JPL intern Camille Yoke stands in front of a test chamber

JPL intern Camille V. Yoke is building a thruster like the one that might send astronauts to Mars in the future. The University of South Carolina physics major shares how she’s shaping the future of electric propulsion and why she’s a fan of the “Mark Watney lifestyle.”

What are you working on at JPL?

I am working on a thruster – which is what makes a spacecraft accelerate while it's in the vacuum of space – similar to one that we could ultimately use on either a manned mission to Mars, a cargo mission to Mars, or other future manned missions. I am building what's called a cathode. It goes into an electric propulsion thruster and creates a plume of plasma. My job this summer is to test that plasma and see whether or not we can improve upon previous generations of the same technology.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What's a typical day like for you?

I have an office in a lab. Usually, in the morning, I talk with my mentor about the data that I've collected the day before. Then I either continue collecting data of the same variety or we decide that we need something new. The lab that I work in has three very small vacuum chambers, in which we create a plasma plume. I measure things like the density and temperature of the plasma at different positions. Then, I study the data to see what I’ve found.

What have you found out so far?

The technology I work on is the third-generation cathode for this thruster. The major difference between the third and the second generation is that we're giving the cathode extra fuel in different places. We actually learned today that it might be causing the temperature of the thruster to be much lower than it was previously, which is probably good news – but we don't know yet. We're going to launch into doing more rigorous tests and figure out whether or not that's a mistake in how we were testing it or if that's a pattern of this new technology.

What is electric propulsion and what makes it different than fuel propulsion? Why is it being considered for Mars and manned missions, specifically?

Electric propulsion is really good for deep space missions, meaning those going any farther than the Moon, because it can run for many thousands of hours. It requires power to run an electric thruster, which used to be an issue for NASA, but now large solar arrays are used on spacecraft to generate a lot of power. So for many proposed thrusters, the only limiting factor is the fuel. A main advantage of electric thrusters over chemical propulsion is that less fuel is required, so it’s less expensive to get these thrusters into space. This could be important for manned missions in the solar system, such as a manned mission to Mars, which may require lots of cargo shipments.

How do you think you're contributing to NASA missions and science?

Today there was a brief period in which I knew something that nobody else on the planet knew – for 20 minutes before I went and told my boss. You feel like you're contributing when you know that you have discovered something new. I'm a student, so I'm learning and I think that's an important contribution, too. Learning about all these technologies in order to advance them forward when the current experts retire or leave is really important.

JPL intern Camille Yoke stands in front of the Danger, High Voltage sign in her lab at JPL

Credit: NASA/JPL-Caltech/Kim Orr | + Expand image

If you could travel to any place in space, where would you go and what would you do there?

I've read a lot about potential floating cities to study Venus, and those always seem really neat. I'm also a fan of the Mark Watney style of life [in “The Martian”], where you're stranded on a planet somewhere and the only thing between you and death is your own ability to work through problems and engineer things on a shoestring. There's this sign in my lab that reads, "Danger, high voltage" and there’s another that reads, “There's nitrogen in this room. Two breaths of pure nitrogen will knock you out.” That’s why I really like applied physics; if you do it wrong, it will kill you. So If I ended up in a situation like Mark Watney’s on a floating city on Venus, I wouldn't complain. It would be pretty cool.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Interns, Internships, College, Higher Education, Opportunities, STEM, Science, Engineering, Physics

  • Kim Orr