Celeste Hoang is a writer and producer at NASA’s Jet Propulsion Laboratory. She loves books, films, travel and Batman.


Students write on a glass panel inside the Team X room at JPL

When Jennifer Scully was a planetary geology grad student at UCLA in 2013, she happened upon an email that called for students to apply to something called the Planetary Science Summer School, or PSSS.

“I asked around and everybody only had positive things to say,” she says, “so I applied and I got in.”

She found herself in an immersive, 11-week program that teaches students all over the country how to formulate, design, and pitch a mission concept to a review board of NASA experts – essentially, how to bring a space mission to life from beginning to end.

“It was fabulous,” Scully says of her time in the program. “I come from a science background, and I had worked on an active planetary mission, but I didn’t have much experience with engineering. The summer school gave me my first exposure to mission-concept development and proposals. It was really illuminating.”

Seven years later, Scully is now a geologist at NASA's Jet Propulsion Laboratory in Southern California, researching the asteroid Vesta and dwarf planet Ceres. She also plays a role in planning and designing missions to explore Jupiter's moon Europa. She’s still part of the PSSS program – but, now, as one of the mentors to this year’s cohort of 36 students looking at missions to Venus and Saturn's moon Enceladus.

The first 10 weeks of the program focus on formulation and always happen remotely via webinar. The final week usually culminates with an intensive in-person experience at JPL, during which participants write their mission proposal. Participants receive mentorship from scientists and engineers with the laboratory's Team X, a group that has been helping design and evaluate mission concepts since 1985. Even though the pandemic means their “culminating week” won’t take place physically at the laboratory this year, the students are still descending virtually on the JPL community between July 20 and Aug. 7 to learn the complex dance of what does and doesn’t work when it comes to dreaming up a NASA mission.

Web meeting with the 2020 PSSS cohort

The first of two summer 2020 cohorts to arrive virtually at JPL for their culminating week in the PSSS program. While these one-week sessions are traditionally held in person, this year's group is meeting remotely. | + Expand image

“We do this for the broader planetary science mission community,” says PSSS manager Leslie Lowes, who’s been leading the program since 2010. “It’s about NASA training the next generation of scientists and engineers to do this type of work. Over 650 alumni use this model of mission design, and they’re in all kinds of leadership positions across NASA, including at JPL.”

Developed in 1989, the summer school started as a lecture series on how space missions could address the latest science discoveries and gradually shifted to a more hands-on format in 1999. Instead of hearing about the process, why not let students experience it?

“The first thing we do [when participants arrive at JPL] is help them evaluate potential architectures for their mission. Is it an orbiter or a lander? Is it a flyby?” says Alfred Nash, a mentor for the summer school and a lead engineer for Team X. “Does the science work? Do the engineering and cost work? The problem is not ‘can you make the thing,’ but ‘can you make the thing within the boundaries you have?’”

For Team X, it’s all about an integrated approach, which is one of the principal differences between how missions were developed in earlier days of exploration versus more recently. “Team X itself, its superpower is its ability to work in parallel and concurrently,” Nash says, stressing the importance of how the science should work in parallel with the engineering, the storytelling, the cost, and the project management.

A team of distinguished postdocs and graduate students learns what it's like to design a space mission in just five days as part of the 2014 session of NASA's Planetary Science Summer School at JPL. Credit: NASA/JPL-Caltech | Watch on YouTube

“What is the big thing I’m trying to do? How do all the pieces work together? What is the foundational heart of this in terms of how we’re going to change humanity’s understanding? What are the pieces we need so that happens, and what does it take to do that?” are common questions Nash says Team X asks of all its mission proposals – including the concepts developed in PSSS.

One key lesson Nash tries to impart during the culminating week: “Win [the proposal] and don't regret it when you do,” he says. “The last thing you want to do is design a mission that no one can manage.”

If the students’ answers can pass the rigorous initial hurdles and meet the requirements for a NASA proposal, then they transition to design work. At that point, each student is paired with a mentor who has expertise in a range of engineering capabilities, from mission design to the science tools that will go on a spacecraft.

While this would normally mean working together at JPL, the program has gone virtual this year.

Team X had some practice setting up a virtual experience for the summer’s incoming students, as most JPL employees have been on mandatory telework since mid-March. Currently, the students are in a “waterfall of [web meeting] rooms,” as Nash describes it, where there’s one central meeting room and then individual “stations” in separate rooms, where students and mentors can interface while moving from room to room as needed. A typical day kicks off at 8 a.m. with a daily briefing. Then, students spend half the day with Team X and half the day on their own, preparing for the next day’s tasks. Their day ends at 5 p.m. with a briefing to review what was completed, what worked well, what didn’t, and what needs to change for the next day.

“Everyone knows science, if they’re a scientist, and engineering, if they’re an engineer,” says PSSS alumna Scully. “But now, they’re really trying to understand what mission development is about. This foundation will enable them to work with NASA much more effectively.”

The cohorts that arrive every year are formidable, and this summer’s group is no different: Among the students are 26 Ph.D. candidates and eight postdoctoral researchers.

For Elizabeth Spiers – a Ph.D. candidate studying the habitability of other planets at the Georgia Institute of Technology, and one of this summer’s students examining Enceladus’ ocean – PSSS has provided her with invaluable experience in real-time mission concept problem-solving.

“The project moves quickly and some of our decisions must be made equally as fast,” Spiers says. “Oftentimes, no person on our team knows the answers, and we need to figure out what we don’t know or understand about the problem so that we can ask the correct questions swiftly.”

In addition to critical thinking, the summer school also gives its students the chance to work with a diverse group of students and mentors.

Watkins and Smythe look at a computer screen together

NASA astronaut Jessica Watkins, an alumna of the program, attending her PSSS session in 2016 with mentor Bill Smythe. Image credit: NASA/JPL-Caltech | + Expand image

“It’s really exhilarating to see all of those disparate backgrounds and expertise come together into one cohesive project,” Spiers says. “I have learned so much about not only our project and the science and engineering related to it, but also about my teammates and their individual passions.”

Over the years, the program has taught students lessons they can carry with them throughout their careers. PSSS alumna Jessica Watkins went on to become a NASA astronaut and, at JPL, two summer school alumni-led development of science instruments on the Perseverance Mars roverPIXL and SHERLOC. And this year, there’s a new star in the program, literally: The summer school is piloting a second experience called the Heliophysics Mission Design School to help strengthen hypothesis-driven science investigations when designing missions to the Sun.

Perhaps one lesson students will take away from PSSS is not only knowing what they want, but also recognizing the limits of space exploration.

“The most rewarding thing is seeing them make good decisions,” says Nash. “When they avoid trying to do something too expensive just because it’s cool. When they find a more fruitful way forward. What you want has nothing to do with it; it’s about what the world will let you do and how clever you are at navigating those boundaries.”

This feature is part of an ongoing series about the stories and experiences of JPL scientists, engineers, and technologists who paved a path to a career in STEM with the help of NASA's Planetary Science Summer School program. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, College Students, Virtual Internships, PSSS, Planetary Science Summer School, Ph.D. Programs, Science, Mission Design, PSSS Alumn

  • Celeste Hoang
READ MORE

Amiee Quon points to a small rover built out of legos as her team stands in a circle around her examining the rover.

Last week, 40 community college students landed at NASA's Jet Propulsion Laboratory to accept the challenge of building miniature Mars rovers over the course of four days, from July 9-12, putting their designs to the test in a series of competitions on simulated Martian terrain.

The challenge is part of the National Community College Aerospace Scholar, or NCAS, program, which hosts hundreds of students across multiple NASA centers for a twice-yearly educational workshop and engineering competition. The activity provides students with an up-close and intimate look at NASA missions, and an opportunity to present their work to a panel of judges.

Several students stand against a wall while another sets a miniature rover on a red surface meant to simulate Martian terrain

Students ready their rover to compete in one of two challenges that took place during the activity at JPL. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

One key part of their week here: The students, who are divided into four teams, are mentored by NASA scientists and engineers. And at JPL – where the competition is organized by the Education Office – nobody knows the mentorship experience better than Amiee Quon and Otto Polanco, JPL's two longest-serving NCAS mentors.

In 2012, Quon – who participated in the high school version of NCAS when she was 16 – saw an email circulated at JPL requesting mentors for the competition. She signed up and has been a mentor ever since.

“It’s so rewarding to see how excited they are about engineering, and when they work hard on something and collaborate, that things work out for them,” says Quon, a mechanical integration engineer who has worked on the Mars 2020 helicopter and the Juno mission orbiting Jupiter, and is currently working on the Europa Clipper mission.

10 students and Quon stand in two rows smiling with their winnings, including a padfolio and a Hot Wheels rover

Quon's team poses for a photo with their winnings from the summer 2019 competition. Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Things worked out especially well for Quon's mentees this session: The 10 students on her team were named the winners of the summer 2019 competition.

“My team was very cohesive, and I was impressed by how well they worked together to design, build and operate their successful rover,” she says. “All the teams did a great job on the toughest competition course I’ve ever seen.”

For Polanco, being a mentor is a capstone on his own experience as a community college student. He started his undergraduate studies at Santa Monica College, transferred to Cal State L.A. to earn his bachelor’s and master’s degrees in mechanical engineering, and eventually landed an internship at JPL. He's been at JPL for 15 years and has worked as an optical-mechanical engineer on the Mars Science Laboratory mission, Starshade project and more.

The NCAS competition is an opportunity for Polanco to encourage students to go after what they want to do – including helping one female college freshman, whose family expected her to marry and have children instead of chasing a STEM career. Polanco guided her during an NCAS competition and stayed in touch throughout her college years; today, she’s pursuing a Ph.D. at Caltech and studying global climate change.

Polanco makes a claw motion with his hands, while three students stand in a semi circle around him with one student mimicking the claw motion

Polanco speaks with several of his mentees during the summer 2019 session of NCAS. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

“The most rewarding part is influencing people’s perspectives about what their engineering futures might be,” he says. “It’s about convincing them to pursue their dreams and passions and seeing them grow over the years.”

While Quon and Polanco play a big part in helping guide the students through various Mars rover challenges and their final presentations, they both recognize that their ultimate roles lie in reminding students that they deserve to achieve anything they set their minds to.

“A lot of our mentorship is raising the confidence levels of individuals,” Polanco says. “It’s through these side conversations that you often hear, ‘I’m not qualified or worthy enough to work here.’” And I always ask them, ‘Why do you put a ceiling on yourself?’”

Adds Quon: “We talked to somebody during the competition who felt they would be at a disadvantage going to career fairs because they transferred [into their current university]. But you’ve worked hard to get to where you are. There’s absolutely no reason to feel 'less than.'”

To that end, Polanco encourages more people at JPL to mentor when they can.

“I think it’s a really good experience for JPL employees to go through, to see how their own experience can help others,” he says. “My little path is a good example of what people can do. There are so many students in community college who struggle to see that end achievement. But the institution is good about hiring talent and [individuals with] strong work ethic, no matter where you went to school.”


The NCAS program is funded by the NASA Minority University Research and Education Program. Learn more and apply, here.

TAGS: Higher Education, Community College, NCAS, Mentors, Students, STEM, Engineering

  • Celeste Hoang
READ MORE

Nagin Cox holds a patch that reads, "The Stars Are Calling And We Must Go"

In 1975, 10-year-old Nagin Cox’s home life was unraveling. It was a time when Cox grew up hearing that girls were “worthless” and thought only about making it to age 18 so she could be free.

“I remember looking up at the stars and thinking, ‘I’m going to live and get through this,” Cox, now a spacecraft systems engineer for Mars 2020 recalls. “I need to set a goal. I need something so meaningful it will help me get through the next eight years.'”

That goal revealed itself when she was 14, a curly-haired Indian girl fascinated by “Star Trek” and Carl Sagan’s “Cosmos.” She wanted to explore the universe. And no, she didn't want to be an astronaut.

“If you really want to go where someone has never been, you want to be with the robots. They truly explore first,” she says. “There was one place that did that consistently and that was NASA’s Jet Propulsion Laboratory.”

She just needed to figure out how.

› Continue reading on NASA's Solar System Exploration website


TAGS: Women in STEM, People, Spacecraft, Missions, Engineering, Mars Rovers, Mars 2020, Curiosity, Spirit

  • Celeste Hoang
READ MORE