Kim Orr is a web and content producer for the Education Office at NASA's Jet Propulsion Laboratory. Her pastimes are laughing and going on Indiana Jones style adventures.


Christine wears a scrunchy on her wrist while pointing to the 3D printer, which sits on a dresser between a rack of clothes and a flag hanging on the wall.

It sounds like a reality show: A team of six interns working remotely from their homes across the country given 10 weeks to build a prototype lunar spacecraft that can launch on a balloon over the California desert. But for Christine Yuan, a senior at Cornell University, it was just another engineering challenge.

This summer marked Yuan's second time interning with the Innovation to Flight group at NASA's Jet Propulsion Laboratory. The group brings in a collaborative team of a dozen or more interns each year. Their task is to create and test prototypes of far-flung ideas for spacecraft and space technology over the course of their internship. But this summer, with most of JPL's employees still on mandatory telework and interns required to complete their projects remotely, the team had an even bigger challenge to overcome: How could they build a spacecraft together while hundreds of miles apart?

Yuan flashed back to her days using materials from around the house to build props and costumes from her favorite TV shows and games. It was what made her want to become a mechanical engineer in the first place. She had a 3D printer and tools in the apartment she shares with a friend from school. So it was decided. She would build the spacecraft in her apartment and mail it in parts to the other interns working on electronics and software from their respective homes.

We caught up with Yuan to learn how she and the team took on the challenge of building a spacecraft from home, how her childhood hobby served as inspiration, and to find out whether the test flight was a success.

What are you working on at JPL?

I'm an intern with the Innovation to Flight group, which is a team of interns that works with JPL engineers and scientists to take ideas for new kinds of technology or spacecraft from ideation to flight in one summer. The goal is to quickly develop prototypes to see whether an idea is feasible and increase the technical readiness level of various hardware. I was part of the group last summer, too. This summer, we've been split into two groups. The group I'm working with is exploring whether we might be able to use a constellation of CubeSats [small, low-cost satellites] to support robots and astronauts on the Moon. So we're building prototypes of the CubeSats and the communications and navigation technology.

How might CubeSats support astronauts and robots on the Moon?

The goal is to have a couple of these CubeSats orbiting the Moon that can assist with various surface operations, whether it's a rover or a small robot or an astronaut trying to communicate. There are a couple parts to it. One is localization, the ability to figure out where you are on the Moon – sort of like our GPS on Earth – so different assets know where they are relative to each other. The other part is communication. If you're collecting data, the data could be sent from the surface assets to the CubeSats to another surface asset or ground station. The CubeSats could take away a lot of the onboard processing that needs to happen so assets on the Moon could use less processing power.

You're interning remotely this summer. Are you actually building the CubeSat?

Yeah. On the CubeSat team, there are six of us, so we have a couple of people working on the software and then a few of us are working on building the CubeSat itself. I have a lot of tools and a 3D printer, so I'm working on designing the structure and then prototyping it using the stuff I have at home. The team has been getting materials out to me, and I've been printing stuff on my 3D printer and building it out. Then I've been mailing out parts to our avionics people so they can load it up with all the electronics.

Wow. That's so cool. Are you building all of this at home or in your dorm room? Are the people living with you wondering what you're up to?

I spent the first half of the summer in my parents' house, so I was operating out of their garage. Now that I'm back at school, I work from my apartment. I'm living with one of my friends right now. She's also in the aerospace field so she has an idea of what I'm doing. Most of the time we're just working in our rooms, but I normally have a bit more of a "dynamic" going on in my room.

How has the team adjusted to working remotely?

Half the team is returning from last summer, so we've worked together before. But when we were at JPL, it was easier because we could walk back and forth with parts and hand things off.

When we were planning for the summer, we were talking about the different options that we had. I like to build things in my free time, so I have a bunch of different tools. I'm a mechanical engineer, so I was going to be working on the structure anyway. So I said, "I'll build the structure, ship it in pieces to the rest of the team, and give them a detailed explanation or a CAD model so they can assemble it." Our software and electronics guys are coding everything and sharing their files. Two of the team members are roommates this summer, which is really convenient. They're working on the electronics and avionics out of the basement at one of their family's homes. Then, we're just constantly messaging with each other. We talk at least once a day. It helps that we're a small team.

What's your average day like?

I'm on the East Coast, so the time difference hasn't affected me too badly. I wake up, work out, and then I start work. In the morning, I'll check in with different members of the team. I like to have a to-do list, so I normally have one for the week. Depending on what I need to do, my day ranges anywhere from trying to figure out what I need to prototype next to 3D printing something or drilling holes in this or that. I use any downtime to talk to other team members, figure out what they're doing.

How has the remote experience compared with last summer, when you were at JPL in person?

The most disappointing thing was not being able to be at JPL in person with everyone. Last summer, there were about 15 of us all working in the same room together. We'd have big brainstorming meetings, all getting together and working on the white board. It was kind of a chaotic, loud mess, but it was a lot of fun, and we got a lot of work done. I was always moving around, always talking to somebody, always building something or testing something. I really enjoyed working on a team like that. It was very fast-paced.

This summer, it's a little more difficult, because I haven't met half the team members in person, and it's just slower. We're shipping things to one another and some of us are in different time zones. It's just been a little more difficult to get things done as fast. Another big change is that at the end of last summer, we had two flight tests. We launched one of our prototypes on a tethered balloon, and then we tested some of our other projects on a high-altitude balloon. We're not going to get to do that in person this summer.

Do you feel like you still have that team comradery even though you're apart this summer?

Definitely. Half the people are returning from last summer, so we're still pretty tight, and we're all in this together. It may not be as dynamic and as fast-paced as last summer, but we're building something together pretty well and pretty quickly.

What are you studying in school, and what got you interested in that field?

I'm studying mechanical engineering. I got into mechanical engineering for a variety of reasons. When I was younger, I was a huge nerd – I still am. I would spend my summers in my parents' basement, making costumes and props from my favorite movies and TV shows. I realized that I really liked making things. I liked putting things together and seeing them work. I also think space is really cool. I want to be able to tell my future kids and grandkids, "I worked on projects that helped us discover all these things about the universe." There's so much we don't know, and I know I can't learn everything, but I want to be a part of the discovery process. So I took those two things that I'm pretty hyped about, put them together, and decided that I want to be an engineer. I want to build spaceships. I want to help advance science and make new discoveries.

What were some of the props or costumes that you designed as a kid?

I was a big fan of the "Final Fantasy" video game series, so with the little bit of money that I made from tutoring kids, I would go out and buy different materials to recreate some of the props from that game. Lightning's gunblade was one of the things I made that I thought was pretty cool. I'm also a big fan of the "Fire Emblem" series, so I recreated a couple of things from that. I also like making costumes for my friends.

I'm starting to get back into it, because I have a little bit of free time this summer. Me and my friends have plans to make our own lightsabers and just play around with what we can make and what we can do with the budget and tools we have. That's where the challenge is. As a kid, I was so limited by the materials I had available. I thought it was fun figuring out how to make stuff anyway. How can I hammer this out with what I have in my house?

What brought you to JPL for your internships?

I heard great things from friends who had interned at JPL before. It's one of the best places to be if you want to work on space missions. I'd never been to the West Coast before last summer. I'm from Maryland. I grew up in a town about 20 minutes outside of Baltimore. It was kind of scary [to travel so far from home], but I feel like life's about experiences, so I might as well just do it.

How do you feel you're contributing to NASA missions and science as an intern?

I feel like it's impossible for any one person to make an impact alone. I'm part of a team that's helping assist future lunar missions. In the grand scheme of things, it's a small piece of what humanity is going to achieve in the future, but it's rewarding to know that I'm part of it. I know I'm a small piece in the big machine, but it still feels like a lot, because if you take one piece out of the machine, it can break.

That's a great way of putting it.

When you're not in school or interning, how do you like to spend your time? What are some of your hobbies?

At school, I'm involved with a bunch of different organizations on campus. One of my main extracurriculars is that I build UAVs [unmanned aerial vehicles]. I'm also involved with a lot of the outdoorsy groups on campus.

When the weather's nice, which in Upstate New York is not always the case, I like to run. I've run some pretty crazy races – Ragnar races, If you ever heard of those – and a couple of relays around the Finger Lakes. I like to run. I like to hike. There's a lot of beautiful mountains and lakes in the Upstate New York area. I've been trying to explore them. And I like to rock climb. I have a couple of friends at school who are super involved in the rock-climbing community, so they got me into it.

When the weather's not so nice, I like to read. I also started to get back into building props and making costumes, because I finally feel like I have time again to sit down and do that. It's a pretty time-consuming hobby.

Now for a fun question: If you could build a spacecraft to go anywhere and study anything, what would it be?

Theoretically, if you had all the technology to do it, I think it would be cool to see inside a black hole. Send a spacecraft in there, and send data out.

----

Since we last talked, your team finished the CubeSat and tested it in the desert! Tell us more about that and how it went?

The tests went pretty well given the circumstances. The team performed a lot of our tests remotely. We ran simulations to test some of the software. Our mock lunar surface asset was able to drive autonomously. Some aspects of the tests were successful and others could use more work, but we laid down a good foundation for future Innovation to Flight interns to build on. Hopefully our work helped the researchers we worked with from JPL and the University of Colorado Boulder.


A novel approach to developing rapid prototypes for space exploration, the Innovation to Flight program was created in 2014 by JPL Fellow Leon Alkalai, who continues to oversee and guide activities. Coordinated by Senior Research Scientist Adrian Stoica with support over the years from Chrishma Derewa, David Atkinson, and Miles Pellazar at JPL, the program has brought in more than 50 student interns from across the country. Offering students a uniquely collaborative experience developing technology for the Moon, Mars, and beyond, Innovation to Flight has also served as a career pathway to numerous program alumni now working at JPL.

Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, College Students, Careers, Jobs, Engineering, Mechanical Engineering, Innovation to Flight, Technology Demonstration, Moon

  • Kim Orr
READ MORE

Collage of intern photos that appear in this article

Most years, summertime at NASA's Jet Propulsion Laboratory arrives with an influx of more than 800 interns, raring to play a hands-on role in exploring Earth and space with robotic spacecraft.

Perhaps as exciting as adding NASA to their resumes and working alongside the scientists and engineers they have long admired is the chance to explore the laboratory's smorgasbord of science labs, spacecraft assembly facilities, space simulators, the historic mission control center and a place called the Mars Yard, where engineers test drive Mars rovers.

But this year, as the summer internship season approached with most of JPL's more than 6,000 employees still on mandatory telework, the laboratory – and the students who were offered internships at the Southern California center – had a decision to make.

"We asked the students and the mentors [the employees bringing them in] whether their projects could still be achieved remotely and provide the educational component we consider to be so crucial to these experiences," said Adrian Ponce, deputy section manager of JPL's Education Office, which runs the laboratory's STEM internship programs.

The answer was a resounding yes, which meant the laboratory had just a matter of weeks to create virtual alternatives for every aspect of the internship experience, from accessing specialized software for studying Earth and planetary science to testing and fine-tuning the movements of spacecraft in development and preparing others for launch to attending enrichment activities like science talks and team building events.

“We were able to transition almost all of the interns to aspects of their projects that are telework-compatible. Others agreed to a future start date,” said Ponce, adding that just 2% of the students offered internships declined to proceed or had their projects canceled.

Now, JPL's 600-plus summer interns – some who were part-way through internships when the stay-at-home orders went into effect, others who are returning and many who are first-timers – are getting an extended lesson in the against-the-odds attitude on which the laboratory prides itself.

We wanted to hear about their experiences as JPL's first class of remote interns. What are their routines and home offices like in cities across the country? How have their teams adapted to building spacecraft and doing science remotely? Read a collection of their responses below to learn how JPL interns are finding ways to persevere, whether it's using their engineering skills to fashion homemade desks, getting accustomed to testing spacecraft from 2,000 miles away or working alongside siblings, kids, and pets.


In the image on the left, Jennifer Brag stands in front of a series of observatories. In the image on the right, her bird is pirched on top of open laptop.

Courtesy of Jennifer Bragg | + Expand image

"I am working with an astronomer on the NEOWISE project, which is an automated system that detects near-Earth objects, such as asteroids. The goal of my project is to identify any objects missed by the automated system and use modeling to learn more about their characteristics. My average day consists of writing scripts in Python to manipulate the NEOWISE data and visually vet that the objects in the images are asteroids and not noise or stars.

My office setup consists of a table with scattered books, papers, and pencils, a laptop, television, a child in the background asking a million questions while I work, and a bird on my shoulder that watches me at times."

– Jennifer Bragg will be studying optics at the University of Arizona as an incoming graduate student starting this August. She is completing her summer internship from Pahoa, Hawaii.


Radina Yanakieva poses in front of a model of the Curiosity Mars rover at JPL

Courtesy of Radina Yanakieva | + Expand image

"I'm helping support the Perseverance Mars rover launch this summer. So far, I have been working remotely, but I'm lucky enough to have the opportunity to go to Pasadena, California, in late July to support the launch from JPL! On launch day, I will be in the testbed, where myself and a few other members of my group will be 'shadowing' the spacecraft. This means that when operators send their commands to the actual spacecraft, when it’s on the launch pad and during its first day or so in space, we'll send the same instructions to the test-bed version. This way, if anything goes wrong, we'll have a high-fidelity simulation ready for debugging.

I have a desk in my bedroom, so my office setup is decent enough. I bought a little whiteboard to write myself notes. As for my average working day, it really depends on what I'm doing. Some days, I'm writing procedures or code, so it's a text editor, a hundred internet tabs, and a messenger to ask my team members questions. Other days, I'm supporting a shift in the test bed, so I'm on a web call with a few other people talking about the test we're doing. Luckily, a large portion of my team's work can be done on our personal computers. The biggest change has been adding the ability to operate the test bed remotely. I'm often amazed that from New York, I can control hardware in California.

I was ecstatic that I was still able to help with the Perseverance Mars rover mission! I spent the second half of 2019 working on launch and cruise testing for the mission, so I'm happy to be able to see it through."

– Radina Yanakieva is an undergraduate student studying aerospace engineering at Georgia Tech and interning from Staten Island, New York.


Aditya Khuller stands with his arms outstretched and poses in front of a model Mars rover in a garage at JPL.

Courtesy of Aditya Khuller | + Expand image

"Our team is using radar data [from the European Space Agency’s Mars Express spacecraft] to find out what lies beneath the large icy deposits on Mars' south pole. My average day consists of analyzing this radar data on my computer to find and map the topography of an older surface that lies below the ice on Mars’ south pole, while my plants look on approvingly.

I was delighted to be offered the chance to work at JPL again. (This is my fourth JPL internship.) Even though it's better to be 'on lab,' it is an honor to get to learn from the coolest and smartest people in the world."

– Aditya Khuller is a graduate student working toward a Ph.D. in planetary science at Arizona State University and interning from Tempe, Arizona.


Breanna Ivey wears a Georgia Tech T-Shirt and poses in front of a river with her arms outstretched on concrete railing.

Courtesy of Breanna Ivey | + Expand image

"I am working on the Perseverance Mars rover mission [launching this summer]. As a member of the mobility team, I am testing the rover's auto-navigation behaviors. If given a specific location, flight software should be able to return data about where that location is relative to the rover. My project is to create test cases and develop procedures to verify the data returned by the flight software when this feature is used.

My average day starts with me eating breakfast with my mom who is also working from home. Then, I write a brief plan for my day. Next, I meet with my mentor to discuss any problems and/or updates. I spend the rest of my day at my portable workstation working on code to test the rover's behaviors and analyzing the data from the tests. I have a mini desk that I either set up in my bedroom in front of my Georgia Tech Buzz painting or in the dining room.

If I could visit in person, the first thing I would want to see is the Mars rover engineering model "Scarecrow." I would love to visit the Mars Yard [a simulated Mars environment at JPL] and watch Scarecrow run through different tests. It would be so cool to see a physical representation of the things that I've been working on."

– Breanna Ivey is an undergraduate student studying electrical engineering at the Georgia Institute of Technology and interning from Macon, Georgia.


Kaelan Oldani wears her graduation gown and holds her cap while posing in front of a sign that reads 'Michigan Union.'

Courtesy of Kaelan Oldani | + Expand image

"I am working on the Psyche mission as a member of the Assembly Test and Launch Operations team, also known as ATLO. (We engineers love our acronyms!) Our goal is to assemble and test the Psyche spacecraft to make sure everything works correctly so that the spacecraft will be able to orbit and study its target, a metal asteroid also called Psyche. Scientists theorize that the asteroid is actually the metal core of what was once another planet. By studying it, we hope to learn more about the formation of Earth.

I always start out my virtual work day by giving my dog a hug, grabbing a cup of coffee and heading up to my family's guest bedroom, which has turned into my office for the summer. On the window sill in my office are a number of space-themed Lego sets including the 'Women of NASA' set, which helps me get into the space-exploration mood! Once I have fueled up on coffee, my brain is ready for launch, and I log in to the JPL virtual network to start writing plans for testing Psyche's propulsion systems. While the ATLO team is working remotely, we are focused on writing test plans and procedures so that they can be ready as soon as the Psyche spacecraft is in the lab for testing. We have a continuous stream of video calls set up throughout the week to meet virtually with the teams helping to build the spacecraft."

– Kaelan Oldani is a master's student studying aerospace engineering at the University of Michigan and interning from Ann Arbor, Michigan. She recently accepted a full-time position at JPL and is starting in early 2021.


In the image on the left, Richardo Isai Melgar poses in front of a model of the Curiosity Mars rover at JPL. In the image on the right, he kneels in front of a model Mars rover in the Mars Yard at JPL.

Courtesy of Ricardo Isai Melgar | + Expand image

"NASA's Deep Space Network is a system of antennas positioned around the world – in Australia, Spain, and Goldstone, California – that's used to communicate with spacecraft. My internship is working on a risk assessment of the hydraulic system for the 70-meter antenna at the Goldstone facility. The hydraulic system is what allows the antenna and dish surrounding it to move so it can accurately track spacecraft in flight. The ultimate goal of the work is to make sure the antenna's hydraulic systems meet NASA standards.

My average day starts by getting ready for work (morning routine), accessing my work computer through a virtual interface and talking with my mentor on [our collaboration tool]. Then, I dive into work, researching hydraulic schematics, JPL technical drawings of the antenna, and NASA standards, and adding to a huge spreadsheet that I use to track every component of the antenna's hydraulic system. Currently, I'm tracking every flexible hydraulic fluid hose on the system and figuring out what dangers a failure of the hose could have on personnel and the mission."

– Ricardo Isai Melgar is an undergraduate student studying mechanical engineering at East Los Angeles College and interning from Los Angeles.


Susanna Eschbach poses in front of a mirrored background.

Courtesy of Susanna Eschbach | + Expand image

"My project this summer is to develop a network of carbon-dioxide sensors to be used aboard the International Space Station for monitoring the levels of carbon dioxide that crewmembers experience.

My 'office setup' is actually just a board across the end of my bed balanced on the other side by a small dresser that I pull into the middle of the room every day so that I can sit and have a hard surface to work on.

At first I wasn't sure if I was interested in doing a virtual engineering internship. How would that even work? But after talking to my family, I decided to accept. Online or in person, getting to work at JPL is still a really cool opportunity."

– Susanna Eschbach is an undergraduate student studying electrical and computer engineering at Northern Illinois University and interning from DeKalb, Illinois.


Izzie Torres poses in front of an ancient pyramid.

Courtesy of Izzie Torres | + Expand image

"I'm planning test procedures for the Europa Clipper mission [which is designed to make flybys of Jupiter's moon Europa]. The end goal is to create a list of tests we can perform that will prove that the spacecraft meets its requirements and works as a whole system.

I was very excited when I got the offer to do a virtual internship at JPL. My internship was originally supposed to be with the Perseverance Mars rover mission, but it required too much in-person work, so I was moved to the Europa Clipper project. While I had been looking forward to working on a project that was going to be launching so soon, Jupiter's moon Europa has always captured my imagination because of the ocean under its surface. It was an added bonus to know I had an internship secured for the summer."

– Izzie Torres is an undergraduate student studying aerospace engineering and management at MIT and interning from Seattle.


Jared Blanchard poses in front of a visualization in the VIVID lab at JPL.

Courtesy of Jared Blanchard | + Expand image

"I am investigating potential spacecraft trajectories to reach the water worlds orbiting the outer planets, specifically Jupiter's moon Europa. If you take both Jupiter and Europa into account, their gravitational force fields combine to allow for some incredibly fuel-efficient maneuvers between the two. The ultimate goal is to make it easier for mission designers to use these low-energy trajectories to develop mission plans that use very little fuel.

I'm not a gamer, but I just got a new gaming laptop because it has a nice graphics processing unit, or GPU. During my internship at JPL last summer, we used several GPUs and a supercomputer to make our trajectory computations 10,000 times faster! We plan to use the GPU to speed up my work this summer as well. I have my laptop connected to a second monitor up in the loft of the cabin where my wife and I are staying. We just had a baby two months ago, so I have to make the most of the quiet times when he's napping!"

– Jared Blanchard is a graduate student working toward a Ph.D. in aeronautics and astronautics at Stanford University.


Yohn Ellis, wearing a suit and tie, poses in front of yellow and gold balloons.

Courtesy of Yohn I. Ellis Jr. | + Expand image

"I'm doing a theory-based project on the topic of nanotechnology under the mentorship of Mohammad Ashtijou and Eric Perez.

I vividly remember being infatuated with NASA as a youth, so much so that my parents ordered me a pamphlet from Space Center Houston with posters and stickers explaining all of the cool things happening across NASA. I will never forget when I was able to visit Space Center Houston on spring break in 2009. It was by far the most amazing thing I have ever witnessed as a youth. When I was offered the internship at JPL, I was excited, challenged, and motivated. There is a great deal of respect that comes with being an NASA intern, and I look forward to furthering my experiences.

But the challenges are prevalent, too. Unfortunately, the internship is completely virtual and there are limitations to my experience. It is hard working at home with the multiple personalities in my family. I love them, but have you attempted to conduct research with a surround system of romantic comedies playing in the living room, war video games blasting grenades, and the sweet voice of your grandmother asking for help getting pans from the top shelf?"

– Yohn I. Ellis Jr. is a graduate student studying electrical engineering at Prairie View A&M University and interning from Houston.


Mina Cezairli wears a NASA hat and poses in front of a landscape of green mountains a turqoise ocean and puffy white and grey clouds.

Courtesy of Mina Cezairli | + Expand image

"This summer, I am supporting the proposal for a small satellite mission concept called Cupid’s Arrow. Cupid’s Arrow would be a small probe designed to fly through Venus’ atmosphere and collect samples. The ultimate goal of the project is to understand the “origin story” of Venus' atmosphere and how, despite their comparable sizes, Earth and Venus evolved so differently geologically, with the former being the habitable, friendly planet that we call home and the latter being the hottest planet in our solar system with a mainly carbon dioxide atmosphere.

While ordinary JPL meetings include discussions of space probes, rockets, and visiting other planets, my working day rarely involves leaving my desk. Because all of my work can be done on my computer, I have a pretty simple office setup: a desk, my computer, and a wall full of posters of Earth and the Solar System. An average day is usually a combination of data analysis, reading and learning about Venus, and a number of web meetings. The team has several different time zones represented, so a morning meeting in Pacific time accommodates all of Pacific, Eastern and European time zones that exist within the working hours of the team."

– Mina Cezairli is an undergraduate student studying mechanical engineering at Yale University and is interning from New Haven, Connecticut.


Izabella Zamora sits on steps leading up to a building with pumpkins decorating the steps to her right.

Courtesy of Izabella Zamora | + Expand image

“I'm characterizing the genetic signatures of heat-resistant bacteria. The goal is to improve the techniques we use to sterilize spacecraft to prevent them from contaminating other worlds or bringing contaminants back to Earth. Specifically, I'm working to refine the amount of time spacecraft need to spend getting blasted by dry heat as a sanitation method.

"As someone who has a biology-lab heavy internship, I was quite skeptical of how an online internship would work. There was originally supposed to be lab work, but I think the project took an interesting turn into research and computational biology. It has been a really cool intersection to explore, and I have gained a deeper understanding of the math and analysis involved in addition to the biology concepts."

– Izabella Zamora is an undergraduate student studying biology and computer science at the Massachusetts Institute of Technology and interning from Brimfield, Massachusetts.


Leilani Trautman poses for a photo at an outside table. The back of her open laptop has dozens of stickers attached to it, including a NASA meatball.

Courtesy of Leilani Trautman | + Expand image

"I am working on the engineering operations team for the Perseverance Mars rover. After the rover lands on Mars, it will send daily status updates. Every day, an engineer at JPL will need to make sure that the status update looks healthy so that the rover can continue its mission. I am writing code to make that process a lot faster for the engineers.

When I was offered the internship back in November, I thought I would be working on hardware for the rover. Once the COVID-19 crisis began ramping up and I saw many of my friends' internships get cancelled or shortened, I was worried that the same would happen to me. One day, I got a call letting me know that my previous internship wouldn't be possible but that there was an opportunity to work on a different team. I was so grateful to have the opportunity to retain my internship at JPL and get the chance to work with my mentor, Farah Alibay, who was once a JPL intern herself."

– Leilani Trautman is an undergraduate student studying electrical engineering and computer science at MIT and interning from San Diego, California.


Kathryn Chamberlin poses for an outdoor photo in front of a green hedge.

Courtesy of Kathryn Chamberlin | + Expand image

"I am working on electronics for the coronagraph instrument that will fly aboard the Nancy Grace Roman Space Telescope. The Roman Space Telescope will study dark energy, dark matter, and exoplanets [planets outside our solar system]. The science instrument I'm working on will be used to image exoplanets. It's also serving as a technology demonstration to advance future coronagraphs [which are instruments designed to observe objects close to bright stars].

I was both nervous and excited to have a virtual internship. I’m a returning intern, continuing my work on the coronagraph instrument. I absolutely love my work and my project at JPL, so I was really looking forward to another internship. Since I’m working with the same group, I was relieved that I already knew my team, but nervous about how I would connect with my team, ask questions, and meet other 'JPLers.' But I think my team is just as effective working virtually as we were when working 'on lab.' My mentor and I have even figured out how to test hardware virtually by video calling the engineer in the lab and connecting remotely into the lab computer."

– Kathryn Chamberlin is an undergraduate student studying electrical engineering at Arizona State University and interning from Phoenix.


Daniel Stover is shown in a screengrab from a web meeting app pointing to an illustration of the Perseverance Mars rover.

Courtesy of Daniel Stover | + Expand image

"I am working on the flight system for the Perseverance Mars rover. The first half of my internship was spent learning the rules of the road for the entire flight system. My first task was updating command-line Python scripts, which help unpack the data that is received from the rover. After that, I moved on to testing a part of the flight software that manages which mechanisms and instruments the spacecraft can use at a certain time. I have been so grateful to contribute to the Perseverance Mars rover project, especially during the summer that it launches!

I have always been one to be happy with all the opportunities I am granted, but I do have to say it was hard to come to the realization that I would not be able to step foot on the JPL campus. However, I was truly grateful to receive this opportunity, and I have been so delighted to see the JPL spirit translate to the online video chats and communication channels. It's definitely the amazing people who make JPL into the place that everybody admires. Most important, I would like to thank my mentor, Jessica Samuels, for taking the time to meet with me every day and show me the true compassion and inspiration of the engineers at JPL."

– Daniel Stover is an undergraduate student studying electrical and computer engineering at Virginia Tech and interning from Leesburg, Virginia.


In the image on the left, Sophia Yoo poses for a selfie. In the image on the right, her laptop, mouse, headphones and open notebook are shown at a table outside surrounded by a wooden porch and a green landscape.

Courtesy of Sophia Yoo | + Expand image

"I'm working on a project called the Multi-Angle Imager for Aerosols, or MAIA. It's an instrument that will go into lower Earth orbit and collect images of particulate matter to learn about air pollution and its effects on health. I'm programming some of the software used to control the instrument's electronics. I'm also testing the simulated interface used to communicate with the instrument.

I was ecstatic to still have my internship! I'm very blessed to be able to do all my work remotely. It has sometimes proven to be a challenge when I find myself more than four layers deep in virtual environments. And it can be confusing to program hardware on the West Coast with software that I wrote all the way over here on the East Coast. However, I've learned so much and am surprised by and grateful for the meaningful relationships I've already built."

– Sophia Yoo is an incoming graduate student studying electrical and computer engineering at Princeton University and is interning from Souderton, Pennsylvania.


Natalie Maus can be seen in the right corner of the image as she looks at a graph on her laptop.

Courtesy of Natalie Maus | + Expand image

"My summer research project is focused on using machine-learning algorithms to make predictions about the density of electrons in Earth’s ionosphere [a region of the planet's upper atmosphere]. Our work seeks to allow scientists to forecast this electron density, as it has important impacts on things such as GPS positioning and aircraft navigation.

Despite the strangeness of working remotely, I have learned a ton about the research process and what it is like to be part of a real research team. Working alongside my mentors to adapt to the unique challenges of working remotely has also been educational. In research, and in life, there will always be new and unforeseen problems and challenges. This extreme circumstance is valuable in that it teaches us interns the importance of creative problem solving, adaptability, and making the most out of the situation we are given."

– Natalie Maus is an undergraduate student studying astrophysics and computer science at Colby College and interning from Evergreen, Colorado.


Lucas Lange wears hiking gear and poses next to an American Flag at the top of a mountain with a valley visible in the background.

Courtesy of Lucas Lange | + Expand image

"I have two projects at JPL. My first project focuses on the Europa Clipper mission [designed to make flybys of Jupiter's moon Europa]. I study how the complex topography on the icy moon influences the temperature of the surface. This work is crucial to detect 'hot spots,' which are areas the mission (and future missions) aim to study because they might correspond to regions that could support life! My other work consists of studying frost on Mars and whether it indicates the presence of water-ice below the surface.

JPL and NASA interns are connected through social networks, and it's impressive to see the diversity. Some talks are given by 'JPLers' who make themselves available to answer questions. When I came to JPL, I expected to meet superheroes. This wish has been entirely fulfilled. Working remotely doesn't mean working alone. On the contrary, I think it increases our connections and solidarity."

– Lucas Lange is an undergraduate student studying aerospace engineering and planetary science at ISAE-SUPAERO [aerospace institute in France] and interning from Pasadena, California.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, College Students, Virtual Internships, Telework, Mars 2020 interns, Mars 2020, Perseverance, DSN, Deep Space Network, Mars, Asteroids, NEOWISE, Science, Technology, Engineering, Computer Science, Psyche, International Space Station, ISS, Europa, Jupiter, Europa Clipper, trajectory, nanotechnology, Cupid's Arrow, Proposal, Venus, Planetary Protection, Biology, Nancy Grace Roman Space Telescope, Dark Matter, Exoplanets, Multi-Angle Imager for Aerosols, MAIA, Earth, Earth science, air pollution, Hispanic Heritage Month, Black History Month, Asian Pacific American Heritage Month, Earth Science, Earth, Climate Change, Sea Level Rise

  • Kim Orr
READ MORE

Catherine Elder poses in front of a brown-colored mural of the planets.

Catherine Elder's office is a small, cavernous space decorated with pictures of the Moon and other distant worlds she studies as a research scientist at NASA's Jet Propulsion Laboratory. Elder has been interested in space science since she was young, but she didn't always imagine she'd be working at one of the few places that builds robotic spacecraft designed to venture to mysterious worlds. A doctorate in planetary science – the study of the evolution of planets and other bodies in space – first brought her to JPL five years ago for research into the geologic history of the Moon. She planned to eventually become a professor, but a sort of gravitational pull has kept her at the laboratory, where in addition to lunar science, she's now involved in projects studying asteroids, Jupiter's moon Europa and future missions. We met up with her earlier this year to talk about her journey, how a program at JPL helped set her career in motion and how she's paying it forward as a mentor to interns.

What do you do at JPL?

A lot of what I do is research science. So that involves interpreting data from spacecraft and doing some modeling to understand the physical properties of places like the Moon, asteroids and Jupiter's moon Europa.

I am also working on mission formulation. So in that case, my role is to work with the engineers to make sure that the missions we're designing will actually be able to obtain the data that we need in order to answer the science questions that we have.

Tell us about some of the projects you're working on.

A lot of my work right now is looking at the Moon. I'm on the team for the Diviner instrument on the Lunar Reconnaissance Orbiter. That instrument observes the Moon in infrared, which we can use to understand the geologic history, such as how rocks break down over time. We can also look at specific features, like volcanoes, and understand their material properties. I do similar work on the OSIRIS-REx mission [which aims to return a sample from the asteroid Bennu].

I'm on the Europa Clipper team right now. I'm the investigation scientist for the cameras on the mission [which is designed to make flybys of Jupiter's moon Europa]. So I serve as a liaison between the camera team and other parts of the project.

I'm also working on a project modeling the convection in the rocky portion of Europa, underneath the liquid-water layer. Our goal is to understand how likely it is that there are volcanoes on the seafloor of Europa. A lot of scientists in their previous work have suggested that life could originate in these volcanoes. So we're going back and looking at how likely it is that they exist.

Sounds like fascinating work and like you're keeping busy! What is your average day like?

When I'm analyzing the data and doing modeling, I'm usually at my computer. I do a lot of computer coding and programming. We do a lot of modeling to help interpret the data that we get. For example, if we think we know the physical properties of a surface, how are those going to affect how the surface heats up or cools down over the course of a day? I compare what we find to the observations [from spacecraft] and circle back and forth until we have a better idea of what those surface materials are like.

Then, for the mission work, it's a lot more meetings. I'm in meetings with the engineers and with other scientists, talking about mission requirements, observation plans and things like that.

Tell us a bit about your background and what brought you to JPL.

I have wanted to be an astronomer since I was nine years old. So I was an astronomy major at Cornell University in New York. I didn't really realize planetary science existed, but luckily Cornell is one of the few universities where planetary science is in the astronomy department. A lot of times it's in the geology department. I started to learn more about planetary science by taking classes and realized that was what I was really interested in. So I went to the University of Arizona for grad school and got a Ph.D. in planetary science.

I thought I eventually wanted to be a professor somewhere. A postdoc position is kind of a stepping stone between grad school and faculty positions or other more permanent positions. So I was looking for a postdoc, and I found one at JPL. It was pretty different from what my thesis work had been on, but it sounded really interesting. I didn't think I was going to stay at JPL, but I ended up really liking it, and I got hired as a research scientist.

You also took part in the Planetary Science Summer School at JPL, working on a simulated mission design project. What made you want to apply for that program and what was the experience like?

I've always been interested in missions. I began PSSS when I was a postdoc at JPL, so I was already working with mission data from the Lunar Reconnaissance Orbiter. But by the time I joined the team, LRO had been orbiting the Moon for more than five years, so it was a well oiled machine.

I was interested in thinking about future missions and how you design one. So PSSS was a really great experience. They gave us a couple targets that we could pick between, and we picked Uranus. We had to come up with all the science objectives we would want to have if we visited Uranus [with a robotic spacecraft]. We had a mix of scientists and engineers, but none of us had studied Uranus, so we had to do a lot of background reading and figure out the big outstanding questions about the planet and its moons. We came up with a ton of them. When we did our first session with Team X, which is JPL's mission formulation team, we realized that we had way too many objectives, and we were never going to be able to achieve all of them in the budget that we had. It was a big wake up call. We had to narrow the scope of what we wanted to do a lot.

Then we had two more sessions with Team X, and we eventually came up with a concept where we were within the budget and we had a couple of instruments that could answer some science questions. Then we presented the mission idea to scientists and engineers at JPL and NASA headquarters who volunteered as judges.

Participants in the Planetary Science Summer School are assigned various roles that are found on real mission design teams. What role did you play?

I had the role of principal investigator [which is the lead scientist for the mission].

How did that experience shape what you're doing today?

Actually, quite a bit. Learning how you develop a science objective and thinking through it, you start with goals like, "I want to understand the formation and evolution of the solar system." That's a huge question. You're never going to answer it in one mission. So the next step is to come up with a testable hypothesis, which for Uranus could be something like, "Is Uranus' current orbit where it originally formed?" And then you have to come up with measurement objectives that can address that hypothesis. Then you have to think about which instruments you need to make those measurements. So learning about that whole process has helped a lot, and it's similar to what I'm doing on the Europa mission now.

Catherine Elder wears a purple shirt and sits in an office chair surrounded by images of the Moon and other worlds

Elder sits in her office in the "science building" at JPL surrounded by images of the places she's working to learn more about. More than just pretty pictures, the images from spacecraft are also one of the key ways she and her interns study moons and planets from afar. Image credit: NASA/JPL-Caltech | + Expand image

I also got really interested in the Uranus system, specifically the moons, because they show a lot of signs of recent geologic activity. They might be just as interesting as the moons of Saturn and Jupiter. But Voyager 2 is the only spacecraft that has visited them. At that time, only half of the moons were illuminated, so we've only seen half of these moons. I really want a mission to go back and look at the other half.

Recently, me and a few friends at JPL – two who also did PSSS and one who did a very similar mission formulation program in Europe – got really interested in the Uranus system. So now, in our free time, we're developing a mission concept to study the Uranus system and trying to convince the planetary science community that it’s worth going back to it.

Are there any other moments or memories from PSSS that stand out?

Actually, one I was thinking about recently is that I was in the same session as Jessica Watkins, who recently became a NASA astronaut. I remember I was super stressed out because we had to give this presentation, and me and the project manager, who is a good friend of mine, were disagreeing on some things. But I talked to Jess, and she was just so calm and understanding. So when she got selected as an astronaut, I was like, "That makes sense," [laughs].

But the other thing that stands out is we worked so hard that week. We were at JPL during the day. And in the evening, we would meet again and work another four hours. Now that I'm working on mission development for actual missions, I realize there's so much more that actually goes into a mission, but PSSS gives you a sense of how planetary missions are such a big endeavor. You really need to work as a team.

You've also served as a mentor, bringing interns to JPL. Tell us a bit about that experience and what made you interested in being a mentor?

I've worked with five students at this point, all undergrads. I've always been interested in being a mentor. I was a teaching assistant for a lot of grad school, and I really enjoyed that. I like working one-on-one with students. I find it really rewarding, too, because it helps you remember how cool the stuff you're doing really is. The interns are learning it for the first time, so being able to explain exciting things about the solar system to them for the first time is pretty fun.

What do you usually look for when choosing an intern?

Enthusiasm is a big one. At the undergrad level, most people haven't specialized that much yet; they have pretty similar backgrounds. So I think enthusiasm is usually what I use to identify candidates. Is this what they really want to be doing? Are they actually interested in the science of planets?

What kinds of things do you typically have interns do?

It varies. It can sometimes be repetitive, like looking at a lot of images and looking for differences between them. One of the projects I have a lot of students working on right now is looking at images of craters on the Moon. There's this class of craters on the Moon that we know are really young. By comparing the material excavated by them, we can actually learn about the Moon's subsurface. So I have students going through and looking at how rocky those craters are. We're basically trying to map the subsurface rocks on the Moon. So that can get a little repetitive, but I find that some students actually end up really liking it, and find it kind of relaxing [laughs].

For students who intern with me longer, I try to tailor it to their interests and their skill set. One student, Jose Martinez-Camacho, was really good at numerical modeling and understanding thermodynamics, so he was developing his own models to understand where ice might be stable near the lunar poles.

What's your mentorship philosophy? What do you want students to walk away with?

I think mentors are usually biased in that they want their students to turn out like them. So I'm always excited when my students decide they want to go to grad school, but grad school is not the path for everyone.

One of the important things to learn from doing research is how to solve a problem on your own. A lot of times coursework can be pretty formulaic, and you're learning how to solve one type of problem so that you can solve a similar problem. But with research, unexpected things come up, and you have to learn how to troubleshoot on your own. I think you learn a little bit about that as an intern.

What's the value of JPL internships and fellowships from your perspective?

We're lucky at JPL that we're working on really exciting things. I think we should share that with as many people as possible, and internships are a good way to do that.

Then, for me personally, participating in PSSS solidified that I was on the right path. I knew I wanted to continue to be involved in mission formulation, and that was a big part of why I decided to stay at JPL, to be really deeply involved in the formulation of space missions. There's only a handful of places in the world where you can do that.

This feature is part of an ongoing series about the stories and experiences of JPL scientists, engineers, and technologists who paved a path to a career in STEM with the help of NASA's Planetary Science Summer School program. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, Mentors, Science, Moon, Lunar Reconnaissance Orbiter, PSSS, Planetary Science Summer School, Careers, Research, Science

  • Kim Orr
READ MORE

Adrien Dias-Ribiero stands in the gallery above the clean room at JPL and points down at engineers in building the Mars 2020 rover.

Adrien Dias-Ribiero poses for a photo in the gallery above the clean room at JPL with the Mars 2020 rover behind him.

With microbes capable of living in the harshest environments and life-affirming chemical compounds that can arise from the right mixture of heat and materials, the job of keeping spacecraft as contamination-free as possible is not an easy one. This was the task of French aerospace engineering student Adrien Dias-Ribeiro this past summer when he joined the team building the Perseverance Mars rover as a contamination-control engineering intern. With the rover set to collect the first samples of Martian rock and soil for a possible return to Earth, the team at NASA's Jet Propulsion Laboratory has to ensure the sample-collection system stays "clean" throughout its journey to Mars. We caught up with Dias-Ribeiro to find out how he's contributing to the mission and what brought him to JPL from France.

What are you working on at JPL?

I'm working in contamination control engineering for the Perseverance Mars rover mission. I am working, specifically, on the part of Perseverance that is designed to collect samples that could eventually be returned to Earth one day.

Perseverance is looking to measure the presence of organic carbons, like methane, and search for evidence of past microbial life on Mars, so our job is to be sure that contamination on the rover doesn't interfere with what it's trying to study. All the material [used to build the science instruments on the rover] naturally emits some carbons, so we just try to reduce them as much as possible. We've done several tests on the materials used in the science instruments on the rover. My job is to take the results of the tests and make models to predict whether we're meeting the requirements that are needed. We cannot go above a certain level of contamination or the mission will not meet its requirements.

Watch the latest video updates and interviews with NASA scientists and engineers about the Mars 2020 Perseverance rover, launching to the Red Planet in summer 2020. | Watch on YouTube

What is your average day like?

It's mostly coding. I take some measurements and I read them in Python [a programming language]. I also read articles about people doing this kind of work and try to improve their models or produce the models at JPL.

Where do you go to school, and what are you studying?

I go to ISAE-SUPAERO, the aerospace university in Toulouse, France. I'm studying space engineering.

What brought you to JPL for this internship?

I've done another internship in a similar area at the European Space Agency, but I was really interested to be part of the kinds of projects we have at JPL, like the Perseverance rover and Europa Clipper. I also really wanted to work internationally with a different culture than I'm used to. So I got some contacts with my previous supervisors. They knew people working here, so they recommended me.

I feel really lucky to be at JPL as a French person. One year ago, it was not imaginable that I would be at JPL, so I feel really grateful to be here.

What is the most uniquely JPL or NASA experience you've had so far?

I think it's when I was in the clean room [where the Perseverance rover is being built]. I was able to be one meter away from the rover and the descent vehicle [that will help land the rover on Mars].

Some people on my team had to do some measurements in the clean room and asked if I wanted to go with them, and so I did. I wasn't able to touch anything [laughs]. I just looked. I'm working on models of the rover, so it was really interesting to go closer to the hardware and the real spacecraft. I'd also never been inside the clean room before.

How do you feel you are contributing to the mission and making it a success?

I feel really lucky because the job I'm doing now will be directly applied to ensuring that the mission meets its requirements, which is to not go above the limit of organic carbon emitted by the hardware in charge of collecting the samples.

What is your ultimate career goal?

I'm really interested in systems engineering, so I'm trying to learn as much as possible about different types of engineering, modeling and how to manage projects.

If you could play any role in NASA's plans to send humans back to the Moon or on to Mars, what would you want to do?

I guess a lot of people would say, "Be an astronaut," but I really like living here on Earth, so I think I wouldn't really want to be an astronaut. If I could ensure the safety of the astronauts going to the Moon or Mars, that's the kind of job I would like to do.

This Q&A is part of an ongoing series telling the story of what it takes to design, build, land, and operate a rover on Mars, told from the perspective of students interning with NASA's Perseverance Mars rover mission. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Coding, Computer Science, Mars 2020 Interns, Perseverance

  • Kim Orr
READ MORE

Tiffany Shi poses for a photo in front of a steel and glass building at JPL with the words "Flight Projects Center" displayed on the front of the building.

Deciding where to land on Mars has always meant striking the right balance between potential science wins and the risk of mission failure. But new technology that will allow NASA's next Mars rover, Perseverance, to adjust its trajectory to the safest spot within an otherwise riskier landing area is giving science its biggest edge yet. This past summer, it was intern Tiffany Shi's task to help prepare the new technology, called the Lander Vision System, for its debut on Mars. Analyzing data from test flights in California's Death Valley, the Stanford University student joined the team at NASA's Jet Propulsion Laboratory to make sure the new landing system will work as designed, guiding the Perseverance rover to a safe landing as the spacecraft speeds toward the surface into Mars' Jezero Crater. We caught up with Shi to find out what it was like to work on the technology, how she managed the 8-to-5 and how she found a new approach to problem-solving.

What are you working on at JPL?

I'm working with the Mars 2020 mission, building the lander system for the Perseverance Mars rover. This is new technology in that [as the rover is landing on Mars] it is going to be able to look down at the surface below and figure out where is the safest place to land within the chosen area. Because of this technology, we're going to be able to land in a place that's more geologically and scientifically interesting than anywhere else we've been on Mars.

How did previous Mars landings work?

Before, it was only really safe to land if we picked a huge, flat area and programmed the spacecraft to land somewhere in there. But for the Mars 2020 mission, the spacecraft will take images of the terrain below as it descends into the atmosphere and will match those images to reference maps that we have from the work of previous missions. This will allow us to autonomously detect potential landing hazards and divert our spacecraft from them. In other words, the spacecraft is going to be able to look below and find the safest place to land in an area that's generally more hazardous [than what previous rovers have landed in].

What is your average day like on the project?

My average day consists of coming here at 8. That is very new for me [laughs]. I sit in the basement with two office mates, and we each work on our own things. I'm doing error analysis to find any bugs in the Lander Vision System, which is what will be used to land the rover on Mars. The algorithm for the landing system is pretty much written, and I'm analyzing the field-test data that they got from the tests that were done in Death Valley in February. Both my office mates are also working on the Lander Vision System, but they're not on the same exact project. They are all super-nice and helpful, and we all talk about our work, so it's a lot of fun.

Watch the latest video updates and interviews with NASA scientists and engineers about the Mars 2020 Perseverance rover, launching to the Red Planet in summer 2020. | Watch on YouTube

Tell me more about the field tests and how you're analyzing the results.

In February, the team took a helicopter and they attached a copy of the Lander Vision System to the front. The helicopter did a bunch of nosedives and spirals over the terrain, which is really similar to what the rover will see on Mars. The goal is to see how accurate our predictions are for our algorithm relative to our reference maps. We're using the tests to improve our algorithm before the spacecraft launches.

What are you studying at Stanford?

I'm not sure what my major will be yet. I don't have to declare it until the end of my second year. I've only just finished my freshman year. I'm thinking maybe computer science or a mix of computer science and philosophy, because I really like both.

What got you interested in those majors?

I did debate in high school, and a lot of debaters use philosophy to argue different perspectives. So that's what got me started.

What about the computer science side?

I was in Girls Who Code while I was in high school, and there were JPL mentors who came to my school every Friday and taught us everything that we wanted to know. It was a super-fun place, super-inclusive. You see a lot of shy girls who don't normally talk in classes really open up. They had great debates, great questions, and it was just really cool to see.

Had you had any experience coding before that?

No, but I started taking some classes after that, and I did an internship at Caltech my junior year.

What was the internship at Caltech?

It was actually with Christine Moran, who now works at JPL. When she was doing her postdoc at Caltech, she brought in 12 high-school student interns through a program called Summer App Space. I worked in a team that classified galaxies into 36 different categories using training and test images from an online machine-learning community.

Very cool! What has been the most uniquely JPL or NASA experience that you've had while you've been here?

I went to see the rover being built in the clean room with my mentor, and that was just surreal. Even though I am sure my contributions are going to be very small, I think it's wild that I am actually working on something that's going to Mars.

Has your internship opened your eyes to any potential career paths?

I haven't taken any aeronautics and astronautics classes, and I think I might see if I'm interested in studying that. It is so interesting working on something that is literally going to be in space. In college, you have an answer to work towards, and here you are finding the answer. I think I didn't really process what I was going to be doing before coming here.

Eventually, I know I want to go into computer science, but also I want to go into maybe social impact work. I'd love to find some intersection between those. I feel like I grew up really privileged, so I want to use my skills to help other people. But I do love computer science or something where I'd be really at the forefront of research.

If you could play any role in NASA's plans to send humans back to the Moon or on to Mars, what would you want to do?

Be there. I met Jessica Watkins, who used to intern here, and now she's one of the new NASA astronauts. She spoke to us during my Caltech internship. It was super surreal meeting her. So if I could play any part, I'd want to be up there.

This Q&A is part of an ongoing series telling the story of what it takes to design, build, land, and operate a rover on Mars, told from the perspective of students interning with NASA's Perseverance Mars rover mission. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Landing, Mars 2020 Interns, Perseverance, Asian Pacific American Heritage Month

  • Kim Orr
READ MORE

Mariah Woody poses for the camera with her hands clasped behind her back in front of a metal starburst screen.

This past month, intern Mariah Woody joined her team in mission control at NASA's Jet Propulsion Laboratory to say goodbye to the Spitzer Space Telescope, a mission that provided never-before-seen views of the cosmos for more than 16 years. Woody has only been interning with the Spitzer team since June, but she played a key role in planning the mission's final moments. And now that the mission has ended, she's helping document its legacy. While her internship has largely been about bringing the Spitzer mission to a close, the experience is marking a new beginning for Woody. Even as a master's student in engineering, Woody never thought her skills would qualify her for a career in space exploration. It wasn't until she heard about an internship opportunity with JPL through an initiative designed to foster connections with historically black colleges and universities, or HBCUs, that she decided to apply. Now at JPL, she's getting a whole new perspective on where her career path might lead. We caught up with Woody to find out what it was like to join the team for Spitzer's final voyage, how she's archiving the mountain of mission images and data, and where she's hoping to go from here.

What are you working on at JPL?

I'm working on the Spitzer Space Telescope mission. Spitzer was a telescope that was designed to observe and study the early universe. It used infrared light, which can capture images of a wide range of objects that are found in the universe. It studied and observed new galaxies, stars and exoplanets. It was launched on Aug. 25, 2003, and it was one of NASA's four Great Observatories. It was originally planned for five years, but it was extended multiple times, so it lasted for more than 16 years. We just had the end of the mission on January 30. When I started, I was working on implementing a plan to archive all the data at the end of the mission and learning about spacecraft operations. Now, I'm working on the end-of-mission closeout activities.

What was your average day like when you were working on the final days of the mission?

I didn't have an average day when I was working on the operations team. We did a lot of different tasks, so each day was different. But usually, I would meet with my mentor and co-mentor to discuss the tasks that I was working on or the timeline and deliverables for the project. I learned about mission operations for the spacecraft and the systems on the ground that support the spacecraft. The spacecraft is controlled by programmed commands that we send through various antennas on the ground. The Spitzer team would have status and coordination meetings every week. All the team leads within the project would come together and discuss updates about the spacecraft, science details and other closeout tests that needed to be completed after the mission ended.

Even though the spacecraft is no longer operational, there's still more to do on the mission. What does closing out the mission entail?

The closeout team has to archive all the information into a repository where it can be looked at later, including the information that different team members have. It could be anything from documentation to images to any records, scripts or tools that were used. Once that information has been submitted, then I go in and audit the list and make sure that all of the products that need to be delivered are there and archive them.

You got to be in mission control for Spitzer's final moments. What was that experience like?

That experience was really fun for me. We called it Spitzers' final voyage, and I was able to be a part of the operations team in mission control, monitoring the status of the spacecraft in real-time as we all said goodbye. It was amazing to see all the different team members for the Spitzer mission come together on the last day to collaborate and do all of our work at once. It was a wonderful day in history, and I was proud to be a part of it.

Have there been any other standout moments from your time at JPL?

Meeting and learning from other people at the Lab. It's very nice to be able to just reach out to someone and sit down for lunch to learn about what they do and what experiences they have. I'm able to learn a little bit about all the different things that are going on here.

You're working toward your Ph.D. at North Carolina A&T State University. What's your research focus, and what got you interested in that field?

I'm studying industrial and systems engineering. It came to my attention because it's a broad area. You can do so much with it. I wasn't quite sure what industry I wanted to go into, so that's one of the reasons that I chose it. The fact that I can work in space exploration is very cool. I know that I like to explore different areas, improve things and make things more efficient. So I thought that this would be the perfect field for me to study.

What made you interested in engineering in the first place?

I've always loved math and science, and I performed very well in those subject areas when I was in school. When it comes to new ideas, I'm very creative. So I always wondered, "What can I do with this?" A lot of my teachers mentioned that I should look into becoming an engineer, so that's what I did.

What brought you to JPL for this internship?

I heard JPL was coming to my campus – they had an info session. I was notified about it at the last minute, so I missed out. I told myself, "I should still apply even though I missed the info session." So I applied, and then I received a call and got the offer.

But I feel like there was more to what brought me here than just applying and receiving the offer. I know that the offer was based on my hard work and saying yes to the challenges and opportunities that have come my way. I've always known about JPL, but I never pictured myself actually working here. I thought that it would be challenging, and I would be coming from so far away. It was a lot all at once, but I accepted the opportunity because I wanted to be exposed to and have the experience to work in space exploration. It's an area that I'd never really thought I'd go into coming from industrial and systems engineering. Now that I have some experience in the aerospace field, I have realized how much it impacts the industry in general and the economy of this country. It's a great field for my background.

Now that you've got some experience at JPL, how has it shaped your career path?

It's provided focus for my career path. I really want to stay within this industry. It's opened my eyes to see where I can branch off and where I can contribute and apply my skills. There's so much I can do with my background just in space exploration. I'm happy that my career path went in this direction.

What did you imagine that you would be doing before you came to JPL?

I wanted to be a part of designing something to improve a process at an organization or company. I didn't really have a specific job in mind. I've always thought that I'd maybe work in the medical industry, designing and improving medical devices. I've always had a lot of different ideas of what I wanted to do. I've kind of just explored and applied to many areas that were of interest.

Now for the fun question: If, you could have any role in NASA's plans to send humans to the Moon or on to Mars, what would you want it to be?

I think that I'd want to be involved in the training process – not necessarily me going through the training, but maybe coming up with ideas or requirements to get astronauts ready to go to space efficiently and safely.

This Q&A is part of an ongoing series highlighting the stories and experiences of students and faculty who came to JPL as part of the laboratory's collaboration with historically black colleges and universities, or HBCUs. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Black History Month, Spitzer, Universe, HBCU

  • Kim Orr
READ MORE

Vivian Li holds a computer and poses for a photo in front of a full-size model of the Mars rover Curiosity.

To remotely operate NASA's next Mars rover on a planet millions of miles away, mission team members will need to carefully plan out every drive, head swivel and arm extension before sending their coded commands to the vehicle. A wrong move could jeopardize the mission and, at the least, eat into the rover's precious energy supply. So this past summer, it was intern Vivian Li's task to design a web tool that will let mission operators ensure they're sending all the right moves to Mars. The internship at NASA's Jet Propulsion Laboratory gave Li, an information and computer science major at Cornell University, a chance to bring her design skills to a team that's typically more focused on building interfaces for robots rather than for humans. We caught up with Li to learn how she's adding a human touch to robotic navigation on the Mars 2020 mission.

What are you working on at JPL?

I'm working on a user interface for the Mars 2020 rover that takes in commands and produces a 3D simulation of the commands. So a rover driver could input what they want the rover to do – for example, drive 100 meters forward – and then, based on the terrain and all the other external factors, the program would take in the commands and simulate the path of the rover.

Is this something completely new for Mars 2020?

They've had the simulation software for a really long time. This is just a different way to package it and for people to be able to easily use it. The current version only runs on certain computers, so we're moving it to a web-based platform that can run on pretty much any modern browser.

What's your average day like at JPL?

I get in around 7:30 a.m., and at that time I just sort of warm up for the day in that I don't do anything that's super-taxing. I check my meetings and get set up. Then right after that, I jump into what I need to do. Right now, my primary project is creating the front end for the interface, writing a little bit of code and fixing bugs in the flight software simulation for Mars 2020.

If I'm not in meetings, I'll be writing code all day and doing a lot of planning. I'm in a different office than my team, so me and my co-intern will sometimes ask for help with our project, but it's a lot of independent work. It's great because my co-intern and I help each other a lot. Our mentors tell us what they want – like yesterday, they wanted us to incorporate a camera view into the simulation – then, we're the ones who figure out how to do it.

Pretty soon, we'll be going into user testing. There are a couple of people who would actually be using the technology who volunteered to test it out. Once they do, we can edit it based on how they feel about what we have right now.

What has been the most uniquely JPL or NASA experience that you've had so far?

Two things: First, just getting to stroll in and watch the Mars 2020 rover being built in the clean room. Second is meeting the people who work here. The people here all share a similar love of science and exploration research, which is really different from how a lot of computer science is oriented. All the engineers and even people who are in physics or communications share a common goal. I've learned so much from just talking to people and even other interns. It's been so cool, because I don't really get that exposure at school.

What made you decide to study information and computer science?

I actually went into college studying biology and English. I had done a year of coding in my senior year of high school, so I knew a little bit of [the programming language] Python. When I got to college, I decided to study biology, and I kind of started orienting toward computational biology. I worked in a lab, and the people there told me, "If you have computer science skills, you can kind of go into any field you want." So I had this career crisis moment when I was like, "I don't want to study biology anymore," because I had been in a microbiology lab all summer and it was not very fun. I figured if I did computer information sciences, it would give me more time to decide.

Even though I know a lot of people here have a lot more experience than me and they started a lot younger, I feel like my skills are so much more adaptable now, and that is what made me stay in the major.

So you still wanted to have that science focus?

Yeah. I don't want to fully isolate myself from the thing that I wanted to study originally, because I still do love biology, just not the career path that goes with it.

What about the user-interface side? Is that something that you're interested in, or did you get thrown into it for your internship?

That's what's special about my major in computer information science: Not only are we technically-based, but also we're user-and-society-based. So for our core classes, we take communications, law, ethics and policy, and all that. Through all those classes, I learned just how important the user-interface side is and accessibility design, and just how much easier life gets if the engineer really understands the user. I think having a good understanding of society and technology is what we should all be focusing on.

Are you bringing some of that user focus to your work with the Mars 2020 mission?

With my mentors being more on the software side and my co-intern being more on the development side, I think my having the user-interface design skills is unique in a very technical workspace. For Mars 2020, even though I'm not working on the design of the rover or one of the software systems, being here allows me to reinforce that the users are still really important, and we want to make it as easy as possible for someone to understand the technology even though it's super-complex.

What brought you to JPL for this internship?

A year and a half ago, I went on a trip to Texas with my friend from school. She brought her friend from home, who brought his friend. The two of them had interned at JPL. They spent the entire week talking about JPL nonstop, on all of our hikes [laughs]. I had never met people who loved their work so much that they wanted to talk about it 24/7. That made me think that JPL must be a great workplace and somewhere that everyone is really passionate. Since then, I've just wanted to come here.

How do you feel you're contributing to the Mars 2020 mission and making it a success?

I feel like the work I am doing is really important. And because I'm bringing a unique skill set to my team, it makes me feel like I'm valued at JPL. I've also been working with other teams who might also want to use my software. Because of that, I think that this concept could be developed for other missions and be really useful in the future as well.

What is your ultimate career goal?

I don't know yet. I just really wanted to work at JPL this summer because I felt like I would get exposed to a lot more. I think now I'm more stressed, because I have seen so many things I want to do [laughs]. But I definitely want to be somewhere in the realm of tech and society. My overarching goal is that I want to have an ethical career, something that can help humanity. And I think JPL is doing that.

If you could play any role in NASA's plans to send humans to the Moon or on to Mars, what would it be?

I really enjoy the work I'm doing now and would love to continue doing that in the future. I don't think I personally want to be an astronaut. I want to stay on Earth for everything that this planet has to offer.

This Q&A is part of an ongoing series telling the story of what it takes to design, build, land, and operate a rover on Mars, told from the perspective of students interning with NASA's Perseverance Mars rover mission. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Coding, Computer Science, Mars 2020 Interns, PerseveranceAsian Pacific American Heritage Month

  • Kim Orr
READ MORE

Collage of images of Glenn Orton, Krys Blackwood, Alexandra Holloway and Parag Vaishampayan in their workspaces at JPL

Each year, 1,000 students come to NASA's Jet Propulsion Laboratory for internships at the place where space robots are born and science is made. Their projects span the STEM spectrum, from engineering the next Mars rover to designing virtual-reality interfaces to studying storms on Jupiter and the possibility of life on other planets. But the opportunity for students to "dare mighty things" at JPL wouldn't exist without the people who bring them to the Laboratory in the first place – the people known as mentors.

A community of about 500 scientists, engineers, technologists and others serve as mentors to students annually as part of the internship programs managed by the JPL Education Office. Their title as mentors speaks to the expansiveness of their role, which isn't just about generating opportunities for students, but also guiding and shaping their careers.

"Mentors are at the core of JPL's mission, pushing the frontiers of space exploration while also guiding the next generation of explorers," says Adrian Ponce, who leads the team that manages JPL's internship programs. "They are an essential part of the career pipeline for future innovators who will inspire and enable JPL missions and science."

Planetary scientist Glenn Orton has been bringing students to JPL for internships studying the atmospheres of planets like Jupiter and Saturn since 1985. He keeps a list of their names and the year they interned with him pinned to his office wall in case he's contacted as a reference. The single-spaced names take up 10 sheets of paper, and he hasn't even added the names of the students he's brought in since just last year.

Glenn Orton sits at his desk surrounded by papers and posters of Jupiter and points to his list of interns since 1985

Planetary scientist Glenn Orton points to the list of more than 200 interns he's brought to JPL since 1985. Image Credit: NASA/JPL-Caltech | + Expand image

It makes one wonder what he could need that many students to do – until he takes out another paper listing the 11 projects in which he's involved.

"I think I probably have the record for the largest number of [projects] at JPL," says Orton, who divides his time between observing Jupiter with various ground- and space-based telescopes, comparing his observations with the ones made by NASA's Juno spacecraft, contributing to a database where all of the above is tracked and producing science papers about the team's discoveries.

"Often, you get to be the first person in the world who will know about something," says Orton. "That's probably the best thing in the world. The most exciting moment you have in this job is when you discover something."

Over the years, Orton's interns have been authors on science papers and have even taken part in investigating unexpected stellar phenomena – like the time when a mysterious object sliced into Jupiter's atmosphere, sparking an urgent whodunnit that had Orton and his team of interns on the case.

Orton says his passion for mentoring students comes from the lack of mentorship he received as a first-generation college student. At the same time, he acknowledges the vast opportunities he was given and says he wants students to have them, too.

"As a graduate student, it was close to my first experience doing guided research, so I had no idea how research was communicated or conducted," says Orton of his time at Caltech, when he often worried that his classmates and professors would discover he wasn't "Nobel material." "I want to be able to work with students, which I sincerely enjoy, to instruct them on setting down a research goal, determining an approach, modifying it when things inevitably hit a bump, as well as communicating results and evaluating next steps."

For Alexandra Holloway and Krys Blackwood, the chance to provide new opportunities isn't just what drives them to be mentors, but also something they look for when choosing interns.

Blackwood and Holloway sit on a blue and black checkered floor with whiteboards behind them detailing process flows.

Krys Blackwood (left) and Alexandra Holloway work as a team to mentor students on projects that bring a human focus to robotic technology. Image Credit: NASA/JPL-Caltech | + Expand image

"I look for underdogs, students who are not representing themselves well on paper," says Holloway. "Folks from underrepresented backgrounds are less likely to have somebody guide them through, 'Here's how you make your résumé. Here's how you apply.' The most important thing is their enthusiasm for learning something new or trying something new."

It's for this reason that Holloway and Blackwood have become evangelists for JPL's small group of high-school interns, who come to the Laboratory through a competitive program sponsored by select local school districts. While less experienced than college students, high-school interns more than make up for it with perseverance and passion, says Blackwood.

"[High-school interns] compete to get a spot in the program, so they are highly motivated kids," she says. "Your results may vary on their level of skill when they come in, but they work so hard and they put out such great work."

Holloway and Blackwood met while working on the team that designs the systems people use to operate spacecraft and other robotic technology at JPL – that is, the human side of robotics. Holloway has since migrated back to robots as the lead software engineer for NASA's next Mars rover. But the two still often work together as mentors for the students they bring in to design prototypes or develop software used to operate rovers and the antennas that communicate with spacecraft across the solar system.

It's important to them that students get a window into different career possibilities so they can discover the path that speaks to them most. The pair say they've seen several students surprised by the career revelation that came at the end of their internships.

"For all of our interns, we tailor the project to the intern, the intern's abilities, their desires and which way they want to grow," says Holloway. "This is such a nice place where you can stretch for just a little bit of time, try something new and decide whether it's for you or not. We've had interns who did design tasks for us and at the end of the internship, they were like, 'You know what? I've realized that this is not for me.' And we were like, 'Awesome! You just saved yourself five years.'"

The revelations of students who intern with Parag Vaishampayan in JPL's Planetary Protection group come from something much smaller in scale – microscopic, even.

Vaishampayan's team studies some of the most extreme forms of life on Earth. The group is trying to learn whether similar kinds of tough microbes could survive on other worlds – and prevent those on Earth from hitching a ride to other planets on NASA spacecraft. An internship in Planetary Protection means students may have a chance to study these microbes, collect samples of bacteria inside the clean room where engineers are building the latest spacecraft or, for a lucky few, name bacteria.

"Any researcher who finds a new kind of bacteria gets a chance to name it," says Vaishampayan. "So we always give our students a chance to name any bacterium they discover after whoever they want. People have named bacteria after their professors, astronauts, famous scientists and so forth. We just published a paper where we named a bacterium after Carl Sagan."

Vaishampayan sits in his stark white office holding a laminated award.

Students who intern with Parag Vaishampayan in JPL's Planetary Protection group might have a chance to name bacteria. Here, Vaishampayan holds an award he and his team (including several interns) received for their discovery of a bacterium they named Tersicoccus phoenicis. Image Credit: NASA/JPL-Caltech | + Expand image

The Planetary Protection group hosts about 10 students a year, and Vaishampayan says he's probably used every JPL internship program to bring them in. Recently, he's become a superuser of one designed for international students and another that partners with historically black colleges and universities, or HBCUs, to attract students from diverse backgrounds and set them on a pathway to a career at the Laboratory.

"I can talk for hours and hours about JPL internships. I think they are the soul of the active research we are doing here," says Vaishampayan. "Had we not had these programs, we would not have been able to do so much research work." In the years ahead, the programs might become even more essential for Vaishampayan as he takes on a new project analyzing 6,000 bacteria samples collected from spacecraft built in JPL's clean rooms since 1975.

With interns making up more than 15 percent of the Laboratory population each year, Vaishampayan is certainly not alone in his affection for JPL's internship programs. And JPL is equally appreciative of those willing to lend time and support to mentoring the next generation of explorers.

Says Adrian Ponce of those who take on the mentorship role through the programs his team manages, "Especially with this being National Mentoring Month, it's a great time to highlight the work of our thriving mentor community. I'd like to thank JPL mentors for their tremendous efforts and time commitment as they provide quality, hands-on experiences to students that support NASA missions and science, and foster a diverse and talented future workforce."


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found at: jpl.jobs

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, Mentors, Research, Researchers, STEM, Interns, Juno, Jupiter, Science, Astrobiology, Planetary Protection, Computer Science, Design, Mentoring, Careers

  • Kim Orr
READ MORE

NASA Astronaut Candidates Jessica Watkins and Loral O'Hara and Warren "Woody" Hoburg

Former JPL Interns Graduate From NASA Astronaut Class

Update: Jan. 10, 2020 – In a ceremony at NASA’s Johnson Space Center, Jessica Watkins, Loral O’Hara and Warren Hoburg graduated from basic training along with fellow astronaut candidates. As members of NASA’s Astronaut Corps, they are now eligible for spaceflight, including assignments to the International Space Station, Artemis missions to the Moon, and ultimately, missions to Mars.

› Read the full press release


Originally published June 15, 2017:

Three former interns of NASA’s Jet Propulsion Laboratory are joining the agency’s newest class of astronaut candidates. Jessica WatkinsLoral O’Hara and Warren "Woody" Hoburg were among 12 selected for the coveted spots announced by the agency on Wednesday.

Adrian Ponce, manager of JPL’s Higher Education Programs, congratulated the new astronaut candidates and emphasized the value of the laboratory’s internship programs, which bring in about 1,000 students each year to work with researchers in science, technology, engineering and mathematics (STEM) fields.

"JPL is recognized in the world as a place of innovation, and interns have the opportunity to operate alongside researchers, contribute to NASA missions and science, develop technology and participate in making new discoveries," said Ponce, adding that the internship experience serves as a pathway to careers at JPL, aerospace companies, tech giants – and now the NASA astronaut corps.

While there’s no single formula for becoming an astronaut, experience at a NASA center certainly helps. In fact, many NASA scientists and engineers already working in their dream jobs landing rovers on Mars or discovering planets beyond our solar system, still aspire to become astronauts.

Watkins, who as a graduate student participated in several internships at JPL that had her analyzing near-Earth asteroids and planning ground operations for the Mars Curiosity rover, says that becoming an astronaut was a childhood dream that just “never went away.” In a video interview during her internship with the Maximizing Student Potential, or MSP, program in 2014, she talked about how she saw her experiences at JPL as a key step to fulfilling her goal.

“When you walk away from having an internship at JPL, I think you just have a broader perspective on what’s possible and what’s feasible,” said Watkins, who in 2016 participated in another program from JPL’s Education Office, an intensive, one-week mission formulation program called Planetary Science Summer Seminar. “I think you set a new standard for yourself just by being around people who have set the standard really high for themselves. You learn to appreciate the possibilities and the things that you really are capable of achieving.”

Learn more about Watkins, O’Hara and Hoburg, and meet the rest of NASA’s new class of astronaut candidates

This story is part of an ongoing series about the career paths and experiences of JPL scientists, engineers, and technologists who got their start as interns at the Southern California laboratory. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Women in STEM, Astronaut, Internship, Career Advice, Jessica Watkins, Loral O'Hara, PSSS, Planetary Science Summer School, NASA Science Mission Design Schools, SMDS, Where Are They Now

  • Kim Orr
READ MORE