Tag Search - All Blogs

Tag Search - All Blogs


Dawn's 4th Mapping Orbit (LAMO)

Dear Superintendawnts and Assisdawnts,

An intrepid interplanetary explorer is now powering its way down through the gravity field of a distant alien world. Soaring on a blue-green beam of high-velocity xenon ions, Dawn is making excellent progress as it spirals closer and closer to Ceres, the first dwarf planet discovered. Meanwhile, scientists are progressing and analyzing the tremendous volume of pictures and other data the probe has already sent to Earth.

Dawn is flying down to an average altitude of about 240 miles (385 kilometers), where it will conduct wide-ranging investigations with its suite of scientific instruments. The spacecraft will be even closer to the rocky, icy ground than the International Space Station is to Earth's surface. The pictures will be four times sharper than the best it has yet taken. The view is going to be fabulous!

Dawn will be so near the dwarf planet that its sensors will detect only a small fraction of the vast territory at a time. Mission planners have designed the complex itinerary so that every three weeks, Dawn will fly over most of the terrain while on the sunlit side. (The neutron spectrometer, gamma ray spectrometer and gravity measurements do not depend on illumination from the sun, but the camera, infrared mapping spectrometer and visible mapping spectrometer do.)

Obtaining the planned coverage of the exotic landscapes requires a delicate synchrony between Ceres' and Dawn's movements. Ceres rotates on its axis every nine hours and four minutes (one Cerean day). Dawn will revolve around it in a little less than five and a half hours, traveling from the north pole to the south pole over the hemisphere facing the sun and sailing northward over the hemisphere hidden in the darkness of night. Orbital velocity at this altitude is around 610 mph (980 kilometers per hour).

Last year we had a preview of the plans for this fourth and final mapping orbit (sometimes also known as the low altitude mapping orbit, or LAMO), and we will present an updated summary next month.

The planned altitude differs from the earlier, tentative value of 230 miles (375 kilometers) for several reasons. One is that the previous notion for the altitude was based on theoretical models of Ceres’ gravity field. Navigators measured the field quite accurately in the previous mapping orbit (using the method outlined here), and that has allowed them to refine the orbital parameters to choreograph Dawn’s celestial pas de deux with Ceres. In addition, prior to Dawn’s investigations, Ceres’ topography was a complete mystery. Hubble Space Telescope had shown the overall shape well enough to allow scientists to determine that Ceres qualifies as a dwarf planet, but the landforms were indiscernible and the range of relative elevations was simply unknown. Now that Dawn has mapped the topography, we can specify the spacecraft’s average height above the ground as it orbits. With continuing analyses of the thousands of stereo pictures taken in August – October and more measurements of the gravity field in the final orbit, we will further refine the average altitude. Finally, we round the altitude numbers to the nearest multiple of five (both for miles and kilometers), because, as we will discuss in a subsequent Dawn Journal, the actual orbit will vary in altitude by much more than that. (We described some of the ups and dawns of the corresponding orbit at Vesta here. The variations at Ceres will not be as large, but the principles are the same.)

Dawn HAMO Image 50
Dawn had this view of Urvara crater in mapping cycle #4 from an altitude of 915 miles (1,470 kilometers) during the third mapping orbit. (Urvara is a Vedic goddess associated with fertile lands and plants.) The crater is 101 miles (163 kilometers) in diameter. It displays a variety of features, including a particularly bright region on the peak at the center, ridges nearby, a network of fissures, some smooth regions and much rougher terrain. You can locate all the areas shown in this month's photos on the Ceres map presented last month. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

To attain its new orbit, Dawn relies on its trusty and uniquely efficient ion engine, which has already allowed the spacecraft to accomplish what no other has even attempted in the 58-year history of space exploration. This is the only mission ever to orbit two extraterrestrial destinations. The spaceship orbited the protoplanet Vesta for 14 months in 2011-2012, revealing myriad fascinating details of the second most massive object in the main asteroid belt between Mars and Jupiter, before its March 2015 arrival in orbit around the most massive. Ion propulsion enables Dawn to undertake a mission that would be impossible without it.

While the ion engine provides 10 times the efficiency of conventional spacecraft propulsion, the engine expends the merest whisper of xenon propellant, delivering a remarkably gentle thrust. As a result, Dawn achieves acceleration with patience, and that patience is rewarded with the capability to explore two of the last uncharted worlds in the inner solar system. This raises an obvious question: How cool is that? Fortunately, the answer is equally obvious: Incredibly cool!

The efficiency of the ion engine enables Dawn not only to orbit two destinations but also to maneuver extensively around each one, optimizing its orbits to reap the richest possible scientific return at Vesta and Ceres. The gentleness of the ion engine makes the maneuvers gradual and graceful. The spiral descents are an excellent illustration of that.

Dawn began its elegant downward coils on Oct. 23 upon concluding more than two months of intensive observations of Ceres from an altitude of 915 miles (1,470 kilometers). At that height, Ceres' gravitational hold was not as firm as it will be in Dawn's lower orbit, so orbital velocity was slower. Circling at 400 mph (645 kilometers per hour), it took 19 hours to complete one revolution around Ceres. It will take Dawn more than six weeks to travel from that orbit to its new one. (You can track its progress and continue to follow its activities once it reaches its final orbit with the frequent mission status updates.)

PIA19993: Dawn HAMO Image 51
Dawn took this picture of Dantu crater from an altitude of 915 miles (1,470 kilometers) during the third mapping orbit, in mapping cycle #4. (Dantu is a timekeeper god who initiates the cycle of planting rites among the Ga people of the Accra Plains of southeastern Ghana. You can find Dantu, but not Ghana, on this map.) The crater is about 78 miles (126 kilometers) across. Note the isolated bright regions, the long fissures, and the zigzag structure at the center. Scientists are working to understand what these indicate about the geological processes on Ceres. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

On Nov. 16, at an altitude of about 450 miles (720 kilometers), Dawn circled at the same rate that Ceres turned. Now the spacecraft is looping around its home even faster than the world beneath it turns.

When ion-thrusting ends on Dec. 7, navigators will measure and analyze the orbital parameters to establish how close they are to the targeted values and whether a final adjustment is needed to fit with the intricate observing strategy. Several phenomena contribute to small differences between the planned orbit and the actual orbit. (See here and here for two of our attempts to elucidate this topic.) Engineers have already thoroughly assessed the full range of credible possibilities using sophisticated mathematical methods. This is a complex and challenging process, but the experienced team is well prepared. In case Dawn needs to execute an additional maneuver to bring its orbital motion into closer alignment with the plan, the schedule includes a window for more ion-thrusting on Dec. 11-13 (concluding on Dawn's 2,999th day in space). In the parlance of spaceflight, this maneuver to adjust the orbit is a trajectory correction maneuver (TCM), and Dawn has experience with them.

The operations team takes advantage of every precious moment at Ceres they can, so while they are determining whether to perform the TCM and then developing the final flight plan to implement it, they will ensure the spacecraft continues to work productively. Dawn carries two identical cameras, a primary and a backup. Engineers occasionally operate the backup camera to verify that it remains healthy and ready to be put into service should the primary camera falter. On Dec. 10, the backup will execute a set of tests, and Dawn will transmit the results to Earth on Dec. 11. By then, the work on the TCM will be complete.

Although it is likely a TCM will be needed, if it turns out to be unnecessary, mission control has other plans for the spacecraft. In this final orbit, Dawn will resume using its reaction wheels to control its orientation. By electrically changing the speed at which these gyroscope-like devices rotate, the probe can control its orientation, stabilizing itself or turning. We have discussed their lamentable history on Dawn extensively, with two of the four having failed. Although such losses could have been ruinous, the flight team formulated and implemented very clever strategies to complete the mission without the wheels. Exceeding their own expectations in such a serious situation, Dawn is accomplishing even more observations at Ceres than had been planned when it was being built or when it embarked on its ambitious interplanetary journey in 2007.

PIA20000: Dawn HAMO Image 57
Dawn took this picture in its third mapping orbit at an altitude of 915 miles (1,470 kilometers) in mapping cycle #5 of its third mapping orbit. The prominent triplet of overlapping craters nicely displays relative ages, which are apparent by which ones affect others and hence which ones formed later. The largest crater, Geshtin, is 48 miles (77 kilometers) across and is the oldest. (Geshtin is a Sumerian and Assyro-Babylonian goddess of the vine.) A subsequent impact that excavated Datan crater, which is 37 miles (60 kilometers) in diameter, obliterated a large section of Geshtin's rim and made its own crater wall in Geshtin's interior. (Datan is one of the Polish gods who protect the fields but apparently not this crater.) Still later, Datan itself was the victim of a sizable impact on its rim (although not large enough to have merited an approved name this early in the geological studies of Ceres). Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Now the mission lifetime is limited by the small supply of conventional rocket propellant, expelled from reaction control system thrusters strategically located around the spacecraft. When that precious hydrazine is exhausted, the robot will no longer be able to point its solar arrays at the sun, its antenna at Earth, its sensors at Ceres or its ion engines in the direction needed to travel elsewhere, so the mission will conclude. The lower Dawn's orbital altitude, the faster it uses hydrazine, because it must rotate more quickly to keep its sensors pointed at the ground. In addition, it has to fight harder to resist Ceres' relentless gravitational tug on the very large solar arrays, creating an unwanted torque on the ship.

Among the innovative solutions to the reaction wheel problems was the development of a new method of orienting the spacecraft with a combination of only two wheels plus hydrazine. In the final orbit, this "hybrid control" will use hydrazine at only half the rate that would be needed without the wheels. Therefore, mission controllers have been preserving the units for this final phase of the expedition, devoting the limited remaining usable life to the time that they can provide the greatest benefit in saving hydrazine. (The accuracy with which Dawn can aim its sensors is essentially unaffected by which control mode is used, so hydrazine conservation is the dominant consideration in when to use the wheels.) Apart from a successful test of hybrid control two years ago and three subsequent periods of a few hours each for biannual operation to redistribute internal lubricants, the two operable wheels have been off since August 2012, when Dawn was climbing away from Vesta on its way out of orbit.

Controllers plan to reactivate the wheels on Dec. 14. However, in the unlikely case that the TCM is deemed unnecessary, they will power the wheels on on Dec. 11. The reaction wheels will remain in use for as long as both function correctly. If either one fails, which could happen immediately or might not happen before the hydrazine is depleted next year, it and the other will be powered off, and the mission will continue, relying exclusively on hydrazine control.

PIA20124: Dawn HAMO Image 62
Dawn recorded this view in its third mapping orbit at an altitude of 915 miles (1,470 kilometers) in mapping cycle #5. The region shown is located between between Fluusa and Toharu craters. The largest crater here is 16 miles (26 kilometers) across. The well defined features indicate the crater is relatively young, so subsequent small impacts have not degraded it significantly. As elsewhere on Ceres, some strikingly bright material is evident, particularly in the walls. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn will measure the energies and numbers of neutrons and gamma rays emanating from Ceres as soon as it arrives in its new orbit. With a month or so of these measurements, scientists will be able to determine the abundances of some of the elements that compose the material near the surface. Engineers and scientists also will collect new data on the gravity field at this low altitude right away, so they eventually can build up a profile of the dwarf planet's interior structure. The other instruments (including the camera) have narrower fields of view and are more sensitive to small discrepancies in where they are aimed. It will take a few more days to incorporate the actual measured orbital parameters into the corresponding plans that controllers will radio to the spacecraft. Those observations are scheduled to begin on Dec. 18. But always squeezing as much as possible out of the mission, the flight team might actually begin some photography and infrared spectroscopy as early as Dec. 16.

Now closing in on its final orbit, the veteran space traveler soon will commence the last phase of its long and fruitful adventure, when it will provide the best views yet of Ceres. Known for more than two centuries as little more than a speck of light in the vast and beautiful expanse of the stars, the spacecraft has already transformed it into a richly detailed and fascinating world. Now Dawn is on the verge of revealing even more of Ceres' secrets, answering more questions and, as is the marvelous nature of science and exploration, raising new ones.

Dawn is 295 miles (470 kilometers) from Ceres. It is also 3.33 AU (309 million miles, or 498 million kilometers) from Earth, or 1,270 times as far as the moon and 3.37 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 55 minutes to make the round trip.

Dr. Marc D. Rayman
5:00 p.m. PST, November 30, 2015

TAGS: DAWN, MISSION, SPACECRAFT, CERES, VESTA, DWARF PLANET

  • Marc Rayman
READ MORE

Animated gif using images from NASA's Dawn mission showing the topography of the dwarf planet Ceres

Dear Exuldawnt Readers,

Dawn has completed another outstandingly successful campaign to acquire a wealth of pictures and other data in its exploration of dwarf planet Ceres. Exultant residents of distant Earth now have the clearest and most complete view ever of this former planet.

The stalwart probe spent more than two months orbiting 915 miles (1,470 kilometers) above the alien world. We described the plans for this third major phase of Dawn's investigation (also known as the high altitude mapping orbit, or HAMO) in August and provided a brief progress report in September. Now we can look back on its extremely productive work.

Ceres wuth planetary names
This map of Ceres shows the feature names approved by the International Astronomical Union. We described the naming convention in December, and the most up-to-date list of names is here. The small crater Kait (named for the ancient Hattic grain goddess) is used to define the location of the prime meridian. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Each revolution, flying over the north pole to the south pole and back to the north, took Dawn 19 hours. Mission planners carefully chose the orbital parameters to coordinate the spacecraft's travels with the nine-hour rotation period of Ceres (one Cerean day) and with the field of view of the camera so that in 12 orbits over the lit hemisphere (one mapping "cycle"), Dawn could photograph all of the terrain.

In each of six mapping cycles, the robot held its camera and its infrared and visible mapping spectrometers at a different angle. For the first cycle (Aug. 17-26), Dawn looked straight down. For the second, it looked a little bit behind and to the left as it completed another dozen orbits. For the third map, it pointed the sensors a little behind and to the right. In its fourth cycle, it aimed ahead and to the left. When it made its fifth map, it peered immediately ahead, and for the sixth and final cycle (Oct. 12-21) it viewed terrain farther back than in the third cycle but not as far to the right.

The result of this extensive mapping is a very rich collection of photos of the fascinating scenery on a distant world. Think for a moment of the pictures not so much from the standpoint of the spacecraft but rather from a location on the ground. With the different perspectives in each mapping cycle, that location has been photographed from several different angles, providing stereo views. Scientists will use these pictures to make the landscape pop into its full three dimensionality.

Dawn's reward for these two months of hard work is much more than revealing Ceres' detailed topography, valuable though that is. During the first and fifth mapping cycles, it used the seven color filters in the camera, providing extensive coverage in visible and infrared wavelengths.

Hints at Ceres’ Composition from Color
This false-color map of Ceres was constructed using images taken in the first mapping cycle at an altitude of 915 miles (1,470 kilometers). It combines pictures taken in filters that admit light in what the human eye perceives as violet (440 nanometers), near the limit of visible red (750 nanometers), and invisible infrared (920 nanometers). Because humans are so good at processing visual information, depictions such as this are a helpful way to highlight and illustrate variations in the composition or other properties of the material on Ceres' surface. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

In addition to taking more than 6,700 pictures, the spacecraft operated its visible and infrared mapping spectrometers to acquire in excess of 12.5 million spectra. Each spectrum contains much finer measurements of the colors and a wider range of wavelengths than the camera. In exchange, the camera has sharper vision and so can discern smaller geological features. As the nerdier among us would say, the spectrometers achieve better spectral resolution and the camera achieves better spatial resolution. Fortunately, it is not a competition, because Dawn has both, and the instruments yield complementary measurements.

Even as scientists are methodically analyzing the vast trove of data, turning it into knowledge, you can go to the Ceres image gallery to see some of Dawn's pictures, exhibiting a great variety of terrain, smooth or rugged, strangely bright or dark, unique in the solar system or reminiscent of elsewhere spacecraft have traveled, and always intriguing.

Occator Mosaic
Ten photos from Dawn's first mapping cycle were combined to make this view centered on Occator crater. Because of the range of brightness, pictures with two different exposures were required to record the details of the bright regions and the rest of the crater itself, as explained last month. Eight additional pictures show the area around the crater. Occator is almost 60 miles (more than 90 kilometers) in diameter. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Among the questions scientists are grappling with is what the nature of the bright regions is. There are many places on Ceres that display strikingly reflective material but nowhere as prominently as in Occator crater. Even as Dawn approached Ceres, the mysterious reflections shone out far into space, mesmerizing and irresistible, as if to guide or even seduce a passing ship into going closer. Our intrepid interplanetary adventurer, compelled not by this cosmic invitation but rather by humankind's still more powerful yearning for new knowledge and new insights, did indeed venture in. Now it has acquired excellent pictures and beautiful spectra that will help determine the composition and perhaps even how the bright areas came to be. Thanks to the extraordinary power of the scientific method, we can look forward to explanations. (And while you wait, you can register your vote here for what the answer will be.)

Scientists also puzzle over the number and distribution of craters. We mentioned in December the possibility that ice being mixed in as a major component on or near the surface would cause the material to flow, albeit very slowly on the scale of a human lifetime. But over longer times, the glacially slow movement might prove significant. Most of Ceres' craters are excavated by impacts from some of the many bodies that roam that part of the solar system. Ceres lives in a rough neighborhood, and being the most massive body between Mars and Jupiter does not give it immunity to assaults. Indeed, its gravity makes it even more susceptible, attracting passersby. But once a crater is formed, the scar might be expected to heal as the misshapen ground gradually recovers. In some ways this is similar to when you remove pressure from your skin. What may be a deep impression relaxes, and after a while, the original mark (or, one may hope, Marc) is gone. But Ceres has more craters than some scientists had anticipated, especially at low latitudes where sunlight provides a faint warming. Apparently the expectation of the gradual disappearance of craters was not quite right. Is there less evidence of flowing ground material because the temperature is lower than predicted (causing the flow to be even slower), because the composition is not quite what was assumed, or because of other reasons? Moreover, craters are not distributed as would be expected for random pummeling; some regions display significantly more craters than others. Investigating this heterogeneity may give further insight into the geological processes that have taken place and are occurring now on this dwarf planet.

Occator Topography
This color-coded topographic map of Occator crater is based on Dawn's observations in its second mapping orbit at an altitude of 2,700 miles (4,400 kilometers). Of course there is no sea level on Ceres, but the deep blue here is 5,150 feet (1,570 meters) below a reference level, and brown is 14,025 feet (4,275 meters) above it. (Brown is used in place of white for the elevation, so white can show the bright regions.) Imagine the exotic scenery here, with strangely bright areas and towering crater walls. The stereo views acquired in the third mapping orbit will reveal finer detail in the topography. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn's bounty from this third major science campaign includes even more than stereo and color pictures plus visible and infrared spectra. Precise tracking of the spacecraft as it moves in response to Ceres' gravitational pull allows scientists to calculate the arrangement of mass in the behemoth. Performing such measurements will be among the top three priorities for the lowest altitude orbit, when Dawn experiences the strongest buffeting from the gravitational currents, but already the structure of the gravitational field is starting to be evident. We will see next month how this led to a small change in the choice of the altitude for this next orbit, which will be less than 235 miles (380 kilometers).

The other top two priorities for the final mission phase are the measurement of neutron spectra and the measurement of gamma ray spectra, both of which will help in establishing what species of atoms are present on and near the surface. The weak radiation from Ceres is difficult to measure from the altitudes at which Dawn has been operating so far. The gamma ray and neutron detector (GRaND) has been in use since March 12 (shortly after Dawn arrived in orbit), but that has been to prepare for the low orbit. Nevertheless, the sophisticated instrument did detect the dwarf planet's faint nuclear emissions even in this third orbital phase. The signal was not strong enough to allow any conclusions about the elemental composition, but it is interesting to begin seeing the radiation which will help uncover more of Ceres' secrets when Dawn is closer.

To scientists' great delight, one of GRaND's sensors even found an entirely unexpected signature of Ceres in Dawn's second mapping orbit, where the spacecraft revolved every 3.1 days at an altitude of 2,700 miles (4,400 kilometers). In a nice example of scientific serendipity, it detected high energy electrons in the same region of space above Ceres on three consecutive orbits. Electrons and other subatomic particles stream outward from the sun in what is called the solar wind, and researchers understand how planets with magnetic fields can accelerate them to higher energy. Earth is an example of a planet with a magnetic field, but Ceres is thought not to be. So scientists now have the unanticipated joy not only of establishing the physical mechanism responsible for this discovery but also determining what it reveals about this dwarf planet.

Dawn HAMO Image 29
Dawn had this view near 0 degrees longitude in the northern hemisphere on Sept. 9 in its third mapping cycle at an altitude of 915 miles (1,470 kilometers). Oxo crater on the right, which shows bright material inside and out as well as a peculiar shape, is slightly over five miles (nearly nine kilometers) in diameter. The crater is named for the god of agriculture for the Yoruba people of Brazil. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Several times during each of the six mapping cycles, Dawn expended a few grams of its precious hydrazine propellant to rotate so it could aim its main antenna at Earth. While the craft soared high above ground cloaked in the deep black of night, it transmitted some of its findings to NASA's Deep Space Network. But Dawn conducted so many observations that during half an orbit, or about 9.5 hours, it could not radio enough data to empty its memory. By the end of each mapping cycle, the probe had accumulated so much data that it fixed its antenna on Earth for about two days, or 2.5 revolutions, to send its detailed reports on Ceres to eager Earthlings.

Following the conclusion of the final mapping cycle, after transmitting the last of the information it had stored in its computer, the robotic explorer did not waste any time gloating over its accomplishments. There was still a great deal more work to do. On Oct. 23 at 3:30 p.m., it fired up ion engine #2 (the same one it used to descend from the second mapping orbit to the third) to begin more than seven weeks of spiraling down to its fourth orbit. (You can follow its progress here and on Twitter @NASA_Dawn.) Dawn has accomplished more than 5.4 years of ion thrusting since it left Earth, and the complex descent to less than 235 miles (380 kilometers) is the final thrusting campaign of the entire extraterrestrial expedition. (The ion propulsion system will be used occasionally to make small adjustments to the final orbit.)

The blue lights in Dawn mission control that indicate the spacecraft is thrusting had been off since Aug. 13. Now they are on again, serving as a constant (and cool) reminder that the ambitious mission is continuing to power its way to new (and cool) destinations.

Dawn is 740 miles (1,190 kilometers) from Ceres. It is also 2.91 AU (271 million miles, or 436 million kilometers) from Earth, or 1,165 times as far as the moon and 2.93 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 48 minutes to make the round trip.

Dr. Marc D. Rayman
3:00 p.m. PDT October 30, 2015

P.S. While the spacecraft is hard at work continuing its descent tomorrow, your correspondent will be hard at work dispensing treats to budding (but cute) extortionists at his front door. But zany and playful as ever, he will expand his delightful costume from last year by adding eight parts dark energy. Trick or treat!

TAGS: CERES, DAWN, MISSION, SPACECRAFT, VESTA, DWARF PLANET

  • Marc Rayman
READ MORE

Video animation of various views of CeresYoutube video

Dear Unhesidawntingly Enthusiastic Readers,

An ambitious explorer from Earth is gaining the best views ever of dwarf planet Ceres. More than two centuries after its discovery, this erstwhile planet is now being mapped in great detail by Dawn.

The spacecraft is engaged in some of the most intensive observations of its entire mission at Ceres, using its camera and other sensors to scrutinize the alien world with unprecedented clarity and completeness. At an average altitude of 915 miles (1,470 kilometers) and traveling at 400 mph (645 kilometers per hour), Dawn completes an orbit every 19 hours. The pioneer will be here for more than two months before descending to its final orbit.

The complex spiral maneuver down from the second mapping orbit at 2,700 miles (4,400 kilometers) went so well that Dawn arrived in this third mapping orbit on Aug. 13, which was slightly ahead of schedule. (Frequent progress of its descent, and reports on the ongoing work in the new orbit, are available here and on Twitter @NASA_Dawn.) It began this third mapping phase on schedule at 9:53:40 p.m. PDT on Aug. 17.

Map of Ceres with named craters
This map of Ceres shows the feature names approved by the International Astronomical Union as of August 14, 2015. We described the naming convention in December, and the most up-to-date list of names is here. (Click on the image for an enlarged view or go here for a similar version with other details.) Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

We had a detailed preview of the plans last year when Dawn was more than six thousand times farther from Ceres than it is today. (For reasons almost as old as Ceres itself, this phase is also known as the high altitude mapping orbit, or HAMO, although we have seen that it is the second lowest of the four mapping orbits.) Now let’s review what will happen, including a change mission planners have made since then.

The precious pictures and other data have just begun to arrive on Earth, and it is too soon to say anything about the latest findings, but stand by for stunning new discoveries. Actually, you could get pictures about as good as Dawn’s are now with a telescope 217 times the diameter of Hubble Space Telescope. An alternative is to build your own interplanetary spaceship, travel through the depths of space to the only dwarf planet in the inner solar system, and look out the window. Or go to the Ceres image gallery.

Dawn has already gained fabulous perspectives on this mysterious world from its first and second mapping orbits. Now at one third the altitude of the mapping campaign that completed in June, its view is three times as sharp. (Exploring the cosmos is so cool!) That also means each picture takes in a correspondingly smaller area, so more pictures are needed now to cover the entire vast and varied landscape. At this height, Dawn’s camera sees a square about 88 miles (140 kilometers) on a side, less than one percent of the more than one million square miles (nearly 2.8 million square kilometers). The orbital parameters were chosen carefully so that as Ceres rotates on its axis every nine hours (one Cerean day), Dawn will be able to photograph nearly all of the surface in a dozen orbital loops.

brightest spots on dwarf planet Ceres
The famous bright spots (or famously bright spots) in Occator crater, as viewed in the second mapping orbit. What will these mesmerizing features reveal with pictures three times sharper? We will know soon! And pictures from Dawn’s closest mapping orbit will display almost 12 times as much detail as seen here. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

When Dawn explored the giant protoplanet Vesta from comparable orbits (HAMO1 in 2011 and HAMO2 in 2012), it pointed its scientific instruments at the illuminated ground whenever it was on the dayside. Every time its orbit took it over the nightside, it turned to point its main antenna at Earth to radio its findings to NASA’s Deep Space Network. As we explained last year, however, that is not the plan at Ceres, because of the failure of two of the ship’s reaction wheels. (By electrically changing the speed at which these gyroscope-like devices rotate, Dawn can turn or stabilize itself in the zero-gravity conditions of spaceflight.)

We discussed in January that the flight team has excogitated innovative methods to accomplish and even exceed the original mission objectives regardless of the condition of the wheels, even the two operable ones (which will not be used until the final mapping orbit). Dawn no longer relies on reaction wheels, although when it left Earth in 2007, they were deemed indispensable. The spacecraft’s resilience (which is a direct result of the team’s resourcefulness) is remarkable!

One of the many ingredients in the recipe for turning the potentially devastating loss of the wheels into a solid plan for success has been to rotate the spacecraft less frequently. Therefore, sometimes Dawn will wait patiently for half an orbit (almost 9.5 hours) as it flies above ground cloaked in the deep darkness of night, its instruments pointed at terrain they cannot detect. Other times, it will keep its antenna fixed on Earth without even glancing at the sunlit scenery below, because it can capture the views on other revolutions. This strategy conserves hydrazine, the conventional rocket propellant used by the small jets of the reaction control system in the absence of the wheels. It takes more time, but because Dawn is in orbit, time is not such a limited resource. It will take 12 passages over the illuminated hemisphere, each lasting nearly 9.5 hours, to bring the entirety of the landscape within view of its camera, but we will need a total of 14 full revolutions, or 11 days (29 Cerean days, for those of you using that calendar), to acquire and transmit all the data. The Dawn team calls this 11-day period “11 days,” or sometimes a “cycle.”

In quite a change from the days that there simply didn’t seem to be enough hydrazine onboard to accomplish all of the mission’s ambitious objectives, engineers and the spacecraft itself have collaborated to be so efficient with the precious molecules that they now have some to spare. Therefore, mission planners have recently decided to spend a few more in this mapping orbit. They have added extra turns to allow the robot to communicate with Earth during more of the transits over the nightside than they had previously budgeted. This means Dawn can send the contents of its computer memory to Earth more often and therefore have space to collect and store even more data than originally planned. An 11-day mapping cycle is going to be marvelously productive.

Dawn Survey Orbit Image 46
The conical mountain visible in the animation above is on the left of this photograph from the second mapping orbit. The mountain’s distinctive bright side is facing right. We presented two other perspectives of it in June. Scientists have recently refined their calculation of its height, now estimating that it towers an impressive four miles (six kilometers) above the surrounding terrain. In the third mapping orbit, Dawn will provide clearer views and a more accurate measurement of its elevation. The image below shows the mountain from still another perspective.
Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

But Dawn has goals still more ambitious than taking pictures and recording infrared and visible spectra of the lands passing underneath it. It will conduct six complete mapping cycles, each one looking at a slightly different angle. This will effectively yield stereo views, which when combined will make those flat images pop into full three dimensionality.

In its first mapping cycle, which is taking place now, the explorer aims its instruments straight down. For the second, it will keep the camera pointed a little bit back and to the left, making another full map but with a different perspective. For the third, it will look a little back and to the right. The fourth map will be viewing the scenery ahead and to the left. The fifth map will be of the terrain immediately ahead, and the sixth will be farther back than the third but not as far to the right.

In addition to the stereo pictures and the many spectra (which reveal the nature of the minerals as well as the surface temperature), Dawn will use the color filters in its camera to record the sights in visible and infrared wavelengths.

As always, mission planners schedule more observations than are needed, recognizing that glitches can occur on a complex and challenging expedition in the forbidding depths of space. So even if some data are not collected, the goals can still be accomplished.

The probe also will continue to acquire spectra both of neutrons and of gamma rays. It is unlikely to detect more than a whisper of neutrons from Ceres at this height, but the radiation coming from elsewhere in space now will serve as a useful calibration when it measures stronger nuclear emanations from one quarter the altitude starting in December, allowing scientists to inventory Ceres’ atomic constituents.

Precise measurements of Dawn’s radio signal will reveal more details of the dwarf planet’s gravitational field and hence the distribution of mass within. When the spacecraft is not aiming its main antenna at Earth, it will broadcast through one of its three auxiliary antennas, and the Deep Space Network will be listening (almost) continuously throughout the 84 orbits.

a conical mountain on Ceres
The same conical mountain pictured above can be seen on the left of this photograph. Some of the bright material outside Haulani crater is visible near the limb on the right edge. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

As at Vesta, Dawn’s polar orbits are oriented so that the craft always keeps the sun in view, never entering Ceres’ shadow, even when it is nighttime on the ground below. But its course will take the robot out of sight from Earth occasionally, and the behemoth of rock and ice will block the radio signal. Of course, Dawn is quite accustomed to operating in radio silence. It follows timed instructions (called sequences) that cover a full mapping cycle, so it does not require constant contact. And in budgeting how much data Dawn can collect and transmit, mission planners have accounted for the amount of time Ceres will eclipse its view of Earth.

Thanks to the uniquely efficient and exceptionally gentle thrust of the ion engines, as well as the flexibility inherent in being in orbit, Dawn operations generally can be more leisurely than those with conventional chemical propulsion or missions that only fly past their targets rather than stay for as long as needed. In that spirit, controllers had allowed the time in the spacecraft’s main computer to drift off, as there was no need to keep it particularly accurate. But recently the clock was off by so much that they decided to correct it, so before the mapping began, they adjusted it by a whopping 0.983 seconds, eliminating a large (but still tolerable) offset.

Many residents of Earth’s northern hemisphere are completing their leisurely summer vacations. As we saw in February, Dawn has measured the orientation of Ceres’ spin axis and found that it is tipped about four degrees (compared with Earth’s axial tilt of 23 degrees). The sun then never moves very far from the dwarf planet’s equator, so seasonal variations are mild. Nevertheless, northern hemisphere summer (southern hemisphere winter) began on Ceres on July 24. Because Ceres takes longer to revolve around the sun than Earth, seasons last much longer. The next equinox won’t occur until Nov. 13, 2016, so there is still plenty of time to plan a summer vacation.

Meanwhile, Dawn is working tirelessly to reveal the nature of this complex, intriguing world. Now seeing the exotic sights with a sharper focus than ever, the probe’s meticulous mapping will provide a wealth of new data that scientists will turn into knowledge. And everyone who has ever seen the night sky beckon, everyone who has heard the universe’s irresistible invitation, and everyone who has felt the overpowering drive for a bold journey far from Earth shares in the experience of this remarkable interplanetary adventure.

Dawn is 905 miles (1,456 kilometers) from Ceres. It is also 2.06 AU (191 million miles, or 308 million kilometers) from Earth, or 775 times as far as the moon and 2.03 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 34 minutes to make the round trip.

Dr. Marc D. Rayman
5:00 p.m. PDT August 21, 2015

TAGS: CERES, DAWN, ION PROPULSION, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE

This view of Ceres shows some bright material that is not confined to “spots.”

Dear Descendawnts,

Flying on a blue-green ray of xenon ions, Dawn is gracefully descending toward dwarf planet Ceres. Even as Dawn prepares for a sumptuous new feast in its next mapping orbit, scientists are continuing to delight in the delicacies Ceres has already served. With a wonderfully rich bounty of pictures and other observations already secured, the explorer is now on its way to an even better vantage point.

Dawn Survey Orbit Image 31 This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 25, 2015.
Dawn was in its second mapping orbit at an altitude of 2,700 miles (4,400 kilometers) when it took this picture of Ceres. This area shows relatively few craters, suggesting it is younger than some other areas on Ceres. Some bright spots are visible, although they are not as prominent as the most famous bright spots. Scientists do not yet have a clear explanation for them, but you can register your vote here. Click on the picture (or follow the link to the full image) for a better view of some interesting narrow, straight features in the lower left. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Full image and caption

Dawn takes great advantage of its unique ion propulsion system to maneuver extensively in orbit, optimizing its views of the alien world that beckoned for more than two centuries before a terrestrial ambassador arrived in March. Dawn has been in powered flight for most of its time in space, gently thrusting with its ion engine for 69 percent of the time since it embarked on its bold interplanetary adventure in 2007. Such a flight profile is entirely different from the great majority of space missions. Most spacecraft coast most of the time (just as planets do), making only brief maneuvers that may add up to just a few hours or even less over the course of a mission of many years. But most spacecraft could not accomplish Dawn’s ambitious mission. Indeed, no other spacecraft could. The only ship ever to orbit two extraterrestrial destinations, Dawn accomplishes what would be impossible with conventional technology. With the extraordinary capability of ion propulsion, it is truly an interplanetary spaceship.

In addition to using its ion engine to travel to Vesta, enter into orbit around the protoplanet in 2011, break out of orbit in 2012, travel to Ceres and enter into orbit there this year, Dawn relies on the same system to fly to different orbits around these worlds it unveils, executing complex and graceful spirals around its gravitational master. After conducting wonderfully successful observation campaigns in its preantepenultimate Ceres orbit 8,400 miles (13,600 kilometers) high in April and May and its antepenultimate orbit at 2,700 miles (4,400 kilometers) in June, Dawn commenced its spiral descent to the penultimate orbit at 915 miles (1,470 kilometers) on June 30. (We will discuss this orbital altitude in more detail below.) A glitch interrupted the maneuvering almost as soon as it began, when protective software detected a discrepancy in the probe’s orientation. But thanks to the exceptional flexibility built into the plans, the mission could easily accommodate the change in schedule that followed. It will have no effect on the outcome of the exploration of Ceres. Let’s see what happened.

Survey orbit to HAMO
Dawn’s spiral descent from its second mapping orbit (survey), at 2,700 miles (4,400 kilometers), to its third (HAMO), at 915 miles (1,470 kilometers). The two mapping orbits are shown in green. The color of Dawn’s trajectory progresses through the spectrum from blue, when it began ion-thrusting in survey orbit, to red, when it arrives in HAMO. The red dashed sections show where Dawn is coasting for telecommunications. Compare this to the previous spiral. Image credit: NASA/JPL-Caltech

Control of Dawn’s orientation in the weightless conditions of spaceflight is the responsibility of the attitude control system. (To maintain a mystique about their work, engineers use the term “attitude” instead of “orientation.” This system also happens to have a very positive attitude about its work.) Dawn (and all other objects in three-dimensional space) can turn about three mutually perpendicular axes. The axes may be called pitch, roll and yaw; left/right, front/back and up/down; x, y and z; rock, paper and scissors; chocolate, vanilla and strawberry; Peter, Paul and Mary; etc., but whatever their names, attitude control has several different means to turn or to stabilize each axis. Earlier in its journey, the spacecraft depended on devices known as reaction wheels. As we have discussed in many Dawn Journals, that method is now used only rarely, because two of the four units have failed. The remaining two are being saved for the ultimate orbit at about 230 miles (375 kilometers), which Dawn will attain at the end of this year. Instead of reaction wheels, Dawn has been using its reaction control system, shooting puffs of hydrazine, a conventional rocket propellant, through small jets. (This is entirely different from the ion propulsion system, which expels high velocity xenon ions to change and control Dawn’s path through space. The reaction control system is used only to change and control attitude.)

Whenever Dawn is firing one of its three ion engines, its attitude control system uses still another method. The ship only operates one engine at a time, and attitude control swivels the mechanical gimbal system that holds that engine, thus imparting a small torque to the spacecraft, providing the means to control two axes (pitch and yaw, for example, or chocolate and strawberry). For the third axis (roll or vanilla), it still uses the hydrazine jets of the reaction control system.

On June 30, engine #3 came to life on schedule at 10:32:19 p.m. PDT to begin nearly five weeks of maneuvers. Attitude control deftly switched from using the reaction control system for all three axes to only one, and controlling the other two axes by tipping and tilting the engine with gimbal #3. But the control was not as effective as it should have been. Software monitoring the attitude recognized the condition but wisely avoided reacting too soon, instead giving attitude control time to try to rectify it. Nevertheless, the situation did not improve. Gradually the attitude deviated more and more from what it should have been, despite attitude control’s efforts. Seventeen minutes after thrusting started, the error had grown to 10 degrees. That’s comparable to how far the hour hand of a clock moves in 20 minutes, so Dawn was rotating only a little faster than an hour hand. But even that was more than the sophisticated probe could allow, so at 10:49:27 p.m., the main computer declared one of the “safe modes,” special configurations designed to protect the ship and the mission in uncertain, unexpected or difficult circumstances.

The spacecraft smoothly entered safe mode by turning off the ion engine, reconfiguring other systems, broadcasting a continuous radio signal through one of its antennas and then patiently awaiting further instructions. The radio transmission was received on a distant planet the next day. (It may yet be received on some other planets in the future, but we shall focus here on the response by Earthlings.) One of NASA’s Deep Space Network stations in Australia picked up the signal on July 1, and the mission control team at JPL began investigating immediately.

Engineers assessed the health of the spacecraft and soon started returning it to its normal configuration. By analyzing the myriad diagnostic details reported by the robot over the next few days, they determined that the gimbal mechanism had not operated correctly, so when attitude control tried to change the angle of the ion engine, it did not achieve the desired result.

Because Dawn had already accomplished more than 96 percent of the planned ion-thrusting for the entire mission (nearly 5.5 years so far), the remaining thrusting could easily be accomplished with only one of the ion engines. (Note that the 96 percent here is different from the 69 percent of the total time since launch mentioned above, simply because Dawn has been scheduled not to thrust some of the time, including when it takes data at Vesta and Ceres.) Similarly, of the ion propulsion system’s two computer controllers, two power units and two sets of valves and other plumbing for the xenon, the mission could be completed with only one of each. So although engineers likely could restore gimbal #3’s performance, they chose to switch to another gimbal (and thus another engine) and move on. Dawn’s goal is to explore a mysterious, fascinating world that used to be known as a planet, not to perform complex (and unnecessary) interplanetary gimbal repairs.

One of the benefits of being in orbit (besides it being an incredibly cool place to be) is that Dawn can linger at Ceres, studying it in great detail rather than being constrained by a fast flight and a quick glimpse. By the same principle, there was no urgency in resuming the spiral descent. The second mapping orbit was a perfectly fine place for the spacecraft, and it could circle Ceres there every 3.1 days as long as necessary. (Dawn consumed its hydrazine propellant at a very, very low rate while in that orbit, so the extra time there had a negligible cost, even as measured by the most precious resource.)

The operations team took the time to be cautious and to ensure that they understood the nature of the faulty gimbal well enough to be confident that the ship could continue its smooth sailing. They devised a test to confirm Dawn’s readiness to resume its spiral maneuvers. After swapping to gimbal #2 (and ipso facto engine #2), Dawn thrust from July 14 to 16 and demonstrated the excellent performance the operations team has seen so often from the veteran space traveler. Having passed its test with flying colors (or perhaps even with orbiting colors), Dawn is now well on its way to its third mapping orbit.

Artist’s concept of Dawn thrusting with ion engine #2.
Artist’s concept of Dawn thrusting with ion engine #2. The spacecraft captured the view of Ceres in June, and the intriguing cone described last month is visible on the limb at lower left. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Background image and caption

The gradual descent from the second mapping orbit to the third will require 25 revolutions. The maneuvers will conclude in about two weeks. (As always, you can follow the progress with your correspondent’s frequent and succinct updates here.) As in each mapping orbit, following arrival, a few days will be required in order to prepare for a new round of intensive observations. That third observing campaign will begin on August 17 and last more than two months.

Although this is the second lowest of the mapping orbits, it is also known as the high altitude mapping orbit (HAMO) for mysterious historical reasons. We presented an overview of the HAMO plans last year. Next month, we will describe how the flight team has built on a number of successes since then to make the plans even better.

The view of the landscapes on this distant and exotic dwarf planet from the third mapping orbit will be fantastic. How can we be so sure? The view in the second mapping orbit was fantastic, and it will be three times sharper in the upcoming orbit. Quod erat demonstrandum! To see the sights at Ceres, go there or go here.

Part of the flexibility built into the plans was to measure Ceres’ gravity field as accurately as possible in each mapping orbit and use that knowledge to refine the design for the subsequent orbital phase. Thanks to the extensive gravity measurements in the second mapping orbit in June, navigators were able not only to plot a spiral course but also to calculate the parameters for the next orbit to provide the views needed for the complex mapping activities.

This color-coded map from NASA's Dawn mission shows the highs and lows of topography on the surface of dwarf planet Ceres. It is labeled with names of features approved by the International Astronomical Union.
This map of Ceres depicts the topography ranging from 4.7 miles (7.5 kilometers) low in indigo to 4.7 miles (7.5 kilometers) high in white. (As a technical detail, the topography is shown relative to an ellipsoid of dimensions very close to those in the paragraph below.) The names of features have been approved by the International Astronomical Union following the system described in December. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Full image and caption

We have discussed some of the difficulty in describing the orbital altitude, including variations in the elevation of the terrain, just as a plane flying over mountains and valleys does not maintain a fixed altitude. As you might expect on a world battered by more than four billion years in the main asteroid belt and with its own internal geological forces, Ceres has its ups and downs. (The topographical map above displays them, and you can see a cool animation of Ceres showing off its topography here.) In addition to local topographical features, its overall shape is not perfectly spherical, as we discussed in May. Ongoing refinements based on Dawn’s measurements now indicate the average diameter is 584 miles (940 kilometers), but the equatorial diameter is 599 miles (964 kilometers), whereas the polar diameter is 556 miles (894 kilometers). Moreover, the orbits themselves are not perfect circles, and irregularities in the gravitational field, caused by regions of lower and higher density inside the dwarf planet, tug less or more on the craft, making it move up and down somewhat. (By using that same principle, scientists learn about the interior structure of Ceres and Vesta with very accurate measurements of the subtleties in the spacecraft’s orbital motions.) Although Dawn’s average altitude will be 915 miles (1,470 kilometers), its actual distance above the ground will vary over a range of about 25 miles (40 kilometers).

In March we summarized the four Ceres mapping orbits along with a guarantee that the dates would change. In addition to delivering exciting interplanetary adventures to thrill anyone who has ever gazed at the night sky in wonder, Dawn delivers on its promises. Therefore, we present the updated table here. With such a long and complex mission taking place in orbit around the largest previously uncharted world in the inner solar system, further changes are highly likely. (Nevertheless, we would consider the probability to be low that changes will occur for the phases in the past.)

Table showing Dawn's activities during the various mapping orbits
Find out more about Dawn's activities during these mapping orbits: RC3, survey, HAMO, LAMO

Click on the name of each orbit for a more detailed description. As a reminder, the last column illustrates how large Ceres appears to be from Dawn’s perspective by comparing it with a view of a soccer ball. (Note that Ceres is not only 4.4 million times the diameter of a soccer ball but it is a lot more fun to play with.)

Resolute and resilient, Dawn patiently continues its graceful spirals, propelled not only by its ion engine but also by the passions of everyone who yearns for new knowledge and noble adventures. Humankind’s robotic emissary is well on its way to providing more fascinating insights for everyone who longs to know the cosmos.

Dawn is 1,500 miles (2,400 kilometers) from Ceres. It is also 1.95 AU (181 million miles, or 291 million kilometers) from Earth, or 785 times as far as the moon and 1.92 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 32 minutes to make the round trip.

Dr. Marc D. Rayman
8:00 p.m. PDT July 29, 2015

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT, BRIGHT SPOTS

  • Marc Rayman
READ MORE

The brightest spots on Ceres.

Dear Evidawnce-Based Readers,

Dawn is continuing to unveil a Ceres of mysteries at the first dwarf planet discovered. The spacecraft has been extremely productive, returning a wealth of photographs and other scientific measurements to reveal the nature of this exotic alien world of rock and ice. First glimpsed more than 200 years ago as a dot of light among the stars, Ceres is the only dwarf planet between the sun and Neptune.

Dawn has been orbiting Ceres every 3.1 days at an altitude of 2,700 miles (4,400 kilometers). As described last month, the probe aimed its powerful sensors at the strange landscape throughout each long, slow passage over the side of Ceres facing the sun. Meanwhile, Ceres turned on its axis every nine hours, presenting itself to the ambassador from Earth. On the half of each revolution when Dawn was above ground that was cloaked in the darkness of night, it pointed its main antenna to that planet far, far away and radioed its precious findings to eager Earthlings (although the results will be available for others throughout the cosmos as well). Dawn began this second mapping campaign (also known as "survey orbit") on June 5, and tomorrow it will complete its eighth and final revolution.

The spacecraft made most of its observations by looking straight down at the terrain directly beneath it. During portions of its first, second and fourth orbits, however, Dawn peered at the limb of Ceres against the endless black of space, seeing the sights from a different perspective to gain a better sense of the lay of the land.

And what marvels Dawn has beheld! How can you not be mesmerized by the luminous allure of the famous bright spots? They are not, in fact, a source of light, but for a reason that remains elusive, the ground there reflects much more sunlight than elsewhere. Still, it is easy to imagine them as radiating a light all their own, summoning space travelers from afar, beckoning the curious and the bold to venture closer in return for an attractive reward. And that is exactly what we will do, as we seek the rewards of new knowledge and new insights into the cosmos.

Although scientists have not yet determined what minerals are there, Dawn will gather much more data. As summarized in this table, our explorer will map Ceres again from much closer during the course of its orbital mission. New bright areas have shown up in other locations too, in some places as relatively small spots, in others as larger areas (as in the photo below), and all of them will come into sharper focus when Dawn descends further.

limb with crater and bright materials inside and out
There is bright material easily visible inside and around the crater near the upper right. Did the powerful impact that excavated the crater deposit bright material that it brought from elsewhere in space, excavate bright material from underground or create the conditions that subsequently caused some material to become bright? The reason for the greater reflectivity is not yet known. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Full image and caption

In the meantime, you can register your opinion for what the bright spots are. Join more than 100 thousand others who have voted for an explanation for this enigma. Of course, Ceres will be the ultimate arbiter, and nature rarely depends upon public opinion, but the Dawn project will consider sending the results of the poll to Ceres, courtesy of our team member on permanent assignment there.

In addition to the bright spots, Dawn's views from its present altitude have included a wide range of other intriguing sights, as one would expect on a world of more than one million square miles (nearly 2.8 million square kilometers). There are myriad craters excavated by objects falling from space, inevitable scars from inhabiting the main asteroid belt for more than four billion years, even for the largest and most massive resident there.

The craters exhibit a wide range of appearances, not only in size but also in how sharp and fresh or how soft and aged they look. Some display a peak at the center. A crater can form from such a powerful punch that the hard ground practically melts and flows away from the impact site. Then the material rebounds, almost as if it sloshes back, while already cooling and then solidifying again. The central peak is like a snapshot, preserving a violent moment in the formation of the crater. By correlating the presence or absence of central peaks with the sizes of the craters, scientists can infer properties of Ceres' crust, such as how strong it is. Rather than a peak at the center, some craters contain large pits, depressions that may be a result of gasses escaping after the impact. (Craters elsewhere in the solar system, including on Vesta and Mars, also have pits.)

crater with terraced walls, a central peak and ridge, smooth areas at top of picture and more rugged terrain at bottom
Several craters here have central peaks. The largest also has a ridge at the center. Note other intriguing geological structures, including the terraced walls of that crater and the contrast between the smooth area in the top half of the picture and the more rugged terrain at the bottom. The picture below overlaps the top of this view. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Full image and caption

Dawn also has spied many long, straight or gently curved canyons. Geologists have yet to determine how they formed, and it is likely that several different mechanisms are responsible. For example, some might turn out to be the result of the crust of Ceres shrinking as the heat and other energy accumulated upon formation gradually radiated into space. When the behemoth slowly cooled, stresses could have fractured the rocky, icy ground. Others might have been produced as part of the devastation when a space rock crashed, rupturing the terrain.

Bright spots on the limb plus canyons
Several long canyons are evident in this view. The large crater that extends off the bottom of the picture is in the center of the picture above. Also notice the bright spots, just visible on the limb at upper left. The first picture above shows them from overhead. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.Full image and caption

Ceres shows other signs of an active past rather than that of a static chunk of inert material passing the eons with little notice. Some areas are less densely cratered than others, suggesting that there are geological processes that erase the craters. Indeed, some regions look as if something has flowed over them, as if perhaps there was mud or slush on the surface.

In addition to evidence of aging and renewal, some powerful internal forces have uplifted mountains. One particularly striking structure is a steep cone that juts three miles (five kilometers) high in an otherwise relatively smooth area, looking to an untrained (but transfixed) eye like a volcanic cone, a familiar sight on your home planet (or, at least, on mine). No other isolated, prominent protuberance has been spotted on Ceres.

limb with conical mountain above and to the right of center plus a few other bright areas
The conical mountain is above and to the right of center. With the solar illumination from the top of the picture, note how crater walls are brighter on the bottom (facing the sun) and darker on the top (shaded by the ground they sink into). The cone stands out because it is brighter on the top (facing the sun), and the opposite side is in the shade. (In addition, the material in some places on the cone is brighter than in other places on the same structure.) This view also show several bright spots and larger areas. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Full image and caption

another view of the limb with the same conical mountain and a few other bright areas.
The conical feature in the previous picture is visible here on the limb at bottom center. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Full image and caption

It is too soon for scientists to understand the intriguing geology of this ancient world, but the prolific adventurer is providing them with the information they will use. The bounty from this second mapping phase includes more than 1,600 pictures covering essentially all of Ceres, well over five million spectra in visible and infrared wavelengths and hundreds of hours of gravity measurements.

The spacecraft has performed its ambitious assignments quite admirably. Only a few deviations from the very elaborate plans occurred. On June 15 and 27, during the fourth and eighth flights over the dayside, the computer in the combination visible and infrared mapping spectrometer (VIR) detected an unexpected condition, and it stopped collecting data. When the spacecraft's main computer recognized the situation, it instructed VIR to close its protective cover and then power down. The unit dutifully did so. Also on June 27, about three hours before VIR's interruption, the camera's computer experienced something similar.

Most of the time that Dawn points its sensors at Ceres, it simultaneously broadcasts through one of its auxiliary radio antennas, casting a very wide but faint signal in the general direction of Earth. (As Dawn progresses in its orbit, the direction to Earth changes, but the spacecraft is equipped with three of these auxiliary antennas, each pointing in a different direction, and mission controllers program it to switch antennas as needed.) The operations team observed what had occurred in each case and recognized there was no need to take immediate action. The instruments were safe and Dawn continued to carry out all of its other tasks.

When Dawn subsequently flew to the nightside of Ceres and pointed its main antenna to Earth, it transmitted much more detailed telemetry. As engineers and scientists continue their careful investigations, they recognize that in many ways, these events appear very similar to ones that have occurred at other times in the mission.

Four years ago, VIR's computer reset when Dawn was approaching Vesta, and the most likely cause was deemed to be a cosmic ray strike. That's life in deep space! It also reset twice in the survey orbit phase at Vesta. The camera reset three times in the first three months of the low altitude mapping orbit at Vesta.

Even with the glitches in this second mapping orbit, Dawn's outstanding accomplishments represent well more than was originally envisioned or written into the mission's scientific requirements for this phase of the mission. For those of you who have not been to Ceres or aren't going soon (and even those of you who want to plan a trip there of your own), you can see what Dawn sees by going to the image gallery.

Although Dawn already has revealed far, far more about Ceres in the last six months than had been seen in the preceding two centuries of telescopic studies, the explorer is not ready to rest on its laurels. It is now preparing to undertake another complex spiral descent, using its sophisticated ion propulsion system to maneuver to a circular orbit three times as close to the dwarf planet as it is now. It will take five weeks to perform the intricate choreography needed to reach the third mapping altitude, starting tomorrow night. You can keep track of the spaceship's flight as it propels itself to a new vantage point for observing Ceres by visiting the mission status page or following it on Twitter @NASA_Dawn.

As Dawn moves closer to Ceres, Earth will be moving closer as well. Earth and Ceres travel on independent orbits around the sun, the former completing one revolution per year (indeed, that's what defines a year) and the latter completing one revolution in 4.6 years (which is one Cerean year). (We have discussed before why Earth revolves faster in its solar orbit, but in brief it is because being closer to the sun, it needs to move faster to counterbalance the stronger gravitational pull.) Of course, now that Dawn is in a permanent gravitational embrace with Ceres, where Ceres goes, so goes Dawn. And they are now and forever more so close together that the distance between Earth and Ceres is essentially equivalent to the distance between Earth and Dawn.

On July 22, Earth and Dawn will be at their closest since June 2014. As Earth laps Ceres, they will be 1.94 AU (180 million miles, or 290 million kilometers) apart. Earth will race ahead on its tight orbit around the sun, and they will be more than twice as far apart early next year.

trajectory
Earth's and Ceres' orbits will bring them to their minimum separation on July 22. Earth's orbit is shown in green and Ceres' is in purple. Dawn's interplanetary trajectory is in blue. Compare this figure with the ones depicting Dawn and Earth on opposite sides of the sun in December 2014 and showing Dawn equidistant from Earth and the sun in April 2015. Credit: NASA/JPL-Caltech

Although Dawn communicates regularly with Earth, it left that planet behind nearly eight years ago and will keep its focus now on its new residence. With two very successful mapping campaigns complete, its next priority is to work its way down through Ceres' gravitational field to an altitude of about 900 miles (less than 1,500 kilometers). With sharper views and new kinds of observations (including stereo photography), the treasure trove obtained by this intrepid extraterrestrial prospector will only be more valuable. Everyone who longs for new understandings and new perspectives on the cosmos will grow richer as Dawn continues to pioneer at a mysterious and distant dwarf planet.

Dawn is 2,700 miles (4,400 kilometers) from Ceres. It is also 2.01 AU (187 million miles, or 301 million kilometers) from Earth, or 785 times as far as the moon and 1.98 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 33 minutes to make the round trip.

Dr. Marc D. Rayman
10:00 p.m. PDT June 29, 2015

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT, BRIGHT SPOTS

  • Marc Rayman
READ MORE

Image of dwarf planet Ceres from NASA's Dawn spacecraft

Dear Dawnticipating Explorers,

Now orbiting high over the night side of a dwarf planet far from Earth, Dawn arrived at its new permanent residence on March 6. Ceres welcomed the newcomer from Earth with a gentle but firm gravitational embrace. The goddess of agriculture will never release her companion. Indeed, Dawn will only get closer from now on. With the ace flying skills it has demonstrated many times on this ambitious deep-space trek, the interplanetary spaceship is using its ion propulsion system to maneuver into a circular orbit 8,400 miles (13,500 kilometers) above the cratered landscape of ice and rock. Once there, it will commence its first set of intensive observations of the alien world it has traveled for so long and so far to reach.

For now, however, Dawn is not taking pictures. Even after it entered orbit, its momentum carried it to a higher altitude, from which it is now descending. From March 2 to April 9, so much of the ground beneath it is cloaked in darkness that the spacecraft is not even peering at it. Instead, it is steadfastly looking ahead to the rewards of the view it will have when its long, leisurely, elliptical orbit loops far enough around to glimpse the sunlit surface again.

Among the many sights we eagerly anticipate are those captivating bright spots. Hinted at more than a decade ago by Hubble Space Telescope, Dawn started to bring them into sharper focus after an extraordinary journey of more than seven years and three billion miles (nearly five billion kilometers). Although the spots are reflections of sunlight, they seem almost to radiate from Ceres as cosmic beacons, drawing us forth, spellbound. Like interplanetary lighthouses, their brilliant glow illuminates the way for a bold ship from Earth sailing on the celestial seas to a mysterious, uncharted port. The entrancing lights fire our imagination and remind us of the irresistible lure of exploration and the powerful anticipation of an adventure into the unknown.

As we describe below, Dawn’s extensive photographic coverage of the sunlit terrain in early May will include these bright spots. They will not be in view, however, when Dawn spies the thin crescent of Ceres in its next optical navigation session, scheduled for April 10 (as always, all dates here are in the Pacific time zone).

As the table here shows, on April 14 (and extending into April 15), Dawn will obtain its last navigational fix before it finishes maneuvering. Should we look forward to catching sight of the bright spots then? In truth, we do not yet know. The spots surely will be there, but the uncertainty is exactly where “there” is. We still have much to learn about a dwarf planet that, until recently, was little more than a fuzzy patch of light among the glowing jewels of the night sky. (For example, only last month did we determine where Ceres’north and south poles point.) Astronomers had clocked the length of its day, the time it takes to turn once on its axis, at a few minutes more than nine hours. But the last time the spots were in view of Dawn’s camera was on Feb. 19. From then until April 14, while Earth rotates more than 54 times (at 24 hours per turn), Ceres will rotate more than 140 times, which provides plenty of time for a small discrepancy in the exact rate to build up. To illustrate this, if our knowledge of the length of a Cerean day were off by one minute (or less than 0.2 percent), that would translate into more than a quarter of a turn during this period, drastically shifting the location of the spots from Dawn’s point of view. So we are not certain exactly what range of longitudes will be within view in the scheduled OpNav 7 window. Regardless, the pictures will serve their intended purpose of helping navigators establish the probe’s location in relation to its gravitational captor.

Dawn’s gradual, graceful arc down to its first mapping orbit will take the craft from the night side to the day side over the north pole, and then it will travel south. It will conclude its powered flight over the sunlit terrain at about 60 degrees south latitude. The spacecraft will finish reshaping its orbit on April 23, and when it stops its ion engine on that date, it will be in its new circular orbit, designated RC3. (We will return to the confusing names of the different orbits at Ceres below.) Then it will coast, just as the moon coasts in orbit around Earth and Earth coasts around the sun. It will take Dawn just over 15 days to complete one revolution around Ceres at this height. We had a preview of RC3 last year, and now we can take an updated look at the plans.

OP NAV 5 image
Dawn’s final swoop down to RC3 orbit. The sun is off the figure far to the left, and Ceres’ north pole points up. The farther Dawn is to the right side of Ceres here, the smaller a crescent it sees, because the illumination is from the left. The white circles are at one-day intervals. The trajectory is solid where Dawn is thrusting with its ion engine, which is most of the time. The labels show four optical navigation sessions, where it pauses to turn, point at Ceres, conduct the indicated observation, turn to point its main antenna to Earth, transmit its findings, turn back to the orientation needed for thrusting, and then restart the ion engine. Dawn was captured into orbit on March 6. Note the periods on the right side of the figure between OpNav 5 (on March 1) and OpNav 6 (on April 10) when Dawn pauses thrusting for telecommunications and radio navigation but does not take pictures because it would have to point its instruments too close to the sun. Apodemeter is the Dawn team’s word for the highest altitude in orbit, in analogy with the more common term apogee, which applies for Earth orbits. (Demeter is the Greek counterpart of the Roman goddess Ceres.) Dawn was at its apodemeter of 46,800 miles (75,400 kilometers) on March 18. For more on Dawn’s approach trajectory, see the overall description and figures from other perspectives in November (including the motion into and out of this flat depiction), further details (including the OpNavs) in February and an animation in March. Image credit: NASA/JPL

The dwarf planet is around 590 miles (950 kilometers) in diameter (like Earth and other planets, however, it is slightly wider at the equator than from pole to pole). At the spacecraft’s orbital altitude, it will appear to be the same size as a soccer ball seen from 10 feet (3 meters) away. Part of the basis upon which mission planners chose this distance for the first mapping campaign is that the visible disc of Ceres will just fit in the camera’s field of view. All the pictures taken at lower altitudes will cover a smaller area (but will be correspondingly more detailed). The photos from RC3 will be 3.4 times sharper than those in RC2.

There will be work to do before photography begins however. The first order of business after concluding ion thrusting will be for the flight team to perform a quick navigational update (this time, using only the radio signal) and transmit any refinements (if necessary) in Dawn’s orbital parameters, so it always has an accurate knowledge of where it is. (These will not be adjustments to the orbit but rather a precise mathematical description of the orbit it achieved.) Controllers will also reconfigure the spacecraft for its intensive observations, which will commence on April 24 as it passes over the south pole and to the night side again.

As at Vesta, even though half of each circular orbit will be over the night side of Ceres, the spacecraft itself will never enter the shadows. The operations team has carefully designed the orbits so that at Dawn’s altitude, it remains illuminated by the sun, even when the land below is not.

It may seem surprising (or even be surprising) that Dawn will conduct measurements when the ground directly beneath it is hidden in the deep darkness of night. To add to the surprise, these observations were not even envisioned when Dawn’s mission was designed, and it did not perform comparable measurements during its extensive exploration of Vesta in 2011-2012.

This artist's concept shows NASA's Dawn spacecraft arriving at the dwarf planet Ceres (lower right). Dawn travels through space using a technology called ion propulsion, in which ions are accelerated out of an engine, giving the spacecraft thrust. The xenon ions glow with blue light.
This artist’s concept shows Dawn thrusting with its center ion engine high above the night side of Ceres, which displays only a narrow crescent below the spacecraft. The gentle but efficient thrust allows Dawn to change the shape of its orbit. It will complete this first phase of orbital maneuvering on April 23 when it achieves RC3 orbit. Image credit: NASA/JPL-Caltech

The measurements on the night side will serve several purposes. One of the many sophisticated techniques scientists use to elucidate the nature of planetary surfaces is to measure how much light they reflect at different angles. Over the course of the next year, Dawn will acquire tens of thousands of pictures from the day side of Ceres, when, in essence, the sun is behind the camera. When it is over the night side in RC3, carefully designed observations of the lit terrain (with the sun somewhat in front of the camera, although still at a safe angle) will significantly extend the range of angles.

In December, we described the fascinating discovery of an extremely diffuse veil of water vapor around Ceres. How the water makes its way from the dwarf planet high into space is not known. The Dawn team has devised a plan to investigate this further, even though the tiny amount of vapor was sighted long after the explorer left Earth equipped with sensors designed to study worlds without atmospheres.

It is worth emphasizing that the water vapor is exceedingly tenuous. Indeed, it is much less dense than Earth’s atmosphere at altitudes above the International Space Station, which orbits in what most people consider to be the vacuum of space. Our hero will not need to deploy its umbrella. Even comets, which are miniscule in comparison with Ceres, liberate significantly more water.

There may not even be any water vapor at all now because Ceres is farther from the sun than when the Herschel Space Observatory saw it, but if there is, detecting it will be very challenging. The best method to glimpse it is to look for its subtle effects on light passing through it. Although Dawn cannot gaze directly at the sun, it can look above the lit horizon from the night side, searching intently for faint signs of sunlight scattered by sparse water molecules (or perhaps dust lofted into space with them).

For three days in RC3 after passing over the south pole, the probe will take many pictures and visible and infrared spectra as it watches the slowly shrinking illuminated crescent and the space over it. When the spacecraft has flown to about 29 degrees south latitude over the night side, it will no longer be safe to aim its sensitive instruments in that direction, because they would be too close to the sun. With its memory full of data, Dawn will turn to point its main antenna toward distant Earth. It will take almost two days to radio its findings to NASA’s Deep Space Network. Meanwhile, the spacecraft will continue northward, gliding silently high over the dark surface.

On April 28, it will rotate again to aim its sensors at Ceres and the space above it, resuming measurements when it is about 21 degrees north of the equator and continuing almost to the north pole on May 1. By the time it turns once again to beam its data to Earth, it will have completed a wealth of measurements not even considered when the mission was being designed.

Loyal readers will recall that Dawn has lost two of its four reaction wheels, gyroscope-like devices it uses to turn and to stabilize itself. Although such a loss could be grave for some missions, the operations team overcame this very serious challenge. They now have detailed plans to accomplish all of the original Ceres objectives regardless of the condition of the reaction wheels, even the two that have not failed (yet). It is quite a testament to their creativity and resourcefulness that despite the tight constraints of flying the spacecraft differently, the team has been able to add bonus objectives to the mission.

Some might see a pancake, and others a sand dollar, in this new image of dwarf planet Ceres from NASA's Dawn mission.
Dawn had this view of Ceres on Feb. 19 at a distance of 28,000 miles (46,000 kilometers). Among the puzzling features is the large structure below and to the right of center. Pictures in RC3 will be more than three times sharper. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn will finish transmitting its data after its orbit takes it over the north pole and to the day side of Ceres again. For three periods during its gradual flight of more than a week over the illuminated landscape, it will take pictures (in visible and near-infrared wavelengths) and spectra. Each time, it will look down from space for a full Cerean day, watching for more than nine hours as the dwarf planet pirouettes, as if showing off to her new admirer. As the exotic features parade by, Dawn will faithfully record the sites.

It is important to set the camera exposures carefully. Most of the surface reflects nine percent of the sunlight. (For comparison, the moon reflects 12 percent on average, although as many Earthlings have noticed, there is some variation from place to place. Mars reflects 17 percent, and Vesta reflects 42 percent. Many photos seem to show that your correspondent’s forehead reflects about 100 percent.) But there are some small areas that are significantly more reflective, including the two most famous bright spots. Each spot occupies only one pixel (2.7 miles, or 4.3 kilometers across) in the best pictures so far. If each bright area on the ground is the size of a pixel, then they reflect around 40 percent of the light, providing the stark contrast with the much darker surroundings. When Dawn’s pictures show more detail, it could be that they will turn out to be even smaller and even more reflective than they have appeared so far. In RC3, each pixel will cover 0.8 miles (1.3 kilometers). To ensure the best photographic results, controllers are modifying the elaborate instructions for the camera to take pictures of the entire surface with a wider range of exposures than previously planned, providing high confidence that all dark and all bright areas will be revealed clearly.

Dawn will observe Ceres as it flies from 45 degrees to 35 degrees north latitude on May 3-4. Of course, the camera’s view will extend well north and south of the point immediately below it. (Imagine looking at a globe. Even though you are directly over one point, you can see a larger area.) The territory it will inspect will include those intriguing bright spots. The explorer will report back to Earth on May 4-5. It will perform the same observations between 5 degrees north and 5 degrees south on May 5-6 and transmit those findings on May 6-7. To complete its first global map, it will make another full set of measurements for a Cerean day as it glides between 35 degrees and 45 degrees south on May 7.

By the time it has transmitted its final measurements on May 8, the bounty from RC3 may be more than 2,500 pictures and two million spectra. Mission controllers recognize that glitches are always possible, especially in such complex activities, and they take that into account in their plans. Even if some of the scheduled pictures or spectra are not acquired, RC3 should provide an excellent new perspective on the alien world, displaying details three times smaller than what we have discerned so far.

Dawn activated its gamma ray spectrometer and neutron spectrometer on March 12, but it will not detect radiation from Ceres at this high altitude. For now, it is measuring space radiation to provide context for later measurements. Perhaps it will sense some neutrons in the third mapping orbit this summer, but its primary work to determine the atomic constituents of the material within about a yard (meter) of the surface will be in the lowest altitude orbit at the end of the year.

Illustration of Dawn’s four mapping orbits
Dawn’s four mapping orbits, shown to scale in altitude with the size of Ceres, which is about 590 miles (950 kilometers) in diameter. (Note: colors of the orbits here are only approximate.) The table below includes links to descriptions of the activities in each orbit. Image credit: NASA/JPL-Caltech

Dawn will conduct its studies from three lower orbital altitudes after RC3, taking advantage of the tremendous maneuverability provided by ion propulsion to spiral from one to another. We presented previews last year of each phase, and as each approaches, we will give still more up-to-date details, but now that Dawn is in orbit, let’s summarize them here. Of course, with complicated operations in the forbidding depths of space, there are always possibilities for changes, especially in the schedule. The team has developed an intricate but robust and flexible plan to extract as many secrets from Ceres as possible, and they will take any changes in stride.

Each orbit is designed to provide a better view than the one before, and Dawn will map the orb thoroughly while at each altitude. The names for the orbits – rotation characterization 3 (RC3); survey; high altitude mapping orbit (HAMO); and low altitude mapping orbit (LAMO) – are based on ancient ideas, and the origins are (or should be) lost in the mists of time. Readers should avoid trying to infer anything at all meaningful in the designations. After some careful consideration, your correspondent chose to use the same names the Dawn team uses rather than create more helpful descriptors for the purposes of these blogs. That ensures consistency with other Dawn project communications. After all, what is important is not what the different orbits are called but rather what amazing new discoveries each one enables.

The robotic explorer will make many kinds of measurements with its suite of powerful instruments. As one indication of the improving view, this table includes the resolution of the photos, and the ever finer detail may be compared with the pictures during the approach phase. For another perspective, we extend the soccer ball analogy above to illustrate how large Ceres will appear to be from the spacecraft’s orbital vantage point.

chart showing what Dawn will see at various orbits about Ceres
Find out more about Dawn's activities during these mapping orbits: RC3, survey, HAMO, LAMO

As Dawn orbits Ceres, together they orbit the sun. Closer to the master of the solar system, Earth (with its own retinue, including the moon and many artificial satellites) travels faster in its heliocentric orbit because of the sun’s stronger gravitational pull at its location. In December, Earth was on the opposite side of the sun from Dawn, and now the planet’s higher speed is causing their separation to shrink. Earth will get closer and closer until July 22, when it will pass on the inside track, and the distance will increase again.

In the meantime, on April 12, Dawn will be equidistant from the sun and Earth. The spacecraft will be 2.89 AU or 269 million miles (433 million kilometers) from both. At the same time, Earth will be 1.00 AU or 93.2 million miles (150 million kilometers) from the sun.

Illustration showing the positions of Earth, Mars, Vesta and Ceres from the sun to Dawn
Illustration of the relative locations (but not sizes) of Earth, the sun, Dawn and Ceres on April 12, 2015. (Earth and the sun are at that location every April 12.) The distance from Earth to Dawn is the same as the distance from the sun to Dawn. The images are superimposed on the trajectory for the entire mission, showing the positions of Earth, Mars, Vesta, and Ceres at milestones during Dawn’s voyage. Compare this to the arrangement in December, when Earth and Dawn were on opposite sides of the sun. Image credit: NASA/JPL-Caltech

It will be as if Dawn is at the tip of a giant celestial arrowhead, pointing the way to a remarkable solar system spectacle. The cosmos should take note! Right there, a sophisticated spaceship from Earth is gracefully descending on a blue-green beam of xenon ions. Finally, the dwarf planet beneath it, a remote remnant from the dawn of the solar system, is lonely no more. Almost 4.6 billion years after it formed, and 214 years after inquisitive creatures on a distant planet first caught sight of it, a mysterious world is still welcoming the new arrival. And as Dawn prepares to settle into its first close orbit, ready to discover secrets Ceres has kept for so long, everyone who shares in the thrill of this grand and noble adventure eagerly awaits its findings. Together, we look forward to the excitement of new knowledge, new insight and new fuel for our passionate drive to explore the universe.

Dawn is 35,000 miles (57,000 kilometers) from Ceres, or 15 percent of the average distance between Earth and the moon. It is also 3.04 AU (282 million miles, or 454 million kilometers) from Earth, or 1,120 times as far as the moon and 3.04 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 51 minutes to make the round trip.

Dr. Marc D. Rayman
6:00 p.m. PDT March 31, 2015

› Read more entries from Marc Rayman's Dawn Journal

TAGS: DAWN, CERES, VESTA, DWARF PLANET, SPACECRAFT, MISSION

  • Marc Rayman
READ MORE

Animated gif of Ceres rotating as imaged by Dawn

Dear Unprecedawnted Readers,

Since its discovery in 1801, Ceres has been known as a planet, then as an asteroid, and later as a dwarf planet. Now, after a journey of 3.1 billion miles (4.9 billion kilometers) and 7.5 years, Dawn calls it “home.”

Earth’s robotic emissary arrived at about 4:39 a.m. PST today. It will remain in residence at the alien world for the rest of its operational life, and long, long after.

Before we delve into this unprecedented milestone in the exploration of space, let’s recall that even before reaching orbit, Dawn started taking pictures of its new home. Last month we presented the updated schedule for photography. Each activity to acquire images (as well as visible spectra and infrared spectra) has executed smoothly and provided us with exciting and tantalizing new perspectives.

While there are countless questions about Ceres, the most popular now seems to be what the bright spots are. It is impossible not to be mesmerized by what appear to be glowing beacons, shining out across the cosmic seas from the uncharted lands ahead. But the answer hasn’t changed: we don’t know. There are many intriguing speculations, but we need more data, and Dawn will take photos and myriad other measurements as it spirals closer and closer during the year. For now, we simply know too little.

For example, some people ask if those spots might be lights from an alien city. That’s ridiculous! At this early stage, how could Dawn determine what kinds of groupings Cereans live in? Do they even have cities? For all we know, they may live only in rural communities, or perhaps they only have large states.

What we already know is that in more than 57 years of space exploration, Dawn is now the only spacecraft ever to orbit two extraterrestrial destinations. A true interplanetary spaceship, Dawn left Earth in Sep. 2007 and traveled on its own independent course through the solar system. It flew past Mars in Feb. 2009, robbing the red planet of some of its own orbital energy around the sun. In July 2011, the ship entered orbit around the giant protoplanet Vesta, the second most massive object in the main asteroid belt between Mars and Jupiter. (By the way, Dawn’s arrival at Vesta was exactly one Vestan year ago earlier this week.) It conducted a spectacular exploration of that fascinating world, showing it to be more closely related to the terrestrial planets (including Earth, home to many of our readers) than to the typical objects people think of as asteroids. After 14 months of intensive operations at Vesta, Dawn climbed out of orbit in Sep. 2012, resuming its interplanetary voyage. Today it arrived at its final destination, Ceres, the largest object between the sun and Pluto that had not previously been visited by a spacecraft. (Fortunately, New Horizons is soon to fly by Pluto. We are in for a great year!)

What was the scene like at JPL for Dawn’s historic achievement? It’s easy to imagine the typical setting in mission control. The tension is overwhelming. Will it succeed or will it fail? Anxious people watch their screens, monitoring telemetry carefully, frustrated that there is nothing more they can do now. Nervously biting their nails, they are thinking of each crucial step, any one of which might doom the mission to failure. At the same time, the spacecraft is executing a bone-rattling, whiplash-inducing burn of its main engine to drop into orbit. When the good news finally arrives that orbit is achieved, the room erupts! People jump up and down, punch the air, shout, tweet, cry, hug and feel the tremendous relief of overcoming a huge risk. You can imagine all that, but that’s not what happened.

If you had been in Dawn mission control, the scene would have been different. You would mostly be in the dark. (For your future reference, the light switches are to the left of the door.) The computer displays would be off, and most of the illumination would be from the digital clock and the string of decorative blue lights that indicate the ion engine is scheduled to be thrusting. You also would be alone (at least until JPL Security arrived to escort you away, because you were not cleared to enter the room, and, for that matter, how did you get past the electronic locks?). Meanwhile, most of the members of the flight team were at home and asleep! (Your correspondent was too, rare though that is. When Dawn entered orbit around Vesta, he was dancing. Ceres’ arrival happened to be at a time less conducive to consciousness.)

Why was such a significant event treated with somnolence? It is because Dawn has a unique way of entering orbit, which is connected with the nature of the journey itself. We have discussed some aspects of getting into orbit before (with this update to the nature of the approach trajectory). Let’s review some of it here.

It may be surprising that prior to Dawn, no spacecraft had even attempted to orbit two distant targets. Who wouldn’t want to study two alien worlds in detail, rather than, as previous missions, either fly by one or more for brief encounters or orbit only one? A mission like Dawn’s is an obvious kind to undertake. It happens in science fiction often: go somewhere, do whatever you need to do there (e.g., beat someone up or make out with someone) and then boldly go somewhere else. However, science fact is not always as easy as science fiction. Such missions are far, far beyond the capability of conventional propulsion.

Deep Space 1 (DS1) blazed a new trail with its successful testing of ion propulsion, which provides 10 times the efficiency of standard propulsion, showing on an operational interplanetary mission that the advanced technology really does work as expected. (This writer was fortunate enough to work on DS1, and he even documented the mission in a series of increasingly wordy blogs. But he first heard of ion propulsion from the succinct Mr. Spock and subsequently followed its use by the less logical Darth Vader.)

Global mosaic of craters, mysterious bright spots and other intriguing features on Ceres
Dawn observed Ceres throughout a full nine-hour rotation of the dwarf planet, yielding this global mosaic of craters, mysterious bright spots and other intriguing features. The photos were taken on Feb. 19 from a distance of about 28,000 miles (46,000 kilometers). Ceres has about 38 percent of the area of the continental United States. The imaging session was known as RC2. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn’s ambitious expedition would be truly impossible without ion propulsion. (For a comparison of chemical and ion propulsion for entering orbit around Mars, an easier destination to reach than either Vesta or Ceres, visit this earlier log.) So far, our advanced spacecraft has changed its own velocity by 23,800 mph (38,400 kilometers per hour) since separating from its rocket, far in excess of what any other mission has achieved propulsively. (The previous record was held by DS1.)

Dawn is exceptionally frugal in its use of xenon propellant. In this phase of the mission, the engine expends only a quarter of a pound (120 grams) per day, or the equivalent of about 2.5 fluid ounces (75 milliliters) per day. So although the thrust is very efficient, it is also very gentle. If you hold a single sheet of paper in your hand, it will push on your hand harder than the ion engine pushes on the spacecraft at maximum thrust. At today’s throttle level, it would take the distant explorer almost 11 days to accelerate from zero to 60 mph (97 kilometers per hour). That may not evoke the concept of a drag racer. But in the zero-gravity, frictionless conditions of spaceflight, the effect of this whisper-like thrust can build up. Instead of thrusting for 11 days, if we thrust for a month, or a year, or as Dawn already has, for more than five years, we can achieve fantastically high velocity. Ion propulsion delivers acceleration with patience.

Most spacecraft coast most of the time, following their repetitive orbits like planets do. They may use the main engine for a few minutes or perhaps an hour or two throughout the entire mission. With ion propulsion, in contrast, the spacecraft may spend most of its time in powered flight. Dawn has flown for 69% of its time in space emitting a cool blue-green glow from one of its ion engines. (With three ion engines, Dawn outdoes the Star Wars TIE (twin ion engine) fighters.)

OpNav 5 images zoomed in
As Dawn maneuvers into orbit, its trajectory takes it to the opposite side of Ceres from the sun, providing these crescent views. These pictures (part of the OpNav 5 activity), were taken on March 1 at a distance of 30,000 miles (49,000 kilometers). Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The robotic probe uses its gentle thrust to gradually reshape its path through space rather than simply following the natural course that a planet would. After it escaped from Vesta’s gravitational clutches, it slowly spiraled outward from the sun, climbing the solar system hill, making its heliocentric orbit more and more and more like Ceres’. By the time it was in the vicinity of the dwarf planet today, both were traveling around the sun at more than 38,600 mph (62,100 kilometers per hour). Their trajectories were nearly identical, however, so the difference in their speeds was only 100 mph (160 kilometers per hour), or less than 0.3 percent of the total. Flying like a crackerjack spaceship pilot, Dawn elegantly used the light touch of its ion engine to be at a position and velocity that it could ease gracefully into orbit. At a distance of 37,700 miles (60,600 kilometers), Ceres reached out and tenderly took the newcomer from Earth into its permanent gravitational embrace.

If you had been in space watching the event, you would have been cold, hungry and hypoxic. But it would not have looked much different from the 1,885 days of ion thrust that had preceded it. The spacecraft was perched atop its blue-green pillar of xenon ions, patiently changing its course, as it does for so much of quiet cruise. But now, at one moment it was flying too fast for Ceres’ gravity to hang on to it, and the next moment it had slowed just enough that it was in orbit. Had it stopped thrusting at that point, it would have continued looping around the dwarf planet. But it did not stop. Instead, it is working now to reshape its orbit around Ceres. As we saw in November, its orbital acrobatics first will take it up to an altitude of 47,000 miles (75,000 kilometers) on March 19 before it swoops down to 8,400 miles (13,500 kilometers) on April 23 to begin its intensive observations in the orbit designated RC3.

In fact, Dawn’s arrival today really is simply a consequence of the route it is taking to reach that lower orbit next month. Navigators did not aim for arriving today. Rather, they plotted a course that began at Vesta and goes to RC3 (with a new design along the way), and it happens that the conditions for capture into orbit occurred this morning. As promised last month, we present here a different view of the skillful maneuvering by this veteran space traveler.

This animation gives a three-dimensional view of Dawn’s complex approach to Ceres. The spacecraft deftly maneuvers into orbit with its ion propulsion system, flying to RC3 orbit, which is achieved when the thrust is turned off. (The size of Ceres is exaggerated compared to the size of the orbit here.) At the end, the viewpoint shifts to provide another perspective on the unique trajectory.

If Dawn had stopped thrusting before Ceres could exert its gravitational control, it wouldn’t have flown very far away. The spacecraft had already made their paths around the sun very similar, and the ion propulsion system provides such exceptional flexibility to the mission that controllers could have guided it into orbit some other time. This was not a one-time, all-or-nothing event.

So the flight team was not tense. They had no need to observe it or make a spectacle out of it. Mission control remained quiet. The drama is not in whether the mission will succeed or fail, in whether a single glitch could cause a catastrophic loss, in whether even a tiny mistake could spell doom. Rather, the drama is in the opportunity to unveil the wonderful secrets of a fascinating relict from the dawn of the solar system more than 4.5 billion years ago, a celestial orb that has beckoned for more than two centuries, the first dwarf planet discovered.

Dawn usually flies with its radio transmitter turned off (devoting its electricity instead to the power-hungry ion engine), and so it entered orbit silently. As it happened, a routine telecommunications session was scheduled about an hour after attaining orbit, at 5:36 a.m. PST. (It’s only coincidence it was that soon. At Vesta, it was more than 25 hours between arrival and the next radio contact.) For primary communications, Dawn pauses thrusting to point its main antenna to Earth, but other times, as in this case, it is programmed to use one of its auxiliary antennas to transmit a weaker signal without stopping its engine, whispering just enough for engineers to verify that it remains healthy.

The Deep Space Network’s exquisitely sensitive 230-foot (70-meter) diameter antenna in Goldstone, Calif., picked up the faint signal from across the solar system on schedule and relayed it to Dawn mission control. One person was in the room (and yes, he was cleared to enter). He works with the antenna operator to ensure the communications session goes smoothly, and he is always ready to contact others on the flight team if any anomalies arise. In this case, none did, and it was a quiet morning as usual. The mission director checked in with him shortly after the data started to trickle in, and they had a friendly, casual conversation that included discussing some of the telemetry that indicated the spacecraft was still performing its routine ion thrusting. The determination that Dawn was in orbit was that simple. Confirming that it was following its flight plan was all that was needed to know it had entered orbit. This beautifully choreographed celestial dance is now a pas de deux.

As casual and tranquil as all that sounds, and as logical and systematic as the whole process is, the reality is that the mission director was excited. There was no visible hoopla, no audible fanfare, but the experience was powerful fuel for the passionate fires that burn within.

As soundlessly as a spacecraft gliding through the void, the realization emerges …

Dawn made it!!

It is in orbit around a distant world!!

Yes, it’s clear from the technical details, but it is more intensely reflected in the silent pounding of a heart that has spent a lifetime yearning to know the cosmos. Years and years of hard work devoted to this grand undertaking, constant hopes and dreams and fears of all possible futures, uncounted challenges (some initially appearing insurmountable) and a seeming infinitude of decisions along the way from early concepts through a real interplanetary spacecraft flying on an ion beam beyond the sun.

And then, a short, relaxed chat over a few bits of routine data that report the same conditions as usual on the distant robot. But today they mean something different.

They mean we did it!!

Everyone on the team will experience the news that comes in a congratulatory email in their own way, in the silence and privacy of their own thoughts. But it means the same to everyone.

We did it!!

And it’s not only the flight team. Humankind!! With our relentless curiosity, our insatiable hunger for knowledge, our noble spirit of adventure, we all share in the experience of reaching out from our humble home to the stars.

Together, we did it!!!

It was a good way to begin the day. It was Dawn at Ceres.

This video overview of the mission at Ceres is a great way to start your day, but you can enjoy it at any time.

Let’s bring into perspective the cosmic landscape on which this remarkable adventure is now taking place. Imagine Earth reduced to the size of a soccer ball. On this scale, the International Space Station would orbit at an altitude of a bit more than one-quarter of an inch (seven millimeters). The moon would be a billiard ball almost 21 feet (6.4 meters) away. The sun, the conductor of the solar system orchestra, would be 79 feet (24 meters) across at a distance of 1.6 miles (2.6 kilometers). But even more remote, Dawn would be 5.3 miles (8.6 kilometers) away. (Just a few months ago, when the spacecraft was on the opposite side of the sun from Earth, it would have been more than six miles, or almost 10 kilometers, from the soccer ball.) Tremendously far now from its erstwhile home, it would be only a little over a yard (a meter) from its new residence. (By the end of this year, Dawn will be slightly closer to it than the space station is to Earth, a quarter of an inch, or six millimeters.) That distant world, Ceres, the largest object between Mars and Jupiter, would be five-eighths of an inch (1.6 centimeters) across, about the size of a grape. Of course a grape has a higher water content than Ceres, but we can be sure that exploring this intriguing world of rock and ice will be much sweeter!

As part of getting to know its new neighborhood, Dawn has been hunting for moons of Ceres. Telescopic studies had not revealed any, but if there were a moon smaller than about half a mile (one kilometer), it probably would not have been discovered. The spacecraft’s unique vantage point provides an opportunity to look for any that might have escaped detection. Many pictures have been taken specifically for this purpose, and scientists scrutinize them and all of the other photographs for any indication of moons. While the search will continue, so far, no picture has shown evidence of companions orbiting Ceres.

And yet we know that as of today, Ceres most certainly does have one. Its name is Dawn!

Dawn is 37,800 miles (60,800 kilometers) from Ceres, or 16 percent of the average distance between Earth and the moon. It is also 3.33 AU (310 million miles, or 498 million kilometers) from Earth, or 1,230 times as far as the moon and 3.36 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 55 minutes to make the round trip.

Dr. Marc D. Rayman
6:00 a.m. PST March 6, 2015

› Read more entries from Marc Rayman's Dawn Journal

TAGS: DAWN, CERES, VESTA, DWARF PLANET, ORBIT INSERTION, SPACECRAFT, MISSION

  • Marc Rayman
READ MORE

Ceres Op Nav 3 animated gif

Dear Fine and Dawndy Readers,

The Dawn spacecraft is performing flawlessly as it conducts the first exploration of the first dwarf planet. Each new picture of Ceres reveals exciting and surprising new details about a fascinating and enigmatic orb that has been glimpsed only as a smudge of light for more than two centuries. And yet as that fuzzy little blob comes into sharper focus, it seems to grow only more perplexing.

Dawn is showing us exotic scenery on a world that dates back to the dawn of the solar system, more than 4.5 billion years ago. Craters large and small remind us that Ceres lives in the rough and tumble environment of the main asteroid belt between Mars and Jupiter, and collectively they will help scientists develop a deeper understanding of the history and nature not only of Ceres itself but also of the solar system.

Even as we discover more about Ceres, some mysteries only deepen. It certainly does not require sophisticated scientific insight to be captivated by the bright spots. What are they? At this point, the clearest answer is that the answer is unknown. One of the great rewards of exploring the cosmos is uncovering new questions, and this one captures the imagination of everyone who gazes at the pictures sent back from deep space.

Bright spots on Ceres
Dawn took this picture in RC2. The improved resolution shows that the intriguing bright spot from earlier pictures is actually two bright spots. What a wonderful mystery this is! Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
› Full image and caption

Other intriguing features newly visible on the unfamiliar landscape further assure us that there will be much more to see and to learn -- and probably much more to puzzle over -- when Dawn flies in closer and acquires new photographs and myriad other measurements. Over the course of this year, as the spacecraft spirals to lower and lower orbits, the view will continue to improve. In the lowest orbit, the pictures will display detail well over one hundred times finer than the RC2 pictures returned a few days ago (and shown below). Right now, however, Dawn is not getting closer to Ceres. On course and on schedule for entering orbit on March 6, Earth's robotic ambassador is slowly separating from its destination.

"Slowly" is the key. Dawn is in the vicinity of Ceres and is not leaving. The adventurer has traveled more than 900 million miles (1.5 billion kilometers) since departing from Vesta in 2012, devoting most of the time to using its advanced ion propulsion system to reshape its orbit around the sun to match Ceres' orbit. Now that their paths are so similar, the spacecraft is receding from the massive behemoth at the leisurely pace of about 35 mph (55 kilometers per hour), even as they race around the sun together at 38,700 mph (62,300 kilometers per hour). The probe is expertly flying an intricate course that would be the envy of any hotshot spaceship pilot. To reach its first observational orbit -- a circular path from pole to pole and back at an altitude of 8,400 miles (13,500 kilometers) -- Dawn is now taking advantage not only of ion propulsion but also the gravity of Ceres.

On Feb. 23, the spacecraft was at its closest to Ceres yet, only 24,000 miles (less than 39,000 kilometers), or one-tenth of the separation between Earth and the moon. Momentum will carry it farther away for a while, so as it performs the complex cosmic choreography, Dawn will not come this close to its permanent partner again for six weeks. Well before then, it will be taken firmly and forever into Ceres' gentle gravitational hold.

The photographs Dawn takes during this approach phase serve several purposes. Besides fueling the fires of curiosity that burn within everyone who looks to the night sky in wonder or who longs to share in the discoveries of celestial secrets, the images are vital to engineers and scientists as they prepare for the next phase of exploration.

These two views of Ceres were acquired by NASA's Dawn spacecraft on Feb. 12, 2015
Dawn acquired these two pictures of Ceres on Feb. 12 at a distance of 52,000 miles (83,000 kilometers) during the first "rotation characterization," or RC1. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
› Full image and caption

 

These two views of Ceres were acquired by NASA's Dawn spacecraft on Feb. 12, 2015
Dawn acquired these two pictures of Ceres on Feb. 19 at a distance of 28,000 miles (46,000 kilometers) in RC2. Dawn's trajectory took it north between RC1 and RC2, so the terrain within view of its camera is farther north here than in RC1. The angle of the sunlight is different as well. Nevertheless, each of these two perspectives is close in longitude to the two above, so some features apparent here are also visible in the RC1 photos. The careful observer will note that these pictures are very cool, especially when compared with earlier ones from Dawn and the best from Hubble Space Telescope, as shown in last month's Dawn Journal. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
› Full image and caption

The primary purpose of the pictures is for "optical navigation" (OpNav), to ensure the ship accurately sails to its planned orbital port. Dawn is the first spacecraft to fly into orbit around a massive solar system world that had not previously been visited by a spacecraft. Just as when it reached its first deep-space target, the fascinating protoplanet Vesta, mission controllers have to discover the nature of the destination as they proceed. They bootstrap their way in, measuring many characteristics with increasing accuracy as they go, including its location, its mass and the direction of its rotation axis.

Let's consider this last parameter. Think of a spinning ball. (If the ball is large enough, you could call it a planet.) It turns around an axis, and the two ends of the axis are the north and south poles. The precise direction of the axis is important for our mission because in each of the four observation orbits (previews of which were presented in February, May, June and August), the spacecraft needs to fly over the poles. Polar orbits ensure that as Dawn loops around, and Ceres rotates beneath it every nine hours, the explorer eventually will have the opportunity to see the entire surface. Therefore, the team needs to establish the location of the rotation axis to navigate to the desired orbit.

We can imagine extending the rotation axis far outside the ball, even all the way to the stars. Current residents of Earth, for example, know that their planet's north pole happens to point very close to a star appropriately named Polaris (or the North Star), part of an asterism known as the Little Dipper in the constellation Ursa Minor (the Little Bear). The south pole, of course, points in exactly the opposite direction, to the constellation Octans (the Octant), but is not aligned with any salient star.

With their measurements of how Ceres rotates, the team is zeroing in on the orientation of its poles. We now know that residents of (and, for that mater, visitors to) the northern hemisphere there would see the pole pointing toward an unremarkable region of the sky in Draco (the Dragon). Those in the southern hemisphere would note the pole pointing toward a similarly unimpressive part of Volans (the Flying Fish). (How appropriate it is that that pole is directed toward a constellation with that name will be known only after scientists advance their understanding of the possibility of a subsurface ocean at Ceres.)

The orientation of Ceres'; axis proves convenient for Dawn's exploration. Earthlings are familiar with the consequences of their planet's axis being tilted by about 23 degrees. Seasons are caused by the annual motion of the sun between 23 degrees north latitude and 23 degrees south. A large area around each pole remains in the dark during winter. Vesta's axis is tipped 27 degrees, and when Dawn arrived, the high northern latitudes were not illuminated by the sun. The probe took advantage of its extraordinary maneuverability to fly to a special mapping orbit late in its residence there, after the sun had shifted north. That will not be necessary at Ceres. That world's axis is tipped at a much smaller angle, so throughout a Cerean year (lasting 4.6 Earth years), the sun stays between 4 degrees north latitude and 4 degrees south. Seasons are much less dramatic. Among Dawn's many objectives is to photograph Ceres. Because the sun is always near the equator, the illumination near the poles will change little. It is near the beginning of southern hemisphere winter on Ceres now, but the region around the south pole hidden in hibernal darkness is tiny. Except for possible shadowing by local variations in topography (as in deep craters), well over 99 percent of the dwarf planet's terrain will be exposed to sunlight each day.

Guiding Dawn from afar, the operations team incorporates the new information about Ceres into occasional updates to the flight plan, providing the spacecraft with new instructions on the exact direction and throttle level to use for the ion engine. As they do so, subtle aspects of the trajectory change. Last month we described the details of the plan for observing Ceres throughout the four-month approach phase and predicted that some of the numbers could change slightly. So, careful readers, for your convenience, here is the table from January, now with minor updates.

Beginning of activity in Pacific Time zone Distance from Dawn to Ceres in miles (kilometers) Ceres diameter in pixels Resolution in miles (kilometers) per pixel Resolution compared to Hubble Illuminated portion of disk Activity
Dec 1, 2014 740,000
(1.2 million)
9 70
(112)
0.25 94% Camera calibration
Jan 13, 2015 238,000
(383,000)
27 22
(36)
0.83 95% OpNav 1
Jan 25 147,000
(237,000)
43 14
(22)
1.3 96% OpNav 2
Feb 3 91,000
(146,000)
70 8.5
(14)
2.2 97% OpNav 3
Feb 12 52,000
(83,000)
122 4.9
(7.8)
3.8 98% RC1
Feb 19 28,000
(46,000)
222 2.7
(4.3)
7.0 87% RC2
Feb 25 25,000
(40,000)
255 2.3
(3.7)
8.0 44% OpNav 4
Mar 1 30,000
(49,000)
207 2.9
(4.6)
6.5 23% OpNav 5
Apr 10 21,000
(33,000)
306 1.9
(3.1)
9.6 17% OpNav 6
Apr 14 14,000
(22,000)
453 1.3
(2.1)
14 49% OpNav 7

 

In addition to changes based on discoveries about the nature of Ceres, some changes are dictated by more mundane considerations (to the extent that there is anything mundane about flying a spacecraft in the vicinity of an alien world more than a thousand times farther from Earth than the moon). For example, to accommodate changes in the schedule for the use of the Deep Space Network, some of the imaging sessions shifted by a few hours, which can make small changes in the corresponding views of Ceres.

The only important difference between the table as presented in January and this month, however, is not to be found in the numbers. It is that OpNav 3, RC1 and RC2 are now in the past, each having been completed perfectly.

As always, if you prefer to save yourself the time and effort of the multi-billion-mile (multi-billion-kilometer) interplanetary journey to Ceres, you can simply go here to see the latest views from Dawn. (The Dawn project is eager to share pictures promptly with the public. The science team has the responsibility of analyzing and interpreting the images for scientific publication. The need for accuracy and scientific review of the data slows the interpretation and release of the pictures. But just as with all of the marvelous findings from Vesta, everything from Ceres will be available as soon as practicable.)

In November we delved into some of the details of Dawn's graceful approach to Ceres, and last month we considered how the trajectory affected the scene presented to Dawn's camera. Now that we have updated the table, we can enhance a figure from both months that showed the craft's path as it banks into orbit and maneuvers to its first observational orbit. (As a reminder, the diagram illustrates only two of the three dimensions of the ship's complicated route. Another diagram in November showed another perspective, and we will include a different view next month.)

Partial view of Dawn's approach trajectory to Ceres
Section of Dawn's approach trajectory. We are looking down on the north pole of Ceres. (Readers who reside in the constellation Draco will readily recognize this perspective). The sun is off the figure far to the left. The spacecraft flies in from the left and then is captured (enters orbit) on the way to the apex of its orbit. It gets closer to Ceres during the first part of its approach but then recedes for a while before coming in still closer at the end. When Dawn is on the right side of the figure, it sees only a crescent of Ceres, because the illumination is from the left. The trajectory is solid where Dawn is thrusting with its ion engine, which is most of the time. The labels show where it pauses to turn, point at Ceres, conduct the indicated observation, turn to point its main antenna to Earth, transmit its precious findings, turn back to the orientation needed for thrusting, and then restart the ion engine. Because RC1 and RC2 observations extend for a full Cerean day of more than nine hours, those periods are longer, both to collect data and to radio the results to Earth. Note that there are four periods on the right side of the figure between capture and OpNav 6 when Dawn pauses thrusting for telecommunications and radio navigation but does not take pictures, as explained here. Image credit: NASA/JPL
› View full image

We can zoom out to see where the earlier OpNavs were.

Full view of Dawn's approach trajectory to Ceres
All of Dawn's observations during the approach phase. Note how much shorter this caption is than the one above, despite the similarity of the figures. Image credit: NASA/JPL
› View full image

As the table and figures indicate, in OpNav 6, when Ceres and the sun are in the same general direction from Dawn's vantage point, only a small portion of the illuminated terrain will be visible. The left side of Ceres will be in daylight, and most of the hemisphere facing the spacecraft will be in the darkness of night. To get an idea of what the shape of the crescent will be, terrestrial readers can use the moon on March 16. It will be up much of the day, setting in the middle of the afternoon, and it will be comparable to the crescent Dawn will observe on April 10. (Of course, the exact shape will depend on your observing location and what time you look, but this serves as a rough preview.) Fortunately, our spacecraft does not have to contend with bad weather, but you might, so we have generously scheduled a backup opportunity for you. The moon will be new on March 20, and the crescent on March 23 will be similar to what it was on March 16. It will rise in the mid morning and be up until well after the sun sets.

Photographing Ceres as it arcs into orbit atop a blue-green beam of xenon ions, setting the stage for more than a year of detailed investigations with its suite of sophisticated sensors, Dawn is sailing into the history books. No spacecraft has reached a dwarf planet before. No spacecraft has orbited two extraterrestrial destinations before. This amazing mission is powered by the insatiable curiosity and extraordinary ingenuity of creatures on a planet far, far away. And it carries all of them along with it on an ambitious journey that grows only more exciting as it continues. Humankind is about to witness scenes never before seen and perhaps never even imagined. Dawn is taking all of us on a daring adventure to a remote and unknown part of the cosmos. Prepare to be awed.

Dawn is 24,600 miles (39,600 kilometers) from Ceres, or 10 percent of the average distance between Earth and the moon. It is also 3.42 AU (318 million miles, or 512 million kilometers) from Earth, or 1,330 times as far as the moon and 3.46 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 57 minutes to make the round trip.

Dr. Marc D. Rayman
7:00 a.m. PST February 25, 2015

› Read more entries from Marc Rayman's Dawn Journal

TAGS: DAWN, CERES, DWARF PLANET, SPACECRAFT, MISSION

  • Marc Rayman
READ MORE

Ceres as seen by NASA's Dawn spacecraft

Ceres as seen by the Hubble Space Telescope

Pardawn Me, Dear Readers,

Far away from Earthlings who look forward to a new year, Dawn looks forward to a new world. On the far side of the sun, the interplanetary explorer is closing in on Ceres, using its advanced ion propulsion system to match solar orbits with the dwarf planet.

Since breaking out of orbit around the giant protoplanet Vesta in September 2012, the spaceship has patiently flown in interplanetary cruise. That long mission phase is over, and now Dawn is starting the Ceres chapter of its extraordinary extraterrestrial expedition. Configured for its approach phase, the craft is following a new and carefully designed course described in detail last month. In March it will slip ever so gracefully into orbit for an ambitious and exciting exploration of the alien world ahead.

Over the past year, we have provided previews of the major activities during all the phases of Dawn’s mission at Ceres. This month, let’s take a look at Ceres itself, an intriguing and mysterious orb that has beckoned for more than two centuries. Now, finally, after so long, Earth is answering the cosmic invitation, and an ambassador from our planet is about to take up permanent residence there. Over the course of Dawn’s grand adventure, our knowledge will rocket far, far beyond all that has been learned before.

There can be two accounts of Ceres: its own history, which dates back to near the dawn of the solar system almost 4.6 billion years ago, and its history in the scope of human knowledge, which is somewhat shorter. Both are rich topics, with much more than we can cover here (or in the first log for this entire mission), but let’s touch on a few tidbits. We begin with the latter history.

In 1800, the known solar system contained seven planets: Mercury, Venus, Earth (home to some of our readers), Mars, Jupiter, Saturn and Uranus. This reflected a new and sophisticated scientific understanding, because Uranus had first been noticed in telescopes not long before, in 1781. (The other planets had been known to ancient sky watchers.) Even before William Herschel’s fortuitous sighting of a planet beyond Saturn, astronomers had wondered about the gap between Mars and Jupiter and speculated about the possibility of a planet there. Although some astronomers had searched, their efforts had not yielded a new planet.

Astronomer Giuseppe Piazzi was not looking for a planet on Jan. 1, 1801, but he spotted an unfamiliar dot of light that moved slowly among the stars. He named it for Ceres, the Roman goddess of agriculture, and if you had cereal this morning, you have already had an etymological connection with the goddess.

The Dawn project worked with the International Astronomical Union (IAU) to formalize a plan for names on Ceres that builds upon and broadens Piazzi’s theme. Craters will be named for gods and goddesses of agriculture and vegetation from world mythology. Other features will be named for agricultural festivals.

Because Ceres was fainter than the other known planets, it was evident that it was smaller. Nevertheless, many astronomers considered it to be a planet too.

It is worth noting the significance of this. Modern astronomy had chanced upon only one other planet, so Piazzi’s discovery was A Big Deal. When a new chemical element was found a couple of years later, it was named cerium in tribute to the new planet Ceres. (Uranus had been similarly honored with the 1789 naming of uranium. That element’s peculiar property of emitting radiation would not be known for another century.)

In the six years following the discovery of Ceres, three more bodies were detected orbiting between Mars and Jupiter. (One of them is Vesta, now known in spectacular detail thanks to Dawn’s extensive exploration in 2011-2012.) There then ensued a gap of more than 38 years before another was found, so for well over a generation, the sun’s family of planets was unchanged.

So if you had been reading about all this 200 years ago, there would have been at least two important differences from now. One is that your Internet connection would have been considerably slower. The other is that you might have learned in school or elsewhere that Ceres was a planet.

In 1846, a planet was discovered beyond Uranus, and we call it Neptune. Nothing else of comparable size has subsequently been seen in our solar system.

With scientific knowledge and technology progressing in the middle of the nineteenth century, new objects were glimpsed between Mars and Jupiter. As more and more were seen over the years, what we now know as the main asteroid belt was gradually recognized. Terminology changed too. One of the great strengths of science is that it advances, and sometimes we have to modify our vocabulary to reflect the improved, refined view of the universe.

By the time Pluto was sighted in 1930, Ceres had long been known as a “minor planet” and an “asteroid.” For a while thereafter, Pluto enjoyed planetary status similar to what Ceres had had. In fact, in 1940, scientists named two more additions to the periodic table of the elements neptunium and plutonium. While the histories are not identical, there is a certain parallel, with more and more objects in Pluto’s part of the solar system later being found. Terminology changed again: Pluto was subsumed into the new category of “dwarf planets” defined by the IAU in 2006. Ceres was the first body to be discovered that met the criteria established by the IAU, and Pluto was the second. (Spacecraft are now on their way to both dwarf planets: Dawn to orbit Ceres 214 years after its discovery and the wonderful New Horizons mission to fly past Pluto 85 years after it was found.)

We discussed this new nomenclature in some detail shortly after it was adopted. We understand that the designation then, as now, is controversial among some scientists and the public, and there are strong emotions on this topic. We will not delve into it here (nor in the blog comments below), preferring instead to focus on the extraordinary successes of science, the great power of the scientific method and the thrill of bold adventures far from home. The Dawn team remains both unperturbed and confident in what to call this intriguing and alluring world: we call it “Ceres.” And our goal is to develop that faint smudge of light amidst the stars into a richly detailed portrait.

One of the advances of science was the recognition that Ceres really is entirely different from typical residents of the main asteroid belt. It is a colossus! There are millions upon millions of asteroids, and yet Ceres itself contains roughly 30 percent of the mass in that entire vast region of space. By the way, Vesta, the second most massive body there, constitutes about eight percent of the asteroid belt’s mass. It is remarkable that Dawn will single-handedly explore around 40 percent of the asteroid belt’s mass.

With an equatorial diameter of about 605 miles (975 kilometers), a value that Dawn will refine very soon, Ceres is the largest body between the sun and Pluto that a spacecraft has not yet visited. It is occasionally described as being comparable in size to Texas, which is like comparing a basketball to a flat sheet of paper. Ceres has a surface area 38 percent of that of the continental United States, or more than four times the area of Texas. (Nevertheless, until Dawn shows evidence to the contrary, we will assume Texas has more rodeos.) It is nearly a third of the area of Europe and larger than the combined lands of France, Germany, Italy, Norway, Spain, Sweden and the United Kingdom. Such a large place offers the promise of tremendous diversity and many marvelous and exciting sights to behold. Earth is about to be introduced to a fascinating new world.

How did Ceres come to be? And why is that being phrased as a question instead of a more declarative introduction to the history and nature of this dwarf planet? For that matter, why is this paragraph composed exclusively of questions? At least this sentence isn’t a question, right? OK, really, shouldn’t we stay more on topic?

At the dawn of the solar system almost 4.6 billion years ago, the young sun was surrounded by a swirling cloud of dust and gas. Sometimes some particles would happen to hit and stick together. Then more and more and more particles would stick to them, and eventually these agglomerations would grow so large that their gravity would pull in even more material. It was through mechanisms like this that the planets formed.

But when massive Jupiter developed, its powerful gravity terminated the growth of objects nearby, leaving bits and pieces as asteroids. Ceres and Vesta, already sizable by then, might have grown to become even larger, each incorporating still more of the nearby material, had Jupiter not deprived them of such an opportunity. Not having made it to full planetary proportions, Ceres and Vesta are known as protoplanets, and studying them provides scientists with insight into the largest building blocks of planets and into worlds that are intriguing in their own rights.

Ceres apparently formed far enough from the sun under conditions cool enough for it to hang on to water molecules. Indeed, scientists have good reason to believe that water (mostly in the form of ice) may make up an astonishing 30 percent of its mass. Ceres may contain more water than Mars or any other body in the inner solar system except Earth. (Comets, of course, have high proportions of water too, but they are so minuscule compared to this behemoth that each one harbors a quite negligible amount of water when measured against Ceres’ huge inventory.)

Although some of the moons of the outer planets also are ice and rock, and they display very interesting characteristics to the impressive and capable spacecraft that have flown past (in some cases repeatedly, as the craft orbited the host planet), no probe has had the capability to linger in orbit around any of them. Dawn’s in-depth exploration of Ceres will yield more detailed and complete views than we have obtained of any icy moon.

Radioactive elements incorporated into Ceres when it was forming would supply it with some heat, and its great bulk would provide thermal insulation, so it would take a very long time for the heat to escape into space. The sun, faraway though it is, adds still more heat. As a result, there may be some water warm enough to be liquid. (The concentration of any chemical impurities in the water that affect its freezing point, as salt does, may make an important difference in how much is liquid.) This distant, alien world may have lakes or even oceans of liquid water deep underground. What a fantastic possibility!

There will be no liquid on the frigid surface. Even ice on the surface, exposed to the cold vacuum of space, would sublimate before long. But ice could be just beneath the surface, perhaps well less than a yard (a meter) deep.

Ceres then may have a thin, dusty crust over a mantle rich in ice that might be more than 60 miles (100 kilometers) thick. Its warmer core is likely composed mostly of rock.

As heat dissipated from Ceres’ interior over the eons, it may have undergone convection, with the warmer material rising and cooler material sinking very slowly. This is reminiscent of what occurs in pot of heated water and in Earth’s interior. Even if it did occur at some time in Ceres’ history, it probably is not happening any longer, as too much heat would have been lost by now, so there would not be enough left to power the upward movement of warm material. But the convective process might have written its signature in structures or minerals left behind when ice sublimated after being pushed to the surface. Dawn’s photos of geological features and measurements of the composition may provide a window to forces in the interior of the protoplanet sometime in its past.

Even if convection is no longer occurring, Ceres is not entirely static. We have very tantalizing information from a marvelously productive far-infrared space telescope named for the only known astronomer who found a planet before Piazzi made his discovery. The Herschel Space Observatory recently detected a tiny amount of water vapor emanating from the distant dwarf planet. Scientists do not know how the water vapor makes it into space. It might be from ice sublimating (possibly following a powerful impact that exposed subsurface ice) or perhaps from geysers or even erupting cryovolcanoes (“cold volcanoes”) powered by heat that Ceres has retained since its formation. In any case, Herschel saw water, albeit in very, very small quantity.

It is not certain whether water vapor is there all the time. It is unknown whether, for example, it depends on solar heating and hence where Ceres is in its somewhat elliptical orbit around the sun (not as circular as Earth’s orbit but more circular than Mars’), which requires 4.6 years to complete.

Even if the water vapor is present during Dawn’s 1.3-year primary mission in orbit, it would be extremely difficult to detect. Herschel made its findings when our ship was already far, far from Earth, well along its interplanetary itinerary. The probe’s sensors were designed for studying the solid surfaces of airless bodies, not an exceedingly tenuous veil of water molecules. For context, the water vapor Herschel measured is significantly less dense than Earth’s atmosphere is even far above the International Space Station, which orbits in what most people consider to be the vacuum of space. Dawn will not need windshield wipers! Nevertheless, as we saw in February, the Dawn team, ever creative and dedicated to squeezing as much out of the mission as possible, investigated techniques this year that might be effective in searching for an exceptionally thin vapor. They have augmented the plan with many hours of observations of the space above Ceres when the spacecraft is over the night side during its first science orbit in April and May at an altitude of 8,400 miles (13,500 kilometers). It is possible that if there is some water vapor, the instruments may pick up a faint signature in the sunlight that passes through it.

Regardless of the possibility of detecting traces of water from Ceres, Dawn will focus its measurements on the uncharted surface and the interior, as it did at Vesta. Vesta displayed landscapes battered by craters from impacts during more than 4.5 billion years in the rough and tumble asteroid belt. Ceres has spent most or all of its history also in the asteroid belt, but it is possible it will not show its age so clearly. Ice, although very hard at such low temperatures, is not as hard as rock. So it may be that the surface gradually “relaxes” after an impact, just as your skin restores its shape after pressure has been removed. Craters older than a few tens of millions of years may have slowly disappeared. (That may sound old, but it is a small fraction of Ceres’ lifetime.) Near the poles, where it is colder so ice is harder, the scars of impact craters may be preserved for longer.

Ceres has more than water-ice and rock. It probably contains organic materials, some produced by chemical processes with the minerals already there and some delivered by asteroids that fell to its surface. This is noteworthy, because water and organic chemicals are ingredients for life. The combination of Ceres’ internal heat and the weak but persistent heating from the sun provides energy, which also is essential for life. Even if the possibility of life itself there is extremely remote (and it is beyond Dawn’s capability to detect), the conditions for “prebiotic” chemistry would be tremendously interesting. That is why, as we explained in August, we want to protect the special environment on the ground from contamination by the terrestrial chemicals in our orbiting spacecraft.

While there is more known about Ceres, there is much, much more that is unknown. Dawn seeks to discover many of the secrets of this unfamiliar, fascinating member of the solar system family. One of the measures of its success would be if, upon answering many of our questions about Ceres, we are left with even more questions. Now on the threshold of an old world which will be new to us, we do not have long to wait for the great rewards of new knowledge, new insight, new thrills and new mysteries to solve.

Dawn is 382,000 miles (614,000 kilometers) from Ceres, or 1.6 times the average distance between Earth and the moon. It is also 3.77 AU (351 million miles, or 564 million kilometers) from Earth, or 1,500 times as far as the moon and 3.84 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take one hour and three minutes to make the round trip.

Dr. Marc D. Rayman
8:00 a.m. PST December 29, 2014

› Read more entries from Marc Rayman's Dawn Journal

TAGS: DAWN, SPACECRAFT, CERES, VESTA, DWARF PLANET,

  • Marc Rayman
READ MORE

Artist concept of NASA's Dawn spacecraft

Dear Daw9.0s,

A new version of the Dawn spacecraft is continuing the ambitious journey through the asteroid belt to uncharted distant worlds. Now holding a new solar system record, the probe is thrusting with its ion propulsion system, patiently and gently changing its orbit around the sun to match that of the immense protoplanet Vesta (and subsequently dwarf planet Ceres).

Even as Dawn continues pushing deeper into space, another spacecraft that used ion propulsion to conduct an exciting mission at a near-Earth asteroid has concluded. After traveling to and studying the diminutive Itokawa, Japan’s Hayabusa spacecraft returned to Earth on June 13. This was long one of your correspondent’s favorite missions, and he has joined many, many other enthusiasts in congratulating the team responsible for this impressive achievement.

When Dawn reaches each of its destinations, it will have a very full program of activities to acquire pictures and other scientific information. Brief overviews of some of its plans for Vesta were described in recent logs, and more will be presented later. To accomplish its mission of exploration, the spacecraft needs some enhancements to the capabilities it has been using for its travel through deep space to reach its targets. Those new capabilities are now onboard.

For the third time since it left Earth in September 2007, the spacecraft has received an upgrade of the software that runs in its primary computer. With a sense of grandeur and drama befitting this unique adventure, ever-poetical engineers fulfilled their dream of more than a year by denominating it OBC flight software version 9.0. Revealing their surprisingly cute and playful nature, however, most Dawn team members prefer the hypocorism “9.0” (or “nine oh”).

Engineers at JPL and Orbital Sciences Corporation began work on 9.0 almost immediately after 8.0 was installed on the spacecraft in April 2009. They continued with the careful and deliberate process of modifying the software until January, when the extensive test program commenced. It was crucial to verify not only that the new functions would work correctly but also that no unintended differences were introduced and that the existing capabilities were not compromised.

The latest software has 23 sets of changes from the previous version. Some of these are new methods of controlling the way the spacecraft will point its sensors at Vesta and Ceres in order to optimize the acquisition of data. Other modifications, based on experience gained in the ongoing operation of the spacecraft, improve its ability to handle certain potential anomalies on its own. In addition, just as 7.0 and 8.0 did, 9.0 corrects some bugs.

While it may seem quite elementary to load software into a computer that is in control of a spacecraft more than twice as far from Earth as the sun, it actually turns out to be somewhat complex and delicate. Even in “quiet cruise,” the computer is responsible for a great deal of activity onboard. The ion propulsion system was inactive, which is typical when the main antenna is pointed to Earth, but otherwise the computer was busy keeping all systems operating.

To install 9.0, controllers used exactly the same processes they followed for 8.0 in April 2009. It went quite smoothly again this time, right down to the on-time delivery of pizza to mission control during the first day of returning the spacecraft to its normal configuration after rebooting the computer. We know almost all readers accepted the advice offered last year to retain a copy of the log that presented the details of the 8.0 installation, but we happily include a link here for the convenience of the sole reader who did not and wishes to recall what is involved. (For all other readers, congratulations on the handsome profit you have realized on your investment in that previous log.)

As last year, controllers had run a few tests to verify the integrity of some critical components during the normal weekly communications sessions in the weeks leading up to the loading of the new software. On June 15, the spacecraft stopped thrusting on schedule, turned to point its main antenna to Earth, and kept it there rather than returning to the thrust direction a few hours later. That allowed operators to perform the rest of these detailed checks. After confirming that both the primary and backup computers were fully healthy, they transmitted the files containing the new software.

On June 16, with all stations in mission control at JPL reporting all subsystems were healthy and stable, and all systems at the Deep Space Network performing equally well, the command to reset the computer was radioed to the distant ship. The computer dutifully rebooted for the first time since the installation of 8.0 and began running with version 9.0. Whenever the computer reboots, it puts the craft into safe mode. The team verified that the new software was running smoothly and then initiated the process of guiding the spacecraft out of safe mode and back to its normal interplanetary cruise configuration. The schedule had allowed until June 24, but by June 18, the robotic explorer was fully prepared to resume its normal duties.

Because the software upgrade went so well, the Dawn project has decided to present this exciting offer: we will install a functional copy of 9.0 on your computer or smartphone at no charge. Simply place your device in the asteroid belt, send us the coordinates, and we’ll do the rest.

On June 17, after the majority of reconfigurations had been completed and while all members of the team but the insomniacs and the spacecraft itself were slumbering, protective software that is always running onboard detected an increase in the internal friction in reaction wheel no. 4. Reaction wheels are devices used to control a ship’s orientation in the zero-gravity of spaceflight. By electrically controlling the speed of these spinning units, the spacecraft can hold steady or rotate as needed. Dawn is outfitted with four reaction wheels, although it only uses three during normal operations. As we have seen before, operators let each wheel have its turn at being off for a part of the mission. The software that detected the friction in no. 4 responded correctly by powering that unit off. If only three wheels had been in use, it would have activated the unused wheel; but it was unnecessary to do so this time because, by coincidence, all wheels were operating, as is normal when the spacecraft enters safe mode. The team had been planning to turn reaction wheel no. 1 off later on June 17 as part of the reconfiguration. Instead, after taking some time to reassess the spacecraft’s condition, they simply left wheel no. 4 off and continued with their plans, now using wheels 1, 2 and 3 instead of 2, 3 and 4.

Dawn resumed ion thrusting on schedule on June 24. As it continues propelling itself to Vesta, it does so with the recognition that it has accomplished a greater propulsive change in velocity than any other craft ever to leave Earth. Some spacecraft have experienced larger velocity changes through gravitational interactions with planets, but thanks to the extensive use of its extremely efficient ion propulsion system, Dawn surpassed the record for the greatest change in velocity under a ship’s own power on June 5.

The previous record holder, Deep Space 1, was the first interplanetary mission to use ion propulsion. In its 11-month primary mission of testing advanced technologies (including ion propulsion), its two-year extended mission devoted to the exploration of a comet, and its final three-month hyperextended mission of additional technology testing, DS1 accumulated so much thrust time that it achieved an effective change in speed of 4.3 kilometers per second (9,600 mph). (As we have seen in several earlier discussions, such as here, this “effective change in speed” is not the speed at which the craft travels. It is a very commonly used way to express the effectiveness of a spacecraft’s propulsion system that avoids the confounding effects of orbital mechanics.)

Having thrust now for 635 days, or 63 percent of its time in space, Dawn has attained a change of more than 4.4 kilometers per second (9,800 mph), and it has much, much more powered flight ahead.

The record itself and even the total velocity change, while perhaps fun, really are not important, however. They are convenient measures of the progress this ship is making on its ambitious expedition, one that would not have been possible without ion propulsion and other innovations. The exploration of the cosmos is not a competition; it is a shared undertaking of all humankind. Each mission, each record, each accomplishment, each discovery builds on the successes (and even the failures) of those that preceded it and helps pave the way for those that will follow. Together they all contribute to the advancement of our understanding of the universe and our humble place within it.

Dawn is 0.32 AU (48 million kilometers or 30 million miles) from Vesta, its next destination. It is also 2.29 AU (342 million kilometers or 213 million miles) from Earth, or 855 times as far as the moon and 2.25 times as far as the sun. Radio signals, traveling at the universal limit of the speed of light, take 38 minutes to make the round trip.

Dr. Marc D. Rayman
10:30 p.m. PDT June 27, 2010

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE