Animated gif of Ceres rotating

Dear Emboldawned Readers,

A bold adventurer from Earth is gracefully soaring over an exotic world of rock and ice far, far away. Having already obtained a treasure trove from its first mapping orbit, Dawn is now seeking even greater riches at dwarf planet Ceres as it maneuvers to its second orbit.

The first intensive mapping campaign was extremely productive. As the spacecraft circled 8,400 miles (13,600 kilometers) above the alien terrain, one orbit around Ceres took 15 days. During its single revolution, the probe observed its new home on five occasions from April 24 to May 8. When Dawn was flying over the night side (still high enough that it was in sunlight even when the ground below was in darkness), it looked first at the illuminated crescent of the southern hemisphere and later at the northern hemisphere.

When Dawn traveled over the sunlit side, it watched the northern hemisphere, then the equatorial regions, and finally the southern hemisphere as Ceres rotated beneath it each time. One Cerean day, the time it takes the globe to turn once on its axis, is about nine hours, much shorter than the time needed for the spacecraft to loop around its orbit. So it was almost as if Dawn hovered in place, moving only slightly as it peered down, and its instruments could record all of the sights as they paraded by.

We described the plans in much more detail in March, and they executed beautifully, yielding a rich collection of photos in visible and near infrared wavelengths, spectra in visible and infrared, and measurements of the strength of Ceres' gravitational attraction and hence its mass.

To gain the same view Dawn had, simply build your own ion-propelled spaceship, voyage deep into the main asteroid belt between Mars and Jupiter, take up residence at the giant orb and look out the window. Or go to the image gallery here.

Either way, the sights are spectacular. And they have already gotten even better. As Dawn has been descending to its second mapping orbit, it paused ion-thrusting on May 16 and May 22 to take more pictures, helping navigators get a tight fix on its orbital location. We explained this technique of optical navigation earlier, but now it is slightly different. Dawn is so close to Ceres that the behemoth fills the camera's field of view. No longer charting Ceres' location relative to background stars, navigators now use distinctive features on Ceres itself. It was an indistinct, fuzzy little blob just a few months ago, but now the maps are becoming detailed and accurate. Mathematical analyses of the locations of specific landmarks in each picture allow navigators to determine where Dawn was when the picture was taken.

Let's see how this works. Suppose I gave you a picture I had taken in your house. (The last time I was there, I opted for the cover of darkness rather than a more visible demonstration of optical navigation, but we can still imagine.) Because you know the positions of the doors, windows, furniture, impact craters, paintings, etc., you could establish where I had been when I took the photo. Now that they have charted the positions of the features at Dawn's new home, navigators can do virtually the same thing.

In addition to aiding in celestial navigation, the photos provided still better views of the world Dawn traveled so long and so far to explore. Greater and greater detail is visible as Dawn orbits closer, and a tremendous variety of intriguing sights are coming into view. It may well be that the most interesting discoveries have not even been made yet, but for now, what captivates most people (and other readers as well) are the bright spots.

We have discussed them here and there in recent months, and their luminous power continues to dazzle us. What appeared initially as one fuzzy spot proved to be two smaller spots and now many even smaller regions as the focus has become sharper. Why the ground there reflects so much sunlight remains elusive. Dawn's finer examinations with its suite of sophisticated instruments in the second, third and then final mapping orbits will provide scientists with data they need to unravel this marvelous mystery. For now, the enigmatic lights present an irresistible cosmic invitation to go closer and to scrutinize this strange and wonderful world, and we are eager to accept. After all, we explore to learn, to know the unknown, and the uniquely powerful scientific method will reveal the nature of the bright areas and what they can tell us about the composition and geology of this complex dwarf planet.

Close-up of the bright spots on Ceres
This was Dawn's view on May 16, as it flew from its first mapping orbit to its second. This OpNav 8 photo was taken at an altitude of 4,500 miles (7,200 kilometers). Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
› Full image and caption

After having been viewed as little more than a smudge in telescopes for more than two centuries since its discovery, Ceres now is seen as a detailed, three-dimensional world. As promised, measurements from Dawn have revised the size to be about 599 miles (963 kilometers) across at the equator. Like Earth and other planets, Ceres is oblate, or slightly wider at the equator than from pole to pole. The polar diameter is 554 miles (891 kilometers). These dimensions are impressively close to what astronomers had determined from telescopic observations and confirm Ceres to be the colossus we have described.

Before Dawn, scientists had estimated Ceres' mass to be 1.04 billion billion tons (947 billion billion kilograms). Now it is measured to be 1.03 billion billion tons (939 billion billion kilograms), well within the previous margin of error. It is an impressive demonstration of the success of science that astronomers had been able to determine the heft of that point of light so accurately. Nevertheless, even this small change of less than one percent is important for planning the rest of Dawn’s mission as it orbits closer and closer, feeling the gravitational tug ever more strongly.

Let's put this change in context. Dawn has now refined the mass, making a proportionally small adjustment of about 0.01 billion billion tons (eight billion billion kilograms). Although no more than a tweak on the overall value, it is still significantly greater than the combined mass of all asteroids visited by all other spacecraft. Ceres is so immense, so massive that even if all those asteroids were added to it, the difference would hardly even have been noticeable. This serves as another reminder that the dwarf planet really is quite unlike the millions of small asteroids that constitute the main asteroid belt. This behemoth contains about 30 percent of all the mass in that entire vast region of space. Vesta, the protoplanet Dawn orbited and studied in 2011-2012, is the second most massive resident there, holding about 8 percent of the asteroid belt's mass. Dawn by itself is exploring around 40 percent of the asteroid belt's mass!

Upon concluding its first mapping orbit, Dawn powered on its remarkable ion propulsion system on May 9 to fly down to a lower altitude where it will gain a better view. We examined the nature of the spiral paths between mapping orbits last year (and at Vesta in 2011-2012).

Dawn's orbits about Ceres
Dawn's spiral descent from its first mapping orbit (RC3) to its second (survey). The two mapping orbits are shown in green. The color of Dawn's trajectory progresses through the spectrum from blue, when it began ion-thrusting on May 9, to red, when ion-thrusting concludes on June 3. The red dashed sections show where Dawn is coasting, mostly for telecommunications. The first two coast periods include OpNav 8 and 9. Image credit: NASA/JPL-Caltech
› Larger image

In its first mapping orbit, Dawn was 8,400 miles (13,600 kilometers) high, revolving once in 15.2 days at a speed of 150 mph (240 kilometers per hour). By the time it completes this descent, the probe will be at an altitude of 2,700 miles (4,400 kilometers), orbiting Ceres every 3.1 days at 254 mph (408 kilometers per hour). (All of the mapping orbits were summarized in this table.) We have discussed that lower orbits require greater velocity to counterbalance the stronger gravitational hold.

Dawn's uniquely capable ion propulsion system, with its extraordinary combination of efficiency and gentleness, propels the ship to its new orbital destination in just under four weeks. The descent requires five revolutions, each one faster than the one before. The flight profile is complicated, and sometimes Dawn even dips below the final, planned altitude and then rises to greater heights as it flies on a path that is temporarily elliptical. The overall trend, of course, is downward. As Dawn heads for its targeted circular orbit, its maneuvering is also generally reducing the orbit period, the time required to make one complete revolution around Ceres. Indeed, if Dawn stopped thrusting now, its orbit period would be about 83 hours, or 3.5 days.

Dawn will complete ion-thrusting on June 3, but it will not be ready to begin its next science observations then. Rather, as in the other new mapping orbits, the first order of business will be for navigators to measure the new orbital parameters accurately. The flight team then will install in Dawn's main computer the details of the orbit it achieved so it will always know its location.

In addition, the intensive campaign of observations is planned to begin when the robotic explorer travels from the night side to the day side over the north pole. With the three-day orbit period, that will next occur on June 5. Controllers will take advantage of the intervening time to conduct other activities, including routine maintenance of the two reaction wheels that remain operable, although they are powered off most of the time. (Two of the four failed years ago. Dawn no longer relies on these devices to control its orientation, and it is remarkable that the mission can accomplish all of its original objectives without them. But if two do function in the final mapping orbit later this year, they will help extend the spacecraft's lifetime for bonus studies.)

We have already presented the ambitious plans for this second mapping orbit, sometimes known as "the second mapping orbit" and sometimes more succinctly and confusingly as "survey orbit." As with all four of Dawn's mapping orbits, it is designed to take the spacecraft over the poles, ensuring the best possible coverage. The ship will fly from the north pole to the south over the side of Ceres facing the sun, and then loop back to the north over the side hidden in the deep dark of night. On the day side, Dawn will aim its camera and spectrometers at the lit ground, filling its memory to capacity with the readings. On the night side, it will point its main antenna to distant Earth in order to radio its findings home. At Dawn's altitude, Ceres will appear twice as wide as the camera's view. (As illustrated in this table, it will look about the size of a soccer ball seen from a yard, or a meter, away.) But as the dwarf planet rotates on its axis and Dawn sails around in its more leisurely orbit, eventually all of the landscape will come within sight of the instruments.

Only one noteworthy change has been made in the intricate plans for survey orbit since May 2014's shocking exposé. With the observations starting on June 5, the subsequent complex orbital flight to the third mapping orbit (also known as HAMO) would have begun on June 27. As we have seen, the rapidly changing orbit in the spiral descents requires a great deal of effort by the small operations team on a rigid schedule. The capable men and women flying Dawn accomplished the maneuvers flawlessly at Vesta and are well prepared for the challenges at Ceres. The work is very demanding, however, and so, just as at Vesta, the team has built into the strategy the capability to make adjustments to align most of the tasks with a conventional work schedule. The technical plans (even including the exquisitely careful husbanding of hydrazine following the loss of the two reaction wheels) fully account for such human factors. It turns out that leaving survey orbit three days later shifts a significant amount of the following work off weekends, making it more comfortable for the team members. Three days is one complete revolution, and always extracting as much from the mission as possible, they have devised another full set of observations for an eighth orbit. As a result, survey orbit may be even more extensive and productive than originally anticipated.

What awaits Dawn in the next mapping phase? The views will be three times as sharp as in the previous orbit, and exciting new discoveries are sure to come. What answers will be revealed? And what new questions (besides this one) will arise? We will know soon, as we all share in the thrill of this grand adventure. To help you keep track of Dawn's progress as it powers its way down and then conducts further observations, your correspondent writes brief (hard to believe, isn't it?) mission status updates. And although in space no one can hear you tweet, terrestrial followers can get even more frequent updates with information he provides for Twitter @NASA_Dawn.

Dawn is 3,400 miles (5,500 kilometers) from Ceres. It is also 2.30 AU (214 million miles, or 345 million kilometers) from Earth, or 855 times as far as the moon and 2.27 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 38 minutes to make the round trip.

Dr. Marc D. Rayman
12:00 p.m. PDT May 28, 2015

TAGS:DAWN, CERES, VESTA, BRIGHT SPOTS, SPACECRAFT, MISSION

  • Marc Rayman