Brandon Rodriguez is the educator professional development specialist at NASA’s Jet Propulsion Laboratory. Outside of promoting STEM education, he enjoys reading philosophy, travel and speaking to your dog like it's a person.


A woman stands at the front of a classroom and points to diagram projected on a screen that depicts tectonic plate activity while a woman stands off to the side and another person is seated facing the front.

Four pre-service teachers at Cal Poly Pomona are developing their skills in lesson design and delivery as they study Earth science concepts and prepare for graduation.


Four woman face the camera, arranged two by two, in a geology classroom. Two rocks sit on a table in front of them.

Clockwise from upper left: Amie Gallardo, Sofia Vallejo, Afiya Kindle, Jacquelin Galvez-Coyt. Image courtesy: Brandon Rodriguez | + Expand image

During the fall semester of 2022, I had the privilege of working with the Education Department at California Polytechnic University in Pomona, specifically with pre-service teachers taking coursework in Earth science. During our collaboration, the curriculum had the students split time in class between learning about geology and Earth’s history and then designing and engaging in classroom activities related to the technical content that they could take to their own classes in the future. This combination had Cal Poly students learning science and education hand-in-hand each week and led to some amazing classroom lessons and lab activities.

One group of young women in the program stood out as exceptionally passionate about their future careers. This team consisted of four seniors: Jacquelin Galvez-Coyt, hoping to someday teach kindergarten; Amie Gallardo, who is planning to teach fourth grade; Afiya Kindle, who is interested in teaching elementary or middle school; and Sofia Vallejo, who is interested in kindergarten through sixth grade.

Despite their interest in working with young students and collaborating to design lessons for those students, each of these pre-service teachers allowed their individuality to shape how they navigated lesson design and implementation. I recently sat down with them to ask about their instructional style and aspirations for classrooms of their own.

Now that we’re back to in-person classes, how is the transition going?

Sofia: Returning from remote instruction felt eerie at first, but it’s so nice to return to communicate with people and build connections in a non-digital way. In-person classes prepare you to communicate with colleagues in real life, build social skills, and read body language. All of these skills are critical for a teacher in order to understand and better help students to succeed.

Amie: Returning from remote instruction has been amazing. While it had its perks, I believe, as students, we learn a lot more while working hands-on with our projects than is possible in distance learning. If we’re trying to develop and assess activities we can do with kids, that really requires being face-to-face.

A woman stands in front of a classroom. She is wearing a flannel jacket and rubber gloves while holding a rock. A person in the class faces her and has her hand up.

Amie Gallardo provides an Earth science demonstration to a class of education students at Cal Poly Pomona. Image courtesy: Brandon Rodriguez | + Expand image

What are you most excited about when it comes to having your own classroom, and how will you get your kids excited about STEM?

Afiya: I am most confident about creating a genuine safe space for kids. I’ll be able to communicate how much I care about them and about our shared future, and I think there could never be enough genuinely kind and caring teachers in this world.

Jacquelin: I think my kids will be excited about STEM because of how easy it's become to incorporate activities. There are many resources out there for teachers to use for teaching math and science that don't rely solely on a textbook. Activities that use inexpensive materials or that require a little DIY skills go a long way for students.

Afiya: Exactly! I know I developed my love for science from being hands-on and actually somewhat “in charge” of an experiment on my own. Winning a science fair competition in seventh grade for a greenhouse I built really boosted my confidence and helped reassure me of my scholastic abilities as a kid.

You led a really cool lesson with your classmates where you had them use Oreos to model tectonic boundaries. How do you feel that lesson went?

Jacqueline: I was really proud of our group. After giving a lecture to the students about tectonic plate boundaries, we dispersed Oreos to everyone. We were set up around the classroom demonstrating the activity and giving verbal instructions for everyone to follow. My favorite part was when I saw two students by me go, “Oohhhh,” and smile once they got their Oreos to demonstrate the plate boundaries correctly.

Amie: I thought it went really well! All the students in our classroom enjoyed it. Although we, as adults, may know about plate tectonics, having our hands on the Oreos to understand it made it more enjoyable.

Afiya: Plus, who doesn’t love Oreos? They’re even vegan!

Two hands wearing rubber gloves hold the top portion of an Oreo cookie. The image is animated to show the cookie top is broken in half and represents the sliding of tectonic plates

An Oreo cookie is used to demonstrate rock fault movement. Image courtesy: Brandon Rodriguez | + Expand image

Which of the NASA-JPL lessons that you’ve implemented did you enjoy, and why?

Jacqueline: My favorite JPL activity we did was the Moon Phases activity. Having one team member to the side to give the instructions allows another student to view the different Moon phases. Then you switch so both students get to see that perspective. My second favorite activity was creating layers with different colored Play-Doh and demonstrating them as different plate boundaries and folds.

Amie: The NASA lesson that I enjoyed the most was the one we did on lunar eclipses. Much like myself, many students often have an early fascination with the Moon. Learning more about the Moon and lunar eclipses made me excited about the semester.

A woman wearing a mask and glasses on the right hand side looks to the left while holding a foam ball on a stick representing the moon. A light source on the left representing the Sun shines, casting a shadow on the woman's face.

Sofia Vallejo uses a foam ball and lamp to demonstrate how solar eclipses occur. Image courtesy: Brandon Rodriguez | + Expand image

What’s next for you after you finish at Cal Poly Pomona?

Jacqueline: After I graduate at Cal Poly, I plan to attend UC Riverside to complete my credential program. While I am there, I would love to get my student teaching experience. Once I complete my credential program, I plan to apply to work at schools in the Inland Empire [in Southern California]. I want to be able to give back to the communities that influenced who I am today.

Sofia: My plans after Cal Poly are to take some time off to gain experience in the field as a substitute teacher. I also am looking to gain more volunteer experience, skills, and exposure. In the future, I want to enroll in UC Riverside to earn my teaching credential and master's degree.

Looking for ways to bring NASA STEM into your classroom or already have a great idea? The Education Office at NASA's Jet Propulsion Laboratory serves educators in the greater Los Angeles area. Contact us at education@jpl.nasa.gov.

Explore More

TAGS: Teachers, School, Remote School, Classroom, Instruction, K-12, STEAM, Science, Math, resources, lessons

  • Brandon Rodriguez
READ MORE

A long boom extends from a cylindrical telescope floating above Earth. At the end of the spacecraft's boom are three converging circular mirrors, like petals on a flower.

A NASA space telescope mission is giving astronomers a whole new way to peer into the universe, allowing us to uncover long-standing mysteries surrounding objects such as black holes. Find out how it works and how to engage students in the science behind the mission.


Some of the wildest, most exciting features of our universe – from black holes to neutron stars – remain mysteries to us. What we do know is that because of their extreme environments, some of these emit highly energetic X-ray light, which we can detect despite the vast distances between us and the source.

Now, a NASA space telescope mission is using new techniques to not only scout out these distant phenomena, but also provide new information about their origins. Read on to learn how scientists are getting exciting new perspectives on our universe and what the future of X-ray astronomy holds.

How They Did It

In 2021, NASA launched the Imaging X-Ray Polarimeter Explorer, or IXPE, through a collaboration with Ball Aerospace and the Italian Space Agency. The space telescope is designed to operate for two years, detecting X-rays emitted from highly energetic objects in space, such as black holes, different types of neutron stars (e.g., pulsars and magnetars) and active galactic nuclei. In its first year, the telescope is focusing on roughly a dozen previously studied X-ray sources, spending hours or even days observing each target to reveal new data made possible by spacecraft's scientific instruments.

IXPE isn't the first telescope to observe the universe in X-ray light. NASA's Chandra X-ray Observatory, launched in 1999, has famously spent more than 20 years photographing our universe at a wavelength of light exclusively found in high-energy environments, such as where cosmic materials are heated to millions of degrees as a result of intense magnetic fields or extreme gravity.

Using Chandra, scientists can assign colors to the different energy levels, or wavelengths, produced by these environments. This allows us to get a picture of the highly energetic light ejected by black holes and tiny neutron stars – small, but extremely dense stars with masses 10-25 times that of our Sun. These beautiful images, such as from Chandra’s first target, Cassiopeia A (Cas A for short), show the violent beauty of stars exploding.

A blue halo of squiggly lines surrounds an explosion of colors extending out from the center of the supernova. Closest to the center is a circular splatter of orange surrounded by green and yellow and finally a hazy purple.

This image of the supernova Cassiopeia A from NASA’s Chandra X-ray Observatory shows the location of different elements in the remains of the explosion: silicon (red), sulfur (yellow), calcium (green) and iron (purple). Each of these elements produces X-rays within narrow energy ranges, allowing maps of their location to be created. Image credit: NASA/CXC/SAO | › Full image and caption

While Chandra has earned its name as one of “The Great Observatories,” astronomers have long desired to peer further into highly energetic environments in space by capturing them in even more detail.

IXPE expands upon Chandra’s work with the introduction of a tool called a polarimeter, an instrument used to understand the shape and direction of the light that reaches the space telescope's detectors. The polarimeter on IXPE allows scientists to gain insight into the finer details of black holes, supernovas, and magnetars, like which direction they are spinning and their three-dimensional shape.

A blue halo of squiggly lines surrounds a fuzzy donut-shaped haze of magenta with splatters of blue and white throughout.

This image of Cassiopeia A was created using some of the first X-ray data collected by IXPE, shown in magenta, combined with high-energy X-ray data from Chandra, in blue. Image credit: NASA/CXC/SAO/IXPE | › Full image and caption

While scientists have just begun putting IXPE's capabilities to use, they're already starting to reveal new details about the inner workings of these objects – such as the magnetic field environment around Cas A, shown in a newly released image.

The supernova remnant is shown as a blob of blue with swirls of brighter blues and large splatters of white. Dashed lines on top of the image flow from the center outward. Dividing the supernova and lines into quarter sections of a circle, the top right section has lines that flow directly northeast. The section at the bottom right has lines that flow nearly southeast but curve northwards slightly The section at the bottom left has lines that flow straight up from the bottom edge of the supernova, curve around the center and then flow back down. And the section at the top left has lines that flow from the center directly west, others that curve around the center and flow diagonally northwest and others that flow from the center to the north. Small sections of the lines are highlighted in green at the 1 o'clock, 2 o'clock, 4 o'clock, 7 o'clock and 11 o'clock portions of the supernova.

The lines in this newly released image come from IXPE measurements that show the direction of the magnetic field across regions of Cassiopeia A. Green lines indicate regions where the measurements are most highly significant. These results indicate that the magnetic field lines near the outskirts of the supernova remnant are largely oriented radially, i.e., in a direction from the center of the remnant outwards. The IXPE observations also reveal that the magnetic field over small regions is highly tangled, without a dominant preferred direction. Observations such as this one can help scientists learn how particles shooting out from supernovae interact with the magnetic field created by the explosion. Image credits: X-ray: Chandra: NASA/CXC/SAO; IXPE: NASA/MSFC/J. Vink et al. | + Expand image | › Full image and caption

“For the first time, we will use every collected photon of light to tell us about the nature and shapes of objects in the sky that would be dots of light otherwise,” says Roger Romani, a Stanford professor and the co-investigator on IXPE.

How It Works

Generally, when light is produced, it is what we call unpolarized, meaning that it oscillates in every direction. For example, our Sun produces unpolarized light. But sometimes, light is produced in a highly organized fashion, oscillating only in one direction. In astronomy, this arises when magnetic fields force particles to incredibly high speeds, creating highly organized, or polarized, light.

This is what makes objects like the supernova Cas A such enticing targets for IXPE. Exploded stars like Cas A generate massive energetic waves when they go supernova, giving scientists a view of how particles shooting out at immense speeds interact with the magnetic fields from such an event. In the case of Cas A, IXPE was able to determine that the x-rays are not very polarized, meaning the explosion created very turbulent regions with multiple field directions.

While the idea of polarized or organized light may sound abstract, you may have noticed it the last time you were outside on a sunny day. If you’ve tried on a pair of polarized sunglasses, you may have noticed that the glare was greatly reduced. That’s because as light scatters, it bounces off of reflective surfaces in all directions. However, polarized lenses have tiny filters that only allow light coming from a narrow band of directions to pass through.

The polarimeter on IXPE works in a similar way. Astronomers can determine the strength of an object's magnetic field by using the polarimeter to measure how much of the light detected by the telescope is polarized. Typically, the more polarized the light the stronger the magnetic field at the source.

Astronomers can even go a step further to measure the direction this light is oscillating by measuring the angle of the light that reaches the telescope. Because the polarized light leaves the source in a predictable fashion – namely perpendicular from its magnetic field – knowing the angle of the oscillating light provides information about the axis of rotation and potentially even the surface structure of objects such as neutron stars and nebulae.

Side by side animations showing a rope moving from side to side through an open window and a rope moving up and down through an open window. As the window closes, fewer of the waves in the rope moving up and down make it through the window whereas the rope moving from side to side is undisturbed.

In this demonstration, the rope represents light waves and the open window represents a polarimeter. Depending on the angle of the light waves (rope), more or less information makes it through the polarimeter (window) the narrower it is. By measuring the amount of light received through the polarimeter, IXPE can determine the angle and the polarization of the light. Image credit: NASA/JPL-Caltech | + Expand image

Imagine, for example, that you were holding one end of a piece of rope secured to an object at the other end. If you swung the rope side to side to make horizontal waves, those waves would be able to make it through a narrow target like a window. If you started to shut the window from the top, narrowing the opening, the waves could conceivably still make it through the opening. However, if you made veritcal waves by waving the rope up and down, as the window closed, fewer and fewer waves would make it through the opening. Likewise, by measuring the light that makes it through the polarimeter to the detector on the other side, IXPE can determine the angle of the light received.

To collect this light, IXPE uses three identical mirrors at the end of a four meter (13 foot) boom. The light received by IXPE is carefully focused on the spacecraft’s polarimeter at the other end of the boom, allowing scientists to collect those crucial measurements.

During the IXPE launch broadcast, commentators discuss the components of the spacecraft and how it measures polarization. | Watch on YouTube

Why It's Important

Building on Chandra's observations from the past two decades, IXPE's novel approach to X-ray science is pulling the curtain back even farther on some of the most fascinating objects in the universe, providing first looks at how and where radiation is being produced in some of the most extreme environments in the universe. IXPE's measurements of Cas A are just the beginning, with even more mysterious targets ready to be explored.

Take it from Martin Weisskopf, the principal scientist on IXPE and project scientist for Chandra, who has spent his 50-year career working in X-ray astronomy, who says, “IXPE will open up the field in ways we’ve been stuck only theorizing about."

Teach It

Explore more on how NASA uses light to map our universe, and dig deeper into some of the celestial features it allows to study, such as blackholes and neutron stars.

Activities

Educator Resources

Explore More


NASA's Universe of Learning materials are based upon work supported by NASA under award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and the Jet Propulsion Laboratory.

TAGS: Universe, Stars and Galaxies, Space Telescope, IXPE, Astronomy, Science, Electromagnetic Spectrum

  • Brandon Rodriguez
READ MORE

Five students in sweatshirts and collared shirts pose for a selfie with Ms. Risbrough and JPL education specialist Brandon Rodriguez, all wearing masks.

A Los Angeles math teacher gets students engaged with connections to science and exploring the human side of math, such as how leaders inspire change in their communities.


Katherine Risbrough has been teaching high school math for almost 10 years. She began her teaching career in the Hickory Hill community of Memphis, Tennessee, where she taught everything from Algebra 1 to Calculus and served as a math coach for the district. Five years ago, she came to Los Angeles to teach Integrated Math and Calculus at Synergy Quantum Academy High School.

Outside of math, Ms. Risbrough is also a superfan of college football and never misses a game at her alma mater, the University of Southern California. Her fandom for making the game is rivaled only by her love of Harry Potter, having been to every midnight book and movie release.

I caught up with Ms. Risbrough to find out how she gets students excited about math, and I learned about a new strategy she used this past year: bridging math and science by teaming up with the AP Physics teacher. Her cross-discipline curriculum focused on helping students make connections between subjects and got them engaged as they returned from more than a year of remote learning.


Math can be intimidating for students and it can be difficult to keep them engaged. How do you get your students excited about math?

A student at a desk holds open a worksheet while Ms. Risbrough leans over and points to a section of the worksheet.

Ms. Risbrough works with one of her calculus students. Image courtesy: Katherine Risbrough | + Expand image

Sometimes it's easier said than done, but math needs to be as hands-on and discussion-based as possible. We use a lot of the calc-medic curriculum, which is application and discovery first followed by a whole class discussion to share ideas and cement new learning. When students have to speak and defend a hypothesis or an argument, they are practicing mathematical reasoning, which is a skill they can take into all STEM coursework. I avoid lectures as much as possible. We also do a lot of flipped classroom learning (videos at home and practice in class), group work, use technology, and do activities that get students moving around the classroom.

I believe that learning mathematics should be a collaborative, exploratory process and that every student already has the skills necessary to become a successful mathematician. It’s my job to give them opportunities to show off and strengthen those skills, so that they can be just as successful with or without me present to help them.

This year you’ve introduced some interesting projects to make your class more interdisciplinary. Tell me a bit more about that.

I’ve really focused on keeping the math contextualized by being sure the content is interdisciplinary. For example, over half of my AP Calculus students are also taking AP Physics. This year, in particular, I was sure to coordinate with the physics teacher to see how we could align our curriculum in kinematics with what we were doing with integrals and derivatives. This began with students doing JPL’s additive velocity lesson in their physics class to set the stage for how calculus ties together acceleration, velocity, and displacement.

Both classes are so challenging for students, but when they see how strategies in one class can help lift them in another, it’s almost as if they are getting to see two different strategies to solve the same problem. Designing challenges that could be solved with both physics and math gave the students an ability to approach problems from either side. At first, they were pretty intimidated to see their two most challenging classes teaming up, but the end result was some incredible student projects and dramatic improvement in their ability to graph out relationships.

I also kick off new units by making connections to students' own life or even their future careers. They need to know the “why” beyond just, “because you’ll be tested on it.” We try to talk about STEM historical figures and current leaders (specifically mathematicians and scientists of color) as often as possible. For example, I use clips from the movies "October Sky" and "Hidden Figures" to set the stage and then lead into projects about rocket trajectories and elliptical orbits.

Pieces of paper with math terms such as 'graph' and 'function' printed on them are taped to a desk. Lines and arrows drawn with marker connect that various pieces of paper and notes are written off to the side.

Students in Ms. Risbrough's class map out language and processes to better understand shapes and limits in functions. Image courtesy: Katherine Risbrough | + Expand image

This year, in calculus, we started the year with the idea of “Agents of Change” and looked at thought leaders such as veteran astronaut Ellen Ochoa and climate scientist Nicole Hernandez Hammer and how their work relates to “instant rates of change” and “average rates of change” in calculus. Then, I had students think about moments of change in their life, and how that instant can be carried forward to a make a long term change in their careers and communities.

Coming back from COVID-19 and more than a year of remote instruction, how are your students adjusting to being back in the classroom?

Our students missed out on so many social and academic opportunities because of COVID, but they aren’t letting that stop them. The biggest struggle was starting off the school year and getting back into routines. Because of the demographics of our students, there have been more absences than usual, as many of our students help support their family at home. Many parents struggled to keep work through the pandemic, and a lot of my students work outside of school or take care of their siblings. The effects of caring for their families while still trying to focus on applying to college has really taken a toll on students.

I’m fortunate that so many kids are comfortable and open sharing feelings of increased anxiety, responsibility, or worry over the past two years. I believe it's important that my classroom and our group first and foremost be an escape from that space rather than an added stress. Their success in math – even a rigorous AP math class with a breakneck pace – comes from me being there for them as a person first and a teacher second. We focus so much on “catching them up” that we forget to take some time for them to process all they have had to manage.

A group of five students with long dark hair stand next to each other and Ms. Risbrough looking at a whiteboard with graphs drawn on it.

AP Calculus students graph out kinematics as examples of integrals and derivatives. Image courtesy: Katherine Risbrough | + Expand image

As we move toward graduation, what is one story of success that you will take away from this year?

Honestly, it's the success of my students. They have jumped into AP Calculus after 1.5 years of distance learning and the social-emotional learning burdens of Covid, and have done amazing work. They are thoughtful, persistent, and often learning multiple grades worth of skills within one calculus lesson. I guess I'm a small piece of that, but all that I've really done is give them space to explore, discuss, and learn. It's what they've done with that space that has been the best thing to watch!


Looking for ways to bring NASA STEM into your classroom or already have a great idea? The Education Office at NASA's Jet Propulsion Laboratory serves educators in the greater Los Angeles area. Contact us at education@jpl.nasa.gov.

Explore More

TAGS: Teachers, School, Classroom, Instruction, K-12, High School, Math, Calculus, Physics, Algebra, Lessons, Resources

  • Brandon Rodriguez
READ MORE

A small piece of the ISS is visible in the top corner of this view looking down from space station over Earth. A large cloud of dust takes half the view over Earth's surface.

A data map overlaid on the globe shows thick swirls of dust traveling from West Africa, across the Atlantic Ocean and all the way to the Caribbean and Southern U.S.

Learn about the role that dust plays in Earth's climate, why scientists are interested in studying dust from space, and how to engage students in the science with STEM resources from JPL.


A NASA instrument launched to the International Space Station this summer will explore how dust impacts global temperatures, cloud formation, and the health of our oceans. The Earth Surface Mineral Dust Source Investigation, or EMIT, is the first instrument of its kind, designed to collect measurements from space of some of the most arid regions on Earth to understand the composition of soils that generate dust and the larger role dust plays in climate change.

Read on to find out how the instrument works and why scientists are hoping to learn more about the composition of dust. Then, explore how to bring the science into your classroom with related climate lessons that bridge physical sciences with engineering practices.

Why It’s Important

Scientists have long studied the movements of dust. The fact that dust storms can carry tiny particles great distances was reported in the scientific literature nearly two centuries ago by none other than Charles Darwin as he sailed across the Atlantic on the HMS Beagle. What still remains a mystery all these years later is what that dust is made of, how it moves, and how that affects the health of our planet.

For example, we now know that dust deposited on snow speeds up snow melt even more than increased air temperature. That is to say, that dust traveling to cold places can cause increased snow melt.

Sharp mountain peaks are covered in splotches of snow with a fine coating of dust visible on top of the snow.

A coating of dust on snow speeds the pace of snowmelt in the spring. Credit: NASA | + Expand image

Dust can affect air temperatures as well. For example, dust with more iron absorbs light and can cause the air to warm, while dust with less iron reflects light and is responsible for local cooling. Iron in dust can also act as a fertilizer for plankton in oceans, supplying them with nutrients needed for growth and reproduction.

A plume of dust eminates from over the Copper River in Alaska, spreading out as this series of overhead satellite images progresses.

A plume of dust is shown emanating from over Alaska's Copper River in October 2016 in these images captured by the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument on NASA’s Terra and Aqua satellites. Dust storms play a key role in fueling phytoplankton blooms by delivering iron to the Gulf of Alaska. Credit: NASA | › Full image and caption

Floating dust potentially alters the composition of clouds and how quickly or slowly they form, which can ultimately impact weather patterns, including the formation of hurricanes. That’s because clouds need particles to act as seeds around which droplets of moisture in the atmosphere can form. This process of coalescing water particles, called nucleation, is one factor in how clouds form.

An overhead view of a swirl of clouds mixed with a streak of dust like a swirl of milk froth in a cappuccino

A swirl of dust mixes with the clouds in a low-pressure storm over the Gobi desert between Mongolia and China. This image was captured by the MODIS instrument on the Terra satellite in May 2019. Credit: NASA | › Full image and caption

Thanks to EMIT, we’ll take the first steps in understanding how the movements of dust particles contribute to local and global changes in climate by producing “mineral maps”. These mineral maps will reveal differences in the chemical makeup of dust, providing essential information to help us model the way dust can transform Earth’s climate.

› Learn more about what EMIT will do from JPL News

How It Works

NASA has been exploring how dust moves across the globe by combining on-the-ground field studies with cutting-edge technology.

Dr. Olga Kalashnikova, an aerosol scientist at NASA's Jet Propulsion Laboratory and a co-investigator for EMIT, has been using satellite data to study atmospheric mineral dust for many years, including tracking the movements of dust and investigating trends in the frequency of dust storms.

As Dr. Kalashnikova describes, “From the ground, we can see what types of dusts are lifted into the atmosphere by dust storms on a local scale, but with EMIT, we can understand how they differ and where they originally came from.”

EMIT is the first instrument designed to observe a key part of the mineral dust cycle from space, allowing scientists to track different dust compositions on a global scale, instead of in just one region at a time. To understand dust’s impact on Earth’s climate, scientists will use EMIT to answer key questions, including:

  • How does dust uplifted in the atmosphere alter global temperatures?
  • What role do dusts play in fertilizing our oceans when they are deposited?
  • How do dust particles in the atmosphere affect cloud nucleation; the process by which clouds are ‘seeded’ and begin to coalesce into larger clouds?
A picture of the EMIT instrument, shaped like a small megaphone, is overlaid on an picture of the International Space Station flying above Earth.

The EMIT instrument will fly aboard the International Space Station, which orbits Earth about once every 90 minutes, completing about 16 orbits per day. Credit: NASA | + Expand image

To achieve its objectives, EMIT will spend 12 months collecting what are called “hyperspectral images” of some of the most arid regions of our planet selected by scientists and engineers as areas of high dust mobility, such as Northern Africa, the Middle East, and the American Southwest.

These images are measurements of light reflected from the Earth below, calibrated to the distinct patterns, or spectra, of light we see when certain minerals are present. The EMIT team has identified 10 minerals that are most common, including gypsum, hematite, and kaolinite.

Bands of satellite images looking at a seciton of Earth are highlighted in different colors to reveal different concentrations of minerals.

This example spectra shows how scientists will be able to identify different concentrations of minerals and elements in data collected by EMIT. Credit: NASA/JPL-Caltech | + Expand image

Why are these minerals important? One key reason is the presence or absence of the element iron, found in some minerals but not others.

Dr. Bethany Ehlmann is a planetary scientist and co-investigator for the EMIT project at Caltech and explains that when it comes to heating, “a little bit of iron goes a long way.” Iron in minerals absorbs visible and infrared light, meaning that even if only a small amount is present, it will result in a much warmer dust particle. Large amounts of warm dust in our atmosphere may have an impact on temperatures globally since those dust particles radiate heat as they travel, sometimes as far as across oceans!

Collecting images from space is, of course, no easy task, especially when trying to look only at the ground below. Yet it does allow scientists to get a global picture that's not possible to capture from the ground. Field studies allow us to take individual samples from tiny places of interest, but from space, we can scan the entire planet in remote places where no scientist can visit.

Of course, there are some complications in trying to study the light reflected off the surface of Earth, such as interference from clouds. To prevent this problem, the EMIT team plans to collect data at each location several times to ensure that the images aren’t being obscured by clouds between the instrument and the minerals we’re looking for.

The data collected by EMIT will provide a map of the compositions of dust from dry, desert environments all over the world, but the team involved won’t stop there. Knowing more about what the dust is made of sets the stage for a broader understanding of a few more of the complex processes that make up our global climate cycle. Upon completion of this study, EMIT's mineral maps will support further campaigns to complete our global dust picture. For example, NASA hopes to couple the data from EMIT with targeted field campaigns, in which scientists can collect wind-blown dust from the ground to learn more about where dust particles move over time and answer questions about what types of dust are on the go.

Furthermore, missions such as the Multiangle Imager for Aerosols, or MAIA, will allow us to better understand the effects of these dust particles on air-quality and public health.

Teach it

Studying Earth’s climate is a complex puzzle, consisting of many trackable features. These can range from sea level to particles in our atmosphere, but each makes a contribution to measuring the health of our planet. Bring EMIT and NASA Earth Science into your classroom with these lessons, articles, and activities to better understand how we’re exploring climate change.

Educator Guides

Student Activities

Articles

Websites

TAGS: Earth, climate, geology, weather, EMIT, Teachers, Classroom, Lessons, Earth Science, Climate Change, Dust, Global Warming, Educators, K-12, Teachable Moments, Climate TM

  • Brandon Rodriguez
READ MORE

Scenes from Jackie Prosser's fourth-grade classroom including a door poster commemorating Dorothy Vaughan, a poster with the words Dare Mighty Things glued to it, a yellow lab surrounded by NASA posters, and Miss Prosser with two other teachers all wearin

This fourth-grade teacher is finding creative ways to get her students back into the flow of classroom learning with the help of STEAM education resources from JPL.


Jackie Prosser is a fourth-grade teacher in Fairfield, California, finishing her second year as a classroom teacher. She is a recent graduate of the University of California, Riverside, where she simultaneously received her teaching credential and her master's in education. This was where I was fortunate enough to meet Miss Prosser, through a collaboration between the Education Office at NASA's Jet Propulsion Laboratory and UCR designed to help new teachers incorporate STEM into their future classrooms. She and her cohort immediately struck me as passionate future teachers already exploring unique ways to bring space science into their teaching.

But it's been a challenging transition for Miss Prosser and teachers like her who started their careers amid a pandemic. She began her student-teaching in person only to find that she would have to switch to teaching remotely just four months into the job. Now, she's back in the classroom but facing new challenges getting students up to speed academically while reacquainting them with the social aspects of in-person learning.

I caught up with her to find out how she's managing the transition and developing creative ways to support the individual needs of her students and, at the same time, incorporating science and art into her curriculum with the help of STEAM resources from the JPL Education Office.


What made you want to become an elementary school teacher?

Originally, I became a teacher because I love to see that moment of light when a concept finally clicks in a kid’s mind. I am still a teacher (even after the craziest two years ever) because every kid deserves someone to fight for them, and I know I can be that person for at least 32 kids a year.

I love to teach young kids especially for two reasons. The first is their honesty; no one will tell you exactly like it is like a nine-year-old will. The second is that I love the excitement kids have for learning at this age.

It has been a bumpy couple years, especially this past school year when it was unclear if we would be remote again or back in the classroom. How has it been coming back from remote learning?

Coming back from remote learning has been an incredible challenge, but we’ve come a long way since the beginning of the year. Students really struggled being back in a highly structured environment. It was very hard to balance meeting the individual needs of each student and getting them used to the structure and expectations of the classroom.

My fourth graders were online for the last part of second grade and a vast majority of third grade. This is when students really start to solve conflicts and regulate their emotions with less support from adults. I have seen a lot more problems with emotion regulation and conflict among my students this year than in years past.

There is a lot of pressure on teachers right now to make up for all the learning loss and for students being behind on grade-level standards. But I don’t think enough people talk about how much joy and social interaction they also lost during remote learning. Teachers are also feeling the pressure of that. I want to help my students be the very best versions of themselves and being happy and comfortable with themselves is a huge part of that.

Description in caption.

A student looks at a page from the NASA Solar System Exploration website. Image courtesy: Jackie Prosser | + Expand image

How do you structure your class to get students back in the flow of a school setting?

I use a lot of manipulatives in my math lessons and try to make their learning as hands-on as possible. I also teach math in small groups to be able to better meet the individual needs of my students. I have one group with me learning the lesson, one group doing their independent practice of the skill, and one group on their computers. Then, the students switch until each group has done each activity.

You’re a big fan of science and came to several JPL Education workshops while you were still in school yourself. Are there JPL Education resources that you have found particularly impactful for your students?

I have always loved teaching science. It is so often left behind or pushed aside. I think a lot of time that happens because teachers feel like they do not have enough background knowledge to teach high-quality science lessons or they think that the lessons will add to the already enormous workload teachers have. My district does not have an adopted or prescribed curriculum for teachers to follow, so we have a lot of freedom for when and how to make the time for STEAM.

The education resources [from NASA's Jet Propulsion Laboratory] have made it so easy for me to teach and get kids excited about science, and my kids absolutely love them. Our favorites always seem to be Make a Paper Mars Helicopter and Art and the Cosmic Connection.

Description in caption.

A student holds a paper Mars helicopter. Image courtesy: Jackie Prosser | + Expand image

I also am part of my district’s science pilot program. It has been so cool to be able to decide what curriculum to pilot and watch my students test it out and give feedback on their learning. Last year, I had the amazing opportunity to teach science for two elementary schools’ summer programs. My partner teacher and I got to create the curriculum for them, and we pulled a ton of lessons from the JPL Education website. It was by far the most fun I have ever had at a job.

Despite being a new teacher, you’ve already seen so much. How have you navigated the changing landscape?

I have an amazing network of teachers supporting me at every turn. My grade-level team and my friends from my credential program are some of the most amazing people and educators I have ever met. There is no way I would be able to get through the more difficult aspects of teaching without them.

I am also coaching the boys soccer team, directing the school’s "Lion King Jr." play, contributing to the science pilot program, and serving on the social committee for teachers and staff. I love using these different roles to make connections with not just my students, but also students from all grades.


Looking for ways to bring NASA STEM into your classroom or already have a great idea? The Education Office at NASA's Jet Propulsion Laboratory serves educators in the greater Los Angeles area. Contact us at education@jpl.nasa.gov.

Explore More

TAGS: Teachers, School, Remote School, Classroom, Instruction, K-12, Fourth Grade, STEAM, Science, Math, Art, UC Riverside, resources, lessons

  • Brandon Rodriguez
READ MORE

A screengrab from a web meeting shows a small window with Jayme Wisdom speaking to students and a picture of students attaching a balloon to a string.

Jayme Wisdom has been teaching for 15 years at the Vaughn Charter System in Pacoima, California. She has taught eighth-grade science for most of her career but switched to high school biology for the first time this year.

Ms. Wisdom has long utilized NASA and JPL educational resources, finding creative ways to adapt lessons to meet her students’ needs and exposing them to STEM careers.

A self-described professional nerd, she doesn't shy away from her love of all things Star Trek and Star Wars (and stands firm in her refusal to pick which is superior). While presenting during a recent JPL Education workshop, she shared how she continues to get her students excited about science – both in the classroom and remotely – during the COVID era.

What unique challenges do you face engaging or addressing the needs of your students?

Many of the students I teach face challenges including poverty, homelessness, and learning English as a second language. This year, in particular, has been extremely difficult for all of us dealing with the pandemic and distance learning. As a teacher, I have had to find ways to make sure that my students are engaged in scientific inquiry and have access to resources and materials while learning remotely. This begins and ends with a conscious effort to acknowledge that kids are struggling with this online format and carving out time in every single class to provide the socio-emotional support they have come to expect from a classroom environment. Before we dive into content, this means making time for check-ins and updates. In any in-person classroom, we carve out time to get to know each other, and being online should not diminish that. Of course, as we all learned this year, easier said than done.

Social isolation is another factor that contributes to the challenges of distance learning. Even though students see their peers virtually, it is often difficult for them to open up and talk as freely as they would if they were in a physical classroom. So I have had to find ways to make sure that my students are comfortable with engaging in a virtual setting by allowing them opportunities to talk and collaborate with each other online.

Using breakout sessions was difficult at first, because the students were very self-conscious about speaking to each other on screen and were reluctant to share ideas. So every day, we spent the first few minutes in each class just talking to each other through text-based chat to get them socializing and feeling more comfortable with this new way of interacting. Now they are more comfortable engaging in scientific inquiry with each other and have meaningful discussions to expand their learning. It is not the same as having them physically perform labs together in class but things are definitely improving.

Another challenge has been providing all of my students with access to resources and materials that allow them to simulate a laboratory experience at home. I have been pleasantly surprised at the wealth of resources I have available to me as a teacher to provide virtual labs and activities to my students. Whether it is virtual demonstrations and simulations or scientific investigations that require simple materials that students can find around the house, we have been very resourceful so we can give students the best experience possible through distance learning. Promoting lab science with home supplies has been instrumental in student engagement, as they really get to explore in their own context, expressing themselves creatively with what they have at their disposal instead of being provided the materials.

How have you used lessons from NASA and JPL to keep students engaged while teaching in person and remotely?

I have always been fascinated by outer space and have loved sci-fi TV shows and movies since I was very young. So as a teacher, I was so excited to discover ways to use my love of astronomy to engage my students.

When I discovered NASA and JPL's resources and lessons, I went through them like a kid in a candy store. I found so many different activities that I could adapt to use in my own classroom. Over the past few years, I have used several JPL Education lessons and modified and extended them for my students.

Three students in gray sweatshirts huddle around a cardboard rover, placing tape across its center.

While remote instruction has had its challenges, Ms. Windsom found that getting students to strike up conversations via chat at the start of class made students more willing to collaborate and share their designs for projects usually done in the classroom, like these cardboard rovers. Image courtesy: Shirley Yong and Malak Kawtharani | + Expand image

For example, I took JPL's Touchdown lesson and allowed students to create their own planetary lander using materials they could find around their home. I challenged them to create a way to quantify how much impact the touchdown would have on the "astronauts" in their lander. Some students used balls of play dough as their astronauts, and quantified the impact by measuring the dents made in the play dough by paper clips that they had placed on the "seats" of their lander.

Another example was when I combined the Soda-Straw Rocket and Stomp Rockets lessons. I had my students create a straw-stomp rocket to investigate how changing the angle of the rocket launch could have an effect on the distance the rocket traveled.

My students also had the opportunity to participate in engineering activities with JPL and college students from Pasadena City College. The impact that this had on my students was profound and long-lasting. It was inspiring for my students to hear from NASA scientists and student role-models who encouraged them to pursue careers in science, engineering, and technology.

Students look on, some holding their ears, as Ms. Wisdom holds a large red balloon while NASA/JPL Education Specialist Brandon Rodriguez lights a match underneath it as part of the Global Warming Demonstration.

Ms. Wisdom says that pesentations from STEM professionals go a long way toward engaging students, so she has made them a fixture in her classes – whether in person or remote. Image courtesy: Shirley Yong and Malak Kawtharani | + Expand image

How have students reacted to these lessons?

The biggest payoff for me was seeing students envision themselves as NASA scientists. They learned to collaborate with each other, learn from each other, and challenge each other. They were able to experience every step of the engineering process firsthand. They were actively involved in designing, building, and testing their rockets and landers. They could also gather information from watching other students revise and improve their designs. Learning from each other was so much fun for them. As a teacher, watching my students strengthen their critical thinking, practical engineering, and problem-solving skills is one of the best parts of my job.

You switched from teaching middle school to teaching high school this year. How are you thinking about incorporating NASA resources into lessons for older students?

Growing up, I loved how the technology that I saw in the sci-fi shows I watched as a kid eventually made its way into our reality. I am always amazed at how NASA scientists push the boundaries of technology development and are only limited by the scope of their imagination.

As a high school biology teacher, I'm looking forward to having my students examine the ways that space technology is being used to help humans improve the health of the planet. Investigating climate change and the ecological impact humans have on the environment is so important. Looking at how NASA gathers data to better understand climate change is especially critical at this time because my students' generation is going to play a pivotal role in developing technologies for improving life on Earth. I'm looking forward to continuing to use JPL Education resources to help my students prepare for that challenge.


Looking for ways to bring NASA STEM into your classroom or already have a great idea? The Education Office at NASA's Jet Propulsion Laboratory serves educators in the greater Los Angeles area. Contact us at education@jpl.nasa.gov.

Explore More

TAGS: Teaching, Teachers, K-12, Middle School, High School, Remote Instruction, Classroom, Lessons, Educators, Workshops, Professional Development

  • Brandon Rodriguez
READ MORE

Learn how, why, and what Perseverance will explore on Mars, plus find out about an exciting opportunity for you and your students to join in the adventure!


In the News

On Feb. 18, NASA's Perseverance Mars rover touched down on the Red Planet after a seven-month flight from Earth. Only the fifth rover to land on the planet, Perseverance represents a giant leap forward in our scientific and technological capabilities for exploring Mars and the possibility that life may have once existed on the Red Planet.

Here, you will:

Why It's Important

You might be wondering, "Isn't there already a rover on Mars?” The answer is yes! The Curiosity rover landed on Mars in 2012 and has spent its time on the Red Planet making fascinating discoveries about the planet's geology and environment – setting the stage for Perseverance. So, why send another rover to Mars? The lessons we’ve learned from Curiosity coupled with advancements in technology over the last decade are allowing us to take the next big steps in our exploration of Mars, including looking for signs of ancient microbial life, collecting rock samples to bring to Earth one day, and setting the stage for a potential future human mission to the Red Planet.

More specifically, the Perseverance Mars rover has four science objectives:

  • Identify past environments on Mars that could have supported microbial life
  • Seek signs of ancient microbial life within the rocks and soil using a new suite of scientific instruments
  • Collect rock samples of interest to be stored on the surface for possible return by future missions
  • Pave the way for human exploration beyond the Moon

With these science objectives in mind, let's take a look at how the mission is designed to achieve these goals – from its science-rich landing site, Jezero Crater, to its suite of onboard tools and technology.

How It Works

Follow the Water

A false-color satellite image of Jezero Crater is green and yellow around the edges with a large blue circular crater in the middle.

Lighter colors represent higher elevation in this image of Jezero Crater on Mars, the landing site for the Perseverance rover. The black oval indicates the area in which the rover will touch down, also called a landing ellipse. Image Credit: NASA JPL/Caltech/MSSS/JHU-APL/ESA | › Full image and caption

While present-day Mars is a cold, barren planet, science suggests that it was once very similar to Earth. The presence of clay, dried rivers and lakes, and minerals that formed in the presence of water provide extensive evidence that Mars once had flowing water at its surface. As a result, a mission looking for signs of ancient life, also known as biosignatures, should naturally follow that water. That’s because water represents the essential ingredient for life as we know it on Earth, and it can host a wide variety of organisms.

This is what makes Perseverance's landing site in Jezero Crater such a compelling location for scientific exploration. The crater was originally formed by an ancient meteorite impact about 3.8 billion years ago, and it sits within an even larger, older impact basin. The crater also appears to have once been home to an ancient lake fed by a river that formed the delta where Perseverance will begin its exploration, by exploring the foot of the river delta.

Take a tour of Perseverance's landing site in this animated flyover of the Martian surface. Credit: NASA/JPL-Caltech | Watch on YouTube

Tools of the Trade

Perseverance will begin its scientific exploration with the assistance of an array of tools, also known as science instruments.

An illustration of the rover is shown with each of its science instruments deployed and identified.

This artist's concept shows the various science tools, or instruments, onboard the rover. Image credit: NASA/JPL-Caltech | › Learn more about the rover's science instruments

Like its predecessor, Perseverance will have a number of cameras – 23, in fact! – serving as the eyes of the rover for scientists and engineers back on Earth. Nine of these cameras are dedicated to mobility, or tracking the rover's movements; six will capture images and videos as the rover travels through the Martian atmosphere down to the surface, a process known as entry, descent, and landing; and seven are part of the science instrumentation.

The SuperCam instrument is shown on a laboratory table before being installed on the rover.

SuperCam's mast unit before being installed atop the Perseverance rover's remote sensing mast. The electronics are inside the gold-plated box on the left. The end of the laser peeks out from behind the left side of the electronics. Image credit: CNES | › Learn more about SuperCam

Six pump-like structures control a rectangular metal instrument in this animated image.

PIXL can make slow, precise movements to point at specific parts of a rock's surface so the instrument's X-ray can discover where – and in what quantity – chemicals are distributed in a given sample. This GIF has been considerably sped up to show how the hexapod moves. Image credit: NASA/JPL-Caltech | › Learn more about PIXL

A small camera sits in gold-color housing on a white rover body.

A close-up view of an engineering model of SHERLOC, one the instruments aboard NASA's Perseverance Mars rover. Credit: NASA/JPL-Caltech | › Learn more about SHERLOC

Navcam, located on the mast (or "head") of the rover, will capture images to help engineers control the rover. Meanwhile, Mastcam-Z, also on the rover’s mast, can zoom in, focus, and take 3D color pictures and video at high speed to allow detailed examination of distant objects. A third camera, Supercam, fires a small laser burst to excite compounds on the surface and determine their composition using spectroscopy. Supercam is also equipped with a microphone. This microphone (one of two on the rover) will allow scientists to hear the pop the laser makes upon hitting its target, which may give scientists additional information about the hardness of the rock.

Leaning more toward chemistry, the Planetary Instrument for X-Ray Lithochemistry (PIXL) will allow us to look at the composition of rocks and soil down to the size of a grain of salt. Elements respond to different types of light, such as X-rays, in predictable ways. So by shining an X-ray on Martian rocks and soil, we can identify elements that may be part of a biosignature.

Meanwhile, a device called SHERLOC will look for evidence of ancient life using a technique called Deep UV Raman spectroscopy. Raman spectroscopy can help scientists see the crystallinity and molecular structure of rocks and soil. For example, some molecules and crystals luminesce, or emit light, when exposed to ultraviolet – similar to how a blacklight might be used to illuminate evidence in a crime scene. Scientists have a good understanding of how chemicals considered key to life on Earth react to things like ultraviolet light. So, SHERLOC could help us identify those same chemicals on Mars. In other words, it can contribute to identifying those biosignatures we keep talking about.

Rounding out its role as a roving geologist on wheels, Perseverance also has instruments for studying beneath the surface of Mars. An instrument called the Radar Imager of Mars Subsurface Experiment (RIMFAX) will use ground-penetrating radar to analyze depths down to about 100 feet (30 meters) below the surface. Mounted on the rear of the rover, RIMFAX will help us understand geological features that can't be seen by the other cameras and instruments.

The rover's suite of instruments demonstrates how multiple scientific disciplines – chemistry, physics, biology, geology, and engineering – work in concert to further our understanding of Mars and help scientists uncover whether life ever existed on the Red Planet.

Next Generation Tech

At NASA, scientists and engineers are always looking to push the envelope and, while missions such as Perseverance are ambitious in themselves, they also provide an opportunity for NASA to test new technology that could be used for future missions. Two excellent examples of such technology joining Perseverance on Mars are MOXIE and the first ever Mars helicopter, Ingenuity.

Engineers in white smocks lower a gold-colored cube into the rover

Members of Perseverance mission team install MOXIE into the belly of the rover in the cleanroom at NASA's Jet Propulsion Laboratory in Southern California. Image credit: NASA/JPL-Caltech | › Full image and caption

MOXIE stands for the Mars Oxygen In-Situ Resource Utilization Experiment. Operating at 800 degrees Celsius, MOXIE takes in carbon dioxide (CO2) from the thin Martian atmosphere and splits those molecules into pure oxygen using what is called a catalyst. A catalyst is a chemical that allows for reactions to take place under conditions they normally wouldn’t. MOXIE provides an incredible opportunity for NASA to create something usable out of the limited resources available on Mars. Over the duration of the rover's mission, MOXIE will run for a total of one hour every time it operates, distributed over the course of the prime mission timeframe, to determine whether it can reliably produce breathable oxygen. The goal of operating this way is to allow scientists to determine the performance across a variety of environmental conditions that a dedicated, human-mission-sized oxygen plant would see during operations - day versus night, winter versus summer, etc. Oxygen is of great interest for future missions not just because of its necessity for future human life support on Mars, but also because it can be used as a rocket propellant, perhaps allowing for future small-scale sample return missions to Earth.

The helicopter with four long blades, a cube-shape body and long skinny legs sites in the forground with the wheels of the rover visible to its right.

This artist's concept shows Ingenuity, the first Mars helicopter, on the Red Planet's surface with Perseverance (partially visible on the left) in the distance. Image credit: NASA/JPL-Caltech | › Full image and caption

The Mars Ingenuity helicopter is likewise an engineering first. It is a technology demonstration to test powered flight on Mars. Because the Martian atmosphere is so thin, flight is incredibly difficult. So, the four-pound (1.8-kilogram), solar powered helicopter is specially designed with two, four-foot (1.2-meter) long counter-rotating blades that spin at 2,400 rotations per minute. In the months after Perseverance lands, Ingenuity will drop from the belly of the rover. If all goes well, it will attempt test flights of increasing difficulty, covering incrementally greater heights and distances for about 30 days. In the future, engineers hope flying robots can allow for a greater view of the surrounding terrain for robotic and human missions alike.

Teach It

Take part in a worldwide “teachable moment” and bring students along for the ride as NASA lands the Perseverance rover on Mars February 18. Science communicator and host of “Emily’s Wonder Lab” on Netflix, Emily Calandrelli, shares how you can join the adventure with your students! | Register on Eventbrite

The process of landing on Mars with such an advanced mission is no doubt an exciting opportunity to engage students across all aspects of STEM – and NASA wants to help teachers, educators and families bring students along for the adventure with the Mission to Mars Student Challenge. This challenge will lead students through designing and building a mission to Mars with a guided education plan and resources from NASA, listening to expert talks, and sharing student work with a worldwide audience. 

Learn more about the challenge and explore additional education resources related to the Perseverance Mars rover mission at https://go.nasa.gov/mars-challenge

Watch the Landing

The next chapter of Perseverance’s journey takes place on Feb. 18 at 12 p.m. PST (3 p.m. EST), when the mission reaches Mars after seven months of travelling through space. Join NASA as we countdown to landing with online events for teachers, students, and space enthusiasts! The landing day broadcast can be seen on NASA TV and the agency's website starting at 11:15 a.m. PST (2:15 p.m. EST). For a full listing of online events leading up to and on landing day, visit the mission's Watch Online page.

Follow landing updates on NASA's Twitter, Facebook and Instagram accounts.

Explore More

More Resources From NASA

  • Website: Perseverance Mars Rover
  • Website: NASA Mars Exploration
  • Website: Space Place - All About Mars
  • Video: Perseverance Mission Landing Trailer
  • Profiles: Meet the Martians
  • Simulation: Fly Along with Perseverance in Real-Time
  • Virtual Events: Watch Online – NASA Mars Exploration
  • Videos: Mars exploration videos from NASA
  • Images: Mars exploration images and graphics from NASA
  • Articles: Articles about Mars exploration from NASA
  • Share: Social Media
  • TAGS: Mars, Perseverance, Mars 2020, Science, Engineering, Robotics, Educators, Teachers, Students, Teachable Moments, Teach, Learn, Mars Landing

    • Brandon Rodriguez
    READ MORE

    Collage of images showing Toluca Lake Elementary's fifth-grade teachers and students working on projects

    Over the past four years in the Education Office at NASA's Jet Propulsion Laboratory, I have had the good fortune to work with amazing educators and their students across Southern California. While it's not always possible to visit schools in person, there are sometimes projects and curricula so unique that a visit is too hard to pass up. That was the case when the fifth-grade staff at Toluca Lake Elementary School in Los Angeles reached out to me. This team of teachers has long been implementing exciting science activities and programs not just for their students, but also for parents and the community at large. The team – made up of Dennis Hagensmith, Rick Lee and Hamilton Wyatt – shared some of their background with us, as well as tips for getting young students excited about science in and out of the classroom.

    Tell us about your background. How long have you been teaching?

    Hagensmith: I've been teaching for 32 years total, with 29 of them at Toluca Lake Elementary. I began my teaching career in a split fourth- and fifth-grade classroom and moved to sixth grade for several years. But I have spent most of my career working with fifth graders.

    Lee: This is my seventh year teaching and my fourth year teaching fifth grade. I have also taught kindergarten and second grade. Although there are aspects of teaching primary grades that I miss, fifth grade is my favorite of the three because the standards students are working toward are so comprehensive. It keeps me interested and excited about learning along with my students.

    Wyatt: I have taught for almost three years. Before that, I was a teacher's assistant and instructional aid for three years.

    How do you use resources from NASA in the classroom?

    Hagensmith: I have used NASA resources to create hands-on lessons measuring the relative size of our solar system, to prepare a salad demonstrating the Sun's mass, to make bracelets with colored beads matching the chemical composition of the cosmos and assemble handmade telescopes.

    Lee: Dennis and I recently attended an oceanography workshop put on by JPL that involved learning from teachers and researchers who had just completed cruises aboard the Exploration Vessel Nautilus. We were inspired to include similar activities leading up to and during an already-planned after-school screening of [the Netflix documentary] "Chasing Coral." The lesson complements other JPL lessons related to sea-level rise and global climate change.

    Rodriguez, Lee and Hagensmith stand on a concrete doc with a ship in the water behind them

    JPL's Educator Professional Development Coordinator Brandon Rodriguez stands with Lee and Hagensmith during a September 2019 educator workshop that connected participants with researchers aboard the Nautilus research vessel for a talk on oceanography. Image Courtesy: Brandon Rodriguez | + Expand image

    Wyatt: Many of the JPL resources aren't just about science – they are generally thought-provoking activities. I use many of the activities pertaining to art because my students this year are artistically talented and curious.

    How do you address the specific needs of your students and get the community involved in their education?

    Hagensmith: Teaching in a low-income area, it is imperative that we find ways to make our families feel welcome and encourage academic excellence. Our goal is to create a school culture in which all realize their potential and make the most of their education. To that goal, we host a variety of parent and community nights each year, including Night of the Arts, Family Science Night, Family Reading Night, family writing workshops and Family Pi Night. The most popular of all of these is our annual Family Astronomy Night and Star Party. The evening always kicks off with a presentation from a visiting scientist, then families participate in a number of hands-on workshops. The most popular activity is often the telescopes provided by the Burbank Sidewalk Astronomers taking aim at various celestial objects.

    This idea for the family events came about back in 2010 when I took a class at JPL with scientist Bonnie Burrati. The class inspired me to take steps to enhance my science instruction. We became a NASA partner school and began utilizing lessons from the NASA-JPL Education website. As a result of these lessons, two of our students – Ali Freas and Caitline Molina – were awarded a trip to NASA's Johnson Space Center in 2012 to participate in the Student Science Symposium. That year, we also presented NASA's "Space School Musical" at our annual Night of the Arts. I began doing the star party sometime around that era. Originally, it was just parents from my class and one guest presenter. As the years went by, we were able to recruit more teachers to host workshops and get speakers from JPL and UCLA. Last year, we had nearly 200 guests at the star party.

    Lee: I really try to maximize the impact of field trips. Students bring study guides and circulate through the tour, working as investigators searching for information and formulating their own conclusions about the topic we're exploring. This approach is useful for focusing student attention on key concepts at a wide range of locations. Recently, we visited the ecosystems and Space Shuttle Endeavour exhibits at the California Science Center, we've seen art at the Getty and Los Angeles County Museum of Art, and we've built cultural understanding at Los Angeles Plaza and the California African American Museum.

    Wyatt: Many students that come to me struggle with social-emotional skills and really need a jump-start on how to express themselves without feeling overwhelmed or picked on by other students. It is very important to me to begin by engaging with my students in a way that communicates that they can feel safe, comforted and empowered when they are in my class. All students have the ability to express themselves and still be strong scholars. I strive to help my students find that sweet spot in my classroom.

    One thing teachers struggle with, especially in primary grades, is making science cross-curricular. How have you brought science into the everyday lesson?

    Hagensmith: Part of my success as a teacher has come from letting students direct their own assessments. I believe students need to see that learning isn't done in isolation. Subjects are connected with one another and with real-world applications. Each activity is preceded by lessons providing a context for students' learning. For example, after reading a book, students may create a diorama, write a review for the school newspaper, dress as one of the characters and get interviewed by peers, make a presentation and so forth. This provides a vehicle for students to build upon their unique skills and interests.

    Lee: I've found success especially with topics related to the environment. I completed the National Geographic Educator Certification program last year, and that experience made a huge impact on me personally and professionally. I highly recommend it to all educators. National Geographic resources, combined with those offered by NASA-JPL, are guaranteed to create highly engaging, cooperative learning opportunities for students across all disciplines.


    Looking for ways to bring NASA STEM into your classroom or already have a great idea? The Education Office at NASA's Jet Propulsion Laboratory serves educators in the greater Los Angeles area. Contact us at education@jpl.nasa.gov.

    TAGS: K-12 Education, Teachers, Educators, Resources, Lessons, Classroom, STEM, Professional Development

    • Brandon Rodriguez
    READ MORE

    A large group of students and teachers stand in front of a full-size model of the Curiosity rover.

    This past school year, the Education Office at NASA's Jet Propulsion Laboratory supported a comprehensive, multischool physics project that served as a capstone project for high-school students. Seven schools in three school districts across the Los Angeles area participated, tasked by their teachers with building a habitat including working circuitry and renewable power sources that was capable of withstanding seismic events.

    Hundreds of physics students from underserved communities participated in the project, constructing their habitats as part of a Next Generation Science Standards, or NGSS, curriculum. One of the key components of NGSS, which was adopted by California in 2013, is its inclusion of science content areas, such as Earth science and physics. The project, drawing upon the lessons found on the JPL Education website, was a chance for students to apply their knowledge of numerous high-school science courses into one summative project. It was also a rare opportunity for the students, who were coming from underserved communities, to see connections between classroom content and real-world science.

    "It is difficult for [students] to connect what they do in school with their future," wrote Joshua Gagnier, a physics teacher at Santa Ana High School, who participated in the project. "The only advice they receive is to study, work hard and get help, which without clear goals, are abstract concepts. It is opportunities such as the JPL challenge, which had a tangible academic award, that my students need."

    To help students apply their knowledge in a real-world context, teachers presented a challenge to build functional habitats, complete with power, wiring and the ability to withstand the elements. Each school focused on and contributed different components to the habitats, such as solar power or thermodynamics. Students were given broad freedom to construct rooms and devices that were of interest to them while still demonstrating their knowledge throughout the school year. Gagnier had his classes focus on the electromagnetic spectrum and use their understanding of waves – for example, the threat of seismic waves to physical stability and the availability of light waves for solar power – to select a habitat location. He also had students examine the use of solar energy to power their habitats.

    "The students used JPL and NASA resources to understand the elevation of [electromagnetic] penetration in combination with Google Earth to find the altitude of the geography they were evaluating," he wrote. "When students were trying to find a way to heat water for their habitat using the limited available supplies, JPL's Think Green lesson was one of the main sources for their solution." This lesson, in particular, allowed students to measure flux and available solar energy at different regions in the country using NASA data available online.

    Students crowd around a large desk and use tape and cardboard to begin constructing their habitats. Two of the students look at a laptop.

    Students at Santa Ana High School begin constructing their habitats. Image courtesy Joshua Gagnier | + Expand image

    Students sit around a red table, one holding a solar panel in the air with wires attached to a small device. Other students examine the data on the device and write the results.

    Students measure the current generated by their habitat's solar panels. Image courtesy Joshua Gagnier | + Expand image

    Ultimately, it was up to the students to design and craft their habitats based on the lessons they learned. So the final prototype structures varied dramatically from class to class and even more from school to school. One school focused on habitats powered solely by renewable energy, while another school focused more on the structure's ability to withstand earthquakes via a shake table. Vaughn International Studies Academy worked across class periods to build "modular" homes – with each group building a single room instead of a whole habitat. These rooms, which included a living room, bedroom and even a sauna, were connected to a central power supply. In all cases, students had to quantify the amount of energy produced, determine how to disperse it throughout their home and present a sales pitch for their habitat, describing how it satisfied their criteria.

    Small cardboard boxes with dioramas of living rooms, an outdoor scene and a bedroom sit side-by-side on a large black desk.

    Participating schools elected to focus on certain features for their habitats, such as solar efficiency, circuity and wiring, or modular rooms that could be combined into larger homes. Image courtesy Brandon Rodriguez | + Expand image

    At the end of the challenge, a winning group from each school was invited to JPL with their teachers to meet students from participating schools and tour the laboratory. It was also a chance for students and teachers to compare their projects. Due to the success of the pilot program, the participating teachers are already making plans for next school year, discussing ways to improve the challenge and expand the program to several more schools in the Los Angeles area.


    Looking for ways to bring NASA STEM into your classroom or already have a great idea? The Education Office at NASA's Jet Propulsion Laboratory serves educators in the greater Los Angeles area. Contact us at education@jpl.nasa.gov.

    Special thanks to Kris Schmidt, Joshua Gagnier, Sandra Hightower and Jill Mayorga for their participation and dedication to bringing NASA science to their students.

    TAGS: K-12 education, STEM, educators, teachers, science, engineering, physics, resources, lessons, students, Earth Science, Earth, Climate Change

    • Brandon Rodriguez
    READ MORE