before I run procedures in the testbed, I send the software commands we're going to use to test the mast through a simulation that tells me if they are valid or not. After I run a test, I note what changes I made to the procedure, and what worked and what didn't work, so I can refer to it later.

Where do you go to school, and what are you studying?

I'm going to Georgia Tech, studying electrical engineering.

What got you interested in studying electrical engineering?

I don't know how I got into it [laughs]. A lot of people ask me, "Why electrical engineering?" Not often, "Why engineering?" I think I chose electrical engineering because it's a very broad field. At school, I focus on controls and signal processing. I also do research in robotics for various professors.

But here, I'm not doing that at all. This is a systems engineering lab, and I've never done systems engineering. I am doing robotics, but it's very different from my classes. Kareem Badaruddin, who's my group supervisor, says, "We recruit a lot of electrical engineers. They usually know the skills. They have a base knowledge."

So I think I chose electrical engineering because there's a lot of variation in what you can do with your degree. You can go into software, robotics or hardware design and circuits. There are a lot of opportunities.

As far as what got me into engineering, I don't remember a time when I didn't want to do this.

What brought you to JPL?

This is one of those places that I have known about for years. I'm 20, so I probably learned about JPL in eighth grade. I was interested in working here because everything is going to space – there's nothing cooler than that. Being here is something I always thought about wanting to do, and now I have the opportunity.

Was there a particular mission or event that lead you to JPL?

It probably was Curiosity or maybe the [Mars Exploration rovers, Spirit and Opportunity]. I always had the rovers in the back of my mind – even before I knew that JPL built them. One day, I found my way to the JPL website, and I was like, "Oh, these spacecraft are all built here."

How do you hope you're contributing to this mission and making it a success?

I hope I find any issues that exist in the system so we can fix them before the rover goes to Mars. It's a good thing if we find an issue with the rover when we test it because now we can fix it, and that's one less thing that can fail when the rover is millions of miles away on Mars. My main goal is to learn and contribute as much as I can.

What has been the most uniquely JPL or NASA experience that you've had while you've been here?

People might think it's humdrum, but I think it's really cool: I worked on a side project, helping with the Mars Helicopter Delivery System, which is a mechanism on the 2020 rover that will place the first helicopter on Mars. We were testing it, and I got to see the first time this thing moved. It wasn't historic like Apollo and wasn't actually landing on Mars, but seeing it – even on a replica of the rover – gave me a lot of pleasure. Like a lot of things at JPL, it was one of a kind.

What's your ultimate career goal?

I know I want to be here, because no one in the world does what JPL does. But just as important, I want to make an impact on the world.

OK, now for a fun question: If you could play any role in NASA's plans to send humans back to the Moon or on to Mars, what would it be?

Ideally, I'd be the one going. But I'd also really like to be part of the team that gets the spacecraft to the Moon or Mars.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found at: jpl.jobs

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, rover, Mars 2020, Electrical Engineering

  • Kim Orr
READ MORE

Brandon Ethridge stands in front of a mural made to look like a blueprint on the Mechanical Design Building at JPL.

Bringing the first samples of Martian rock and soil to Earth requires a multi-part plan that starts with NASA's next Mars rover and would end with a series of never-attempted engineering feats – many of which are still the stuff of imagination. So this past summer, Brandon Ethridge joined a team of other interns at NASA's Jet Propulsion Laboratory to bring the concept one step closer to reality. This meant building a small-scale model of something that's never been made before: a vehicle capable of launching off the Martian surface with the precious samples collected by the 2020 Rover in tow and rendezvousing with another spacecraft designed to bring them to Earth. NASA's plans for returning samples from Mars are still early in development and could change. So Ethridge and his team were given a wide berth to dream up new ideas. The project is paving a path not just for Mars exploration, but also for Ethridge himself. Shortly after his internship ended, he graduated from North Carolina A&T State University with a degree in mechanical engineering and accepted a full-time position with the team at JPL that puts spacecraft together and ensures they are working properly. Read on to learn what it's like to envision an entirely new spacecraft for Mars and find out what brought Ethridge to JPL as a first-generation college student.

What are you working on at JPL?

I am working on creating a concept model for a possible future Mars ascent vehicle that would bring samples collected by the Mars 2020 Rover back to Earth. This would be the first time that we would bring samples back from Mars.

NASA is still discussing how we would bring these samples back to Earth, so we're exploring a concept that would be conducted in three stages. The first stage would be to collect the samples and bring them to the Mars ascent vehicle. The second stage would be to use the Mars ascent vehicle to launch into Mars orbit. And the third stage would be to take the spacecraft from orbit back to Earth. I'm primarily working on the second stage. Specifically, I'm working on creating a model of the mechanism that would launch the Mars ascent vehicle from the surface into orbit.

Infographic showing 5 engineering facts about the Mars 2020 rover
Infographic showing 5 engineering facts about the Mars 2020 rover

This infographic shows how the Mars 2020 rover differs from previous Mars rovers. Image credit: NASA/JPL-Caltech | › Learn more

What are the challenges of creating a model of something like this since it's never been done before?

That's definitely one of the challenges. A lot of it is speculation due to our not knowing all the conditions associated with launching anything from another planet. The concept that we're working with is a brand-new design with minimal references, so we're kind of figuring it out as we go. Our group of interns is working to scale down the preliminary design that we got from the engineers to see if it will work on a smaller scale. Then, obviously, you have to account for the changes between Earth and Mars. Even just getting the designs from the engineers has been a struggle, because they're just figuring it out as well.

What's your average day like?

I work with four other interns, and we have two mentors. We've gotten a couple benchmark concepts from the engineers. We're all working to analyze different concepts, comparing and contrasting, and trying to figure out what we think would be best.

Right now, we're in the analysis stage, where we are whittling things down to one specific concept that we want to work towards. We're trying to isolate the exact architecture of the launch mechanism itself, trying to all get on the same page, make sure our numbers match up, and see if we can even theoretically do this. It seems pretty promising – we just have to iron out the kinks.

What's it like working on a team of interns?

We all get along really well, and we're typically all on the same page. We have extroverted personalities, introverted personalities, but we all do pretty well at taking our time to let everyone get their opinions in, so it's a really good team. We bring different perspectives, different specialties. I am very thankful to have a good group of people to work with and fantastic mentors who really let us express ourselves and learn in the process.

How are you working with the engineers who are designing the concepts for this potential future mission?

We're working parallel to them rather than in conjunction with them, which is interesting because they're looking at it as more of a long-term project. Since I'm only here for the 10-week period, my mentors wanted to make sure that I got something out of this. So we're going to scale down the model to expedite the process. Hopefully at the end, we'll be able to present it to the engineers while they're still ironing out their kinks. But it's geared on a tight timeframe, a lot of quick learning.

What are you studying in school?

I am studying mechanical engineering with a concentration in aerospace.

How did you get into that field?

I think it was in middle school that I caught myself always staring at the planes in the sky. I recognized that I really wanted to fly. I wanted to be a pilot for a long time. But then, as I got a little bit older, I recognized that even the pilots aren't familiar with how the planes work exactly or the process that gets them there. I was just fascinated with the phenomenon in itself, where you can take this massive vehicle made of metal and make it appear lighter than air. So I decided to study engineering. I didn't really have any guidance toward it. It just happened that I liked planes, I looked into career options online and that lead me toward engineering and aerospace.

Is anyone else in your family involved in STEM?

No. I'm a first-generation college student. My brother-in-law is a civil engineering professor at Morgan State, and he's helped me a lot. He has been my mentor from the beginning. We don't talk all the time, but he's the one who kind of set me in a direction and told me, "All right, time to go."

How did you find out about the JPL internship and decide to apply?

I got an email one day before an info session was happening on my campus at North Carolina A&T. I had a class at that time, so I didn't think I was going to go, but the class ended early. I ended up attending the info session and speaking with Jenny Tieu and Roslyn Soto [who manage JPL's HBCU initiative]. I brought a resume, and Roslyn critiqued it for me and told me, "You have good experience. Resubmit this with these changes and see how it goes." That's how it worked out.

Did you have any idea that you wanted to come to JPL at some point?

I didn't even know what JPL was, if I'm honest. When I first saw the email, I read, "Jet Propulsion Laboratory," and I thought, "Oh, this sounds interesting." Then I was like, "Wait, this is NASA!" Coming from not knowing or learning about it growing up or being familiar with it, you kind of have to figure things out as you go. It's a little embarrassing to say that I'm here and I didn't even know about this place about a year ago. But at the same time, I figured it out and that's kind of how it goes. Just learn as you go.

What has been your impression of JPL so far?

I love it here. I've been working since I was legally able to work, and this is the first time I've ever enjoyed my job. I'm a night person, but I'm waking up early perfectly fine – not complaining about it, not having bad days. Every day, it's been really good for me. That's something that I don't take for granted, because I've worked jobs that I didn't like in the past. Being out here, being around the people at JPL, it's a really cool experience. It's also my first time away from the East Coast, so I'm just completely thrown into it. I love it. It's been a really great experience.

What's your ultimate career goal?

It's hard for me to say for sure because I have a lot of aspirations. I love the idea of continuing to work with NASA, working on things that are going to space and potentially getting into some of the human space flight projects going on. But I'm also very interested in management positions, maybe learning about some of the business side. Right now, I'm just taking all the experiences for what they are. I know that I want to be in and around aerospace, but as far as in what capacity – whether that's aerodynamics, systems engineering, mechanical engineering – I'm still trying to figure that out.

How do you feel you're contributing to NASA and JPL missions and science?

If we can finish our project by the end of the summer – which would kind of be impressive in itself – and prove that our design does work and is capable of being scaled up to use for an actual Mars ascent vehicle, then I'm sure that would be valuable. Not to mention, I'm learning a lot while I'm here, understanding a lot more and familiarizing myself with everything. So hopefully I can contribute in the future, too.

How does it feel to be working on something that could go to another planet and has never been tried before?

Honestly, it's somewhat unreal to be working on something that's so important and so new. It's not monotonous work. It's not like you're just punching numbers. Everything that I'm working on has the potential to be implemented in some sense for the very first time on another planet. That's something that makes me excited to go to work every day.

Speaking of historic missions: If you could play any role in NASA's plans to send humans back to the Moon or on to Mars, what would your dream role be?

I would love to go. But if our launcher mechanism works, there's no reason we couldn't use it for applications on the Moon or on Mars. I also really like the idea of being in mission control, working with the astronauts, working with the Space Station or Gateway in the future.

Have you ever considered applying to be an astronaut?

Only recently. It's one of those things that if you don't grow up with it in your scope, you don't acknowledge it as a possibility. It's just something that doesn't really seem attainable.

Throughout my college career and my life, I've been realizing that almost anything is attainable. It's just going to take time and effort. So [being an astronaut] is something that I was actually looking into last night, and recently, I was having a discussion with my mentors about it. It's definitely something that I think I'll try to do.

What inspired you to start looking into being an astronaut?

I have always had a fascination with the natural world and been enamored with the night sky. Becoming an astronaut had never been on my radar as a possibility, but seeing the world from a perspective beyond its surface is what motivated me to want to become a pilot, which eventually materialized into pursuing engineering. Once I did research and recognized that astronauts really are regular people with similar interests to mine, I began looking into it as a possibility.

Also, the idea of seeing these worlds for myself is something that I can't really get past.

What's been the most JPL- or NASA-unique experience that you've had during your internship?

Probably the fact that everything is just open to you. The work going on at my previous internship was only shared on a need-to-know basis. Here, everyone is very open to telling you what they're doing. They're open to showing you what's going on, all the brand-new things being built. You can just walk around and look at them. It makes it so much more exciting to be here because it's not that you're just placed on one project and stuck with it. It's, "Please explore." They encourage it. "Please come learn and experience everything."

You recently accepted a full-time position at JPL. Congrats! What is the position and what will you be working on?

Thank you! I am thrilled for the opportunity. I will be working in the Flight Systems Engineering, Integration & Test Section. Interestingly, I am not sure which group I will be in yet, because I was offered the position on the spot, at the conclusion of a day of interviews. I was told by my section manager that they are unsure which group I will work in specifically but that they want me to be a part of their team for sure. The plan is for me to start in June 2020.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found at: jpl.jobs

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Mars Sample Return, HBCU, Students, Careers

  • Kim Orr
READ MORE

Graphic of the planets superimposed on a keyboard

NASA's Scientist for a Day Essay Contest is back for its 15th year, inviting students in grades 5 through 12 to investigate three distant worlds and write an essay about one they would want to explore further.

The worlds chosen for this year's contest are some of the most mysterious and distant in our solar system: Uranus' moon Miranda, Neptune's moon Triton and Pluto's moon Charon. Each has been visited by spacecraft during a single, brief flyby. NASA's Voyager 2 spacecraft flew by Miranda and Triton in the 1980s, and the New Horizons spacecraft flew by Charon in 2015. All three flybys provided the only up-close – and stunning – images we have of these worlds.

To enter the contest, which is hosted in the U.S. and more than a dozen countries, students must submit an essay of up to 500 words explaining why they would want to send a spacecraft to explore the world of their choosing. Essays can also be submitted by teams of up to four students.

Winning essays will be chosen for each topic and grade group (5 to 6, 7 to 8 and 9 to 12) and featured on the NASA Solar System Exploration website. Additionally, U.S. contest winners and their classes will have the chance to participate in a video conference or teleconference with NASA.

Entries for the U.S. contest are due Feb. 20, 2020, on the NASA Scientist for a Day website. (Deadlines for the international contests may vary by host country.) Visit the website for more information, including rules, international contest details and past winners.

For teachers interested in using the contest as a classroom assignment, learn more here. Plus, explore these standards-aligned lessons and activities to get students engaged in space travel and planetary science:

TAGS: K-12 Education, Teachers, Educators, Students, Contests, Competitions, Essay, Language Arts, Science, Planets, Solar System, Moons

  • Kim Orr
READ MORE

Samalis Santini De Leon poses for a photo with a jar of lucky peanuts in JPL's Space Flight Operations Center.

They've been called the minutes of terror – the moments during which spacecraft perform a series of seemingly impossible maneuvers to get from the top of Mars' atmosphere down to its surface and mission controllers anxiously await the signal heralding a successful landing. This past summer, it was intern Samalis Santini De Leon's task to make sure that when NASA's next Mars rover lands in February 2021, those minutes are as terror-free as possible. That meant bringing her Ph.D. research on the process known as entry, descent and landing, or EDL, to NASA's Jet Propulsion Laboratory, where she could apply it to a real space mission. The Puerto Rico native says she never imagined she would one day play a key role in landing a spacecraft on the Red Planet – especially as an intern. But now that she's worked on the Mars 2020 mission, she'll be just as anxious as the rest of the team when those final minutes arrive. We caught up with the Texas A&M University student to find out how you test a Mars landing while on Earth and how she set herself on a trajectory to NASA.

What are you working on at JPL?

I'm working on Mars 2020 entry, descent and landing simulations. I'm evaluating different scenarios, such as a hardware failure, and I'm trying to assess whether the mission will still land safely on Mars. I'm making sure that the system is robust enough that even if something goes wrong, the mission is not in danger and can still land safely. After all that work, we want the rover to land in one piece and do the science we want to do.

What does entry, descent and landing entail?

It's a series of events and maneuvers required to land safely on a planet. So once you enter the atmosphere, there are things you have to do – steps to ensure that the vehicle lands safely.

Graphic showing how Mars 2020 will land on the Red Planet

This graphic shows the new technology that will be used to land the Mars 2020 rover in February 2021. Image credit: NASA/JPL-Caltech | › Take an interactive look at the Mars 2020 landing

What's different about this landing from the one used for NASA's Curiosity Mars rover?

One difference is that we have a new trigger for deploying the spacecraft's parachute. This trigger will help reduce the landing footprint size, meaning we can land closer to the intended landing spot. The mission will also be using Terrain Relative Navigation for the first time. The rover will take images of the surface as it's descending and compare them to its onboard reference maps so it can locate itself with respect to the landing site and avoid any hazards.

What's your average day like?

It's mostly gathering all the concerns from other people on the entry, descent and landing team. Then I run simulations, and I look at the overall behavior of the system and communicate with the teams about what's happening. For example, if there was a hardware concern, I would do simulations to analyze the system's performance and ensure there's no significant effect on the success of the mission.

On the side, I'm doing my Ph.D. work in entry, descent and landing, using artificial intelligence to help analyze very large simulations and communicate critical issues to the experts. As humans, there is only so much we can analyze manually. We hope that these tools can help engineers for future missions.

Santini De Leon sits in the Space Flight Operations center at JPL in a room with red and blue lighting and looks up at a screen showing live spacecraft communications.

Image credit: NASA/JPL-Caltech | + Expand image

What lead you to focus on entry, descent and landing for your Ph.D.?

I have no idea. [Laughs.] I did my undergraduate work in mechanical engineering back in Puerto Rico, where I'm from. I volunteered on a project run by Space Grant, building experiments that involved launching sounding rockets from NASA's Wallops Flight Facility. I started to get into space at that time. After that, I tried to pursue aerospace engineering, which is not a possibility in Puerto Rico. So I left Puerto Rico, and I ended up initially working with satellites. Then my advisor said, "I have a friend in EDL, and he's talked about the challenges. Why don't we write a proposal on this?" I got a NASA Science and Technology Research Fellowship for that, and now I'm doing EDL. I was always secretly leaning towards space exploration and getting my hands on a mission.

What made you want to study mechanical engineering initially?

I think it was the closest I could get to aerospace engineering back home. Also, space is very interdisciplinary. I always liked robots. Building robots in high school for competitions got me very interested in that.

What brought you to JPL for this internship?

This is my first summer at JPL. With my fellowship, I do rotations at the NASA centers, so I work with people who do similar stuff.

How many different NASA centers have you interned at now?

I've interned at three. I did two summers at NASA's Ames Research Center, last summer at Langley Research Center, now here at JPL. And in my Space Grant project and undergrad, I did frequent visits to Wallops to put our experiments in the rockets, so that was very cool.

That was all part of the buildup to get here. Coming from an island, it seemed not even possible at the time [that I would ever be at NASA].

What were the challenges that you faced coming from Puerto Rico and trying to pursue aerospace engineering?

The options for aerospace engineering in Puerto Rico are limited. But getting into the Space Grant program was a very good thing to expose me to those fields. After that, the hard part was trying to find a place to do my graduate studies outside of Puerto Rico – where to go, how to get in. There's not a lot of orientation back in Puerto Rico about these things, so you're a little bit on your own. After that, the big problem is dealing with grad school. [Laughs.]

What's your ultimate career goal? Do you think you'd like to go back to Puerto Rico someday?

I would definitely like to continue working on space missions for a while. Whether it's here at JPL or other NASA centers. Just the exposure and the experience – nothing can compare to that. But at some point later on, I would like to go back and consider teaching at the University of Puerto Rico to bring back what I've learned. They're trying to make an aerospace department at the university, so I could bring new perspectives and maybe motivate more people to do what I'm doing.

Speaking of future careers: If you could play any role in NASA's plans to send humans back to the Moon and on to Mars, what would you want to do?

Maybe I'm biased now that I'm in EDL, but it's one of the biggest challenges. I think getting enough knowledge and expertise in it and playing a role in landing people on the Moon or on Mars would be incredible, because it's a problem we still haven't found a solution to. Being able to help achieve that by whatever means is probably the most amazing thing I could ever do.

What do you hope to accomplish in your role on the Mars 2020 mission?

I definitely want to demonstrate that they've built an amazing system – that it works. I guess the goals are more personal, like getting exposure to the testing side of things, more of the real-life aspects. I'm more locked on the computer simulations. So I'm hoping to get the whole picture of how EDL works and how it all comes together.

Your mentor is Allen Chen, who is the lead for Mars 2020 entry, descent and landing, so he'll be calling the shots on landing day. What is it like having him as a mentor?

It's amazing. I feel very lucky and very proud that I get to work directly with him. He's someone who has so much expertise. I am learning a lot from him. Just sitting in meetings and hearing what he and the team have to say is amazing. He's great, too – easy to talk to, knows way too much about EDL. [Laughs.]

What's been the most unique experience that you've had at JPL this summer?

What I've found the most shocking is seeing the actual rover that's going to Mars and seeing the rover getting built. That has definitely been quite cool. I think JPL is known for stuff like this. It's here that you can see it and you can see the progress. It also seems like a very collaborative environment. That's not common, so that's really cool.

The rover is scheduled to land in February 2021, after your internship has ended. Will you be able to come back to JPL for landing?

It is possible. My mentor [for my Ph.D.] will definitely be here when the rover arrives on Mars. He'll actually spend two months here doing shifts in mission control. He told me he will try to have me here for that to learn about how it all works. I will definitely try to make that happen. The excitement in that room and the fear will collide. It must be very interesting to be in there.

Are you already picturing what it will be like on landing day?

Yeah. Now that I've had some role in it, wherever I am – whether it's here or at home – I'm going to be freaking out. Regardless of how confident we are, it's a challenging process.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found at: jpl.jobs

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Ph.D., Doctorate, Space Grant, Students, Mars 2020 Interns

  • Kim Orr
READ MORE

Miles Fertel smiles at the camera while holding a Mars globe in one hand and pointing to Mars 2020's planned landing spot with the other hand. He's standing in front of a light sculpture and a sign that says "Dare Mighty Things."

Miles Fertel smiles at the camera while holding a Mars globe in one hand and pointing to Mars 2020's planned landing spot with the other hand. He's standing in front of a light sculpture and a sign that says "Dare Mighty Things."

There's no joystick for driving rovers on Mars. Instead, a team of scientists and engineers gathers every day to plan each move and then beams a series of instructions to the rover's computerized brain, like interplanetary telepathy. As the only tether between the rover and the mission team on Earth, the onboard computer needs to run flawlessly. So before the rover even leaves Earth, its brain is put to the test. That's where Miles Fertel came in this past summer. As an intern with the rover simulation and planning team at NASA's Jet Propulsion Laboratory, Fertel was tasked with writing a program that tests how well the agency's next Mars rover interprets the instructions it receives. The trick, he said, was outsmarting not the rover but the humans who programmed it. We caught up with the Harvard University computer science student to learn more about his internship with the Mars 2020 team and to hear what he considered the most unique experience of his summer at JPL.

What are you working on at JPL?

I'm working on software for the Mars 2020 rover – so the code and tools that allow the rover to function on Mars. My team is rover simulation and planning. The rover planners are the people who take in all the information from the scientists and the rover and write commands to send to the rover through the Deep Space Network, which is basically the internet for space. As the simulation team, we make sure that the commands that we're going to send are going to be effective and that they're going to be safe so that this rover we send to Mars after all this painstaking work isn't going to get stuck in a hole or break because of a wrong command.

What is your average day like on your project?

I work on creating tests that humans couldn't come up with. The average testing for software is you write tests to make sure that the code isn't going to fail when you add in certain instructions. But humans – specifically the humans who write the tests – tend to be the same people who write the code. They're not going to be able to come up with as good of a test, because if they knew what was going to break, they wouldn't have written the bug in the first place.

What I do is use a couple of testing frameworks that use generational input adjustments. They develop in an evolutionary way, starting from a simple input that I put in. So, say we're working on commands for the rover. We can start with, "Go forward," and then the system will modify the instructions based on a dictionary of information I provide. So I say, "These are words that might make sense to the rover. Try coming up with combinations of these that might result in behavior that we haven't seen before." If that behavior is defined, then everything's fine, but if it's going to cause a problem, then it's important that we know that so we can update the code.

What are you studying in school, and what got you interested in that field?

I study computer science at Harvard. I hadn't done any programming before coming to college. I thought I wanted to do something in the area of technology and possibly business, but I didn't really know. So I took the intro to computer science class, and I really loved it. I loved the challenge of feeling like my homework was a puzzle and not a chore. That drew me to it, and I started taking all the classes that I could in that realm.

What is your ultimate career goal?

I don't think anyone should have an ultimate career goal. I think careers should be a fluid thing and that people should build up skills that allow them to do the things that are most interesting to them. Right now, my goal is making sure that the Mars 2020 rover lands on Mars and everything goes swimmingly when it gets there. But, ultimately, I want to work on cool things with interesting people.

How do you feel that you're contributing to Mars 2020 and making the mission a success?

When I came here, my main goal was having a tangible impact on the project. I wanted something where every minute I spent working would be important to meeting the goal of the project. I find bugs every day, and I fix them, and that's great. Hopefully, before the summer's over, I will have a patch that I can write for the software that will end up on the rover.

What brought you to JPL for this internship?

I had a friend who interned here two years ago, and he recommended it really highly, saying he had a terrific time and his team members were great. I applied online, but when you apply, it's a general application and you could be picked for any project based on your set of skills.

I knew that I wanted to work on Mars 2020, so I went on the JPL website, and I researched teams and people working on robotic software for the mission. I emailed Jeng Yen, my group supervisor. I said, "Here's my resume. This is what I'm interested in. Are there any projects that I could work on?" He said, "One of my team members, Steven Myint, is working on something that fits your profile pretty well. You should talk to him." So I talked to him, and the rest is history.

That's great. That's something we recommend students do if there's a particular project or area of research they're interested in. What is the most unique JPL or NASA experience that you've had while you've been here?

Oh, easy. One of my team members, Trevor Reed, is a rover planner for Curiosity. Every morning the team has a tactical meeting in which they go over the schedule for the day for the rover, and they give instructions to the rover planners who will write the commands that tell the rover what to do. When I found out that one of my teammates drives the Curiosity rover, I was like, "Can I please, please shadow you for that process?"

So I showed up at 8 o'clock in the morning in the Curiosity rover tactical office, or conference room, and there's the head scientist, Ashwin Vasavada, who I'd read about in articles. I watched them send the actual commands to the rover. I learned all about the planning and tolerances that are involved in the simulations that we do. I got to see the software that I'm working on in action, because it's also used for Curiosity. It was a pretty amazing experience to sit there for a couple of hours and watch them go through the entire process of a day on Mars.

Now for a fun question: If you could play any role in NASA's plans to send humans back to the Moon or on to Mars, what would you want to do?

Every kid wants to be an astronaut, right? I mean, if you're offering … As much as I would love to be an astronaut, my interests in the short term are contributing to and building projects that I think are important. So for those future missions, I think I would want to have more input on the design, the structure and the planning, overall. So maybe I would want to be a systems engineer or even work on the design.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Software, Computer Science, Programming, Coding

  • Kim Orr
READ MORE

Schelin Ireland, wearing lab goggles and purple gloves, holds a sample under a laboratory version of the SHERLOC instrument for Mars 2020.

Growing up in Hawaii, Schelin Ireland used to look up at the night sky and dream of one day setting foot on the Moon. She hasn't made it there yet, but in the meantime, she's helping achieve another milestone for space exploration. This summer, as a Space Grant intern at NASA's Jet Propulsion Laboratory, Ireland was part of the team building an instrument designed to detect signs of past life on Mars. One of several instruments on NASA's next Mars rover, SHERLOC will be the first of its kind on the Red Planet. Situated at the end of the rover's arm, it will shoot a laser into Martian samples and pick up the unique pattern of light waves, or Raman signatures, that result. Scientists can study those light waves to find out what the samples are made of – and whether they contain ingredients for life. Ireland, a geology and geophysics student at the University of Hawaii, Manoa, spent the summer running a laboratory version of the instrument through practice rounds before the real thing launches next summer on its seven-month journey to the Red Planet aboard the Mars 2020 rover. We caught up with her to ask what it's like to be part of the team searching for evidence of past life on Mars and find out what her future plans are for exploring the Moon.

What are you working on at JPL?

I'm collecting a database of Raman signatures for various organic and inorganic materials that scientists will use to interpret the data we get back from the SHERLOC instrument onboard the Mars 2020 rover.

What is SHERLOC, and what will it do?

SHERLOC is a deep UV Raman/fluorescence spectrometer. It will look for evidence that there was once life on Mars. It will shoot a laser into a sample on Mars and pick up Raman and fluorescence signatures.

Raman spectroscopy looks at vibrations of electrons. So you have a light source that hits a sample and causes those electrons to vibrate, and that causes the light to scatter back with a slightly reduced energy. A spectrometer is going to pick up that scattering as a series of peaks, which are the Raman signatures. They tell us what material we're looking at and if it's organic or inorganic material.

Is this technology also on the Mars Curiosity rover?

SHERLOC will be the very first deep UV Raman spectrometer on another planet. Curiosity mostly uses infrared spectroscopy to study samples on Mars. There is some infrared spectroscopy on Mars 2020 as well, but we can look at things in greater detail with Raman spectroscopy. SHERLOC will be able to detect things at a micrometer scale – very, very, very small particles – which is why it's essential for discovering signs of past life. If there are any biosignatures out there, we want to be able to study the smallest particles that we can.

And this device is at the end of the rover's arm?

It's being mounted at the end of the arm. How it works is the arm is going to abrade the surface a little bit and then it's going to rotate so SHERLOC can do its analysis. You don't want the sample superclose. You want it to be a few centimeters away, because you don't want there to be dust on the instrument. You also don't want it to break because, of course, no one will be able to go and repair it.

What's your average day like on this project?

What I've been doing so far is running calibrations on the laboratory version of SHERLOC. Starting next week, I will start looking at the Raman spectra of various materials. So we're going to be looking at some minerals by themselves, and we're going to be looking at mixtures of organic and inorganic materials together – different percentages of organics to see where the limits are for picking up a signal. We'll upload the data onto a computer and then use software to highlight anything that looks interesting that we want to take a further look at.

Ireland wears lab goggles and a University of Hawaii T-shirt. She sits in front of several screens and the lab version of SHERLOC.

Ireland sits in the lab where she was helping test the SHERLOC instrument this summer as an intern at JPL. Image credit: NASA-JPL-Caltech/Kim Orr | + Expand image

What are you studying in school?

I study geology and geophysics at the University of Hawaii, Manoa. I'm also minoring in mathematics.

Are you from Hawaii?

I'm from Kona on the Big Island of Hawaii. I just did an island hop to go to college. They have a fantastic program for what I want to study, so it's really great that I'm able to study over there and have all the opportunities that made it possible for me to get this internship.

What opportunities lead to your internship here?

NASA Hawaii Space Grant. I did a traineeship with them last semester on something very similar to this, but it was more in the context of the Mars SuperCam [which will also go on the Mars 2020 rover]. We did Raman spectroscopy on that using the laboratory version of SuperCam. We were also looking for detection limits for that instrument and measuring various materials.

After that, I was looking at internships for this summer, and I saw that this one was very similar to what I was working on at UH Manoa. I was very lucky to get it. NASA Hawaii Space Grant is funding the internship. So I did the traineeship with them, and now I'm doing this internship through them.

What got you interested in pursuing science as a career?

Where I'm from, you can see the night sky very clearly on most nights, and I have always wanted to go to the Moon. That's what got me interested in space. I would make dioramas and posters of the solar system and put them all around my room. My mom would take me to the Ellison S. Onizuka Space Center a lot, which is right by the Kona airport. I would read a lot of space books. I thought it was fascinating, but then I kind of got into other things as I grew up.

When I started high school, I joined the science competition team, and my school won first place in the Science Olympiad Regionals for Astronomy. I was one of two people from my school who competed in the astronomy portion of the competition. That really rekindled my interest in science, so I decided this was something that I absolutely wanted to go into.

What's your ultimate career goal?

My ultimate career goal is to be a research scientist studying planetary science and to be an astronaut. One thing that inspired me when I was in high school was knowing that I attended the same high school as Hawaii's first astronaut, Ellison Onizuka. It would be an honor to follow in his footsteps and become Hawaii's first female astronaut.

So if you could play any role in NASA's plans to send humans back to the Moon and on to Mars, would you want it to be as an astronaut?

It would be an honor to be involved in any way. If I were a mission specialist, I could set up a little lab where I analyze samples. I'd fix any equipment that we have onboard, fix any instrumentation that we have onboard and maybe measure moonquakes or marsquakes from there. It would be great to do any little thing that I possibly can. Just to have the experience of being on another celestial body would be absolutely amazing on its own, of course.

Back to the current mission you're working on: What do you hope to contribute to Mars 2020?

By the time my internship is through, I want to make sure that I have used the knowledge that I have developed from the research experience last semester and all of my geology classes and be able to apply it to what we are doing here. I want to make sure that the database I am helping to develop includes minerals and other materials that we are likely to find in the area where the Mars 2020 rover is going to land.

How does it feel to know you could play a role in discovering signs of past life on Mars?

It is a huge honor to know that I am a part – even a small part – of this big mission.

What has been the most unique JPL or NASA experience you've had during your time here?

Being here is a unique experience of its own. I haven't experienced anything like this before, and it is absolutely wonderful. I feel like instead of being a student or some extra labor, I am actually treated as a junior colleague and a research scientist. I'm part of this big scientific team, trying to accomplish something of real significance.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Mars Sample Return

  • Kim Orr
READ MORE

Finding the best driving route for a Mars rover isn't as easy as turning on a navigation app – but John Park and Hiro Ono want to make it so. A program at NASA's Jet Propulsion Laboratory is helping them turn their idea into a reality, all while promoting diversity in STEM.

A tenure-track faculty member at North Carolina A&T State University, Park has spent the past two summers at JPL through an Education Office initiative designed to connect students and researchers from Historically Black Colleges and Universities (HBCUs) to the Laboratory's missions and science. The NASA-backed pilot program has brought more than a dozen student interns and several faculty researchers to JPL for projects investigating Mars, Earth and planets beyond our solar system.

Until his stint at JPL, Park's research focused solely on Earth-bound transportation technologies, such as those used by self-driving cars. When he learned about JPL's HBCU initiative from a colleague who had participated in the program, he seized on the chance to apply his research to space exploration.

"My previous projects and publications have dealt with decision-making tools for exploring uncertain areas on Earth and maximizing the information that's available," says Park, who also helped connect several students from North Carolina A&T to internship opportunities with the HBCU initiative. "I thought I could help bring that perspective to Mars rovers and helicopters."

While researching potential applications for his research at JPL, Park learned that the challenges of getting around on Mars are similar to those faced by drivers on Earth. Rovers also need to get from place to place safely and efficiently – they're just avoiding boulders instead of traffic jams.

It was precisely those challenges that Hiro Ono in JPL's Robotic Mobility Group also wanted to overcome. "I had an idea that I wanted to try, and we had all the ingredients," says Ono, who designs artificial intelligence systems for future rover missions. "The HBCU program allowed us to try the idea."

The HBCU initiative brought Park and Ono together along with Larkin Folsom, a student intern from North Carolina A&T. Together, the trio developed a proposal for a future system that would work similarly to the navigation apps we use to get through rush-hour traffic. The system would allow rovers to analyze routes as they drive, providing mission planners with information about the routes most likely to be hazard-free so they can make the most efficient use of the spacecraft's limited energy supply and maximize the mission's science goals.

"Previously, the way that we operated on Mars was to make the best guess about drivability solely from looking at orbital images," says Ono. "The idea that we are working on is to introduce the concept of probability. So if there are two terrains that are important to you but one of them is 90% traversable and the other is 60% traversable, which are you going to choose?"

In September, the National Science Foundation awarded Park, who submitted the proposal, with a grant to pursue the project. Park says the funding will go toward a JPL internship opportunity for a Ph.D. student from his university to continue research with Ono's team.

Jenny Tieu is a STEM education project manager at JPL who manages the HBCU initiative with Roslyn Soto. She helped connect Park and Ono and says it's collaborations like these that the initiative was designed to foster.

"Our goal with this initiative is to expand the number of HBCU students and faculty members participating in research at JPL and ultimately increase diversity among the Laboratory's workforce," says Tieu. "This National Science Foundation award is a positive indication that the initiative is not only building strong relationships between HBCUs and JPL, but also creating a ripple effect for additional opportunities."

Now in its fourth year, the HBCU initiative will once again bring students and faculty to JPL for research opportunities in the summer of 2020.

Meanwhile, Park and Ono are exploring ways to expand their technology into other arenas, including hurricane research and emergency response. Park has already received support from the U.S. Department of Transportation as well as the state DOT in Virginia and North Carolina for additional Earth-based applications of the technology.

Ono is serving as a consultant on the projects and has high hopes the results of the research will make their way back to JPL.

Says Ono, "In the long run, having an intern, giving them a good experience, helping their career is going to come back to us. We, as JPL, can build connections around the world and among industry partners that are going to come back to us eventually."


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Engineering, HBCU, Research, Mars, Mars rovers, robotics, AI, navigation, universities, college

  • Kim Orr
READ MORE

Side-by-side images of Clara Ma, wearing braces, in 2009 posing for a picture in front of a Curiosity rover model and Ma in 2019 posing for a photo in Europe

Students have just over one week more to enter NASA’s Name the Rover Essay Contest. While they put the finishing touches on their essays (due Nov. 1, 2019), meet the most recent naming contest winner, Clara Ma. Find out what Ma is up to more than 10 years after submitting her winning name for the Mars rover now known as Curiosity and why she says the experience changed her life.

› Read more on JPL News

› Find related resources for educators

 

TAGS: Curiosity, Rover, Contest, Mars, Students, K-12, Teachers, Language Arts, Essay

  • Kim Orr
READ MORE