Tag Search - All Blogs

Tag Search - All Blogs

NASA Voyager Golden Record Inscription

Most people know about the scenes, greetings, music and sounds from Earth found on the Voyager Golden Record. They may not know that there is also a handwritten message etched into the surface of the record. Timothy Ferris, who worked with Carl Sagan and the rest of the team that produced the record, wanted something done directly by a human hand to appear on the record. “To the makers of music – all worlds, all times” appears on the finished record, in between the photoengraved label and the record grooves.

The inscription can also be seen on some of the 14-inch recording masters that are found in the JPL Archives. There are several sets of the records, with a metal core and lacquer surface. From these masters, the copper records (“mothers”) were cut, then they were gold plated, etched, enclosed in aluminum containers and mounted on the sides of the Voyager 1 and 2 spacecraft.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


  • Julie Cooper

Animated Gif of Ceres

Dear Abundawnt Readers

The dwarf planet Ceres is a giant mystery. Drawn on by the irresistible lure of exploring this exotic, alien world, Dawn is closing in on it. The probe is much closer to Ceres than the moon is to Earth.

And now it is even closer …

And now it is closer still!

What has been glimpsed as little more than a faint smudge of light amid the stars for more than two centuries is finally coming into focus. The first dwarf planet discovered (129 years before Pluto), the largest body between the sun and Pluto that a spacecraft has not yet visited, is starting to reveal its secrets. Dawn is seeing sights never before beheld, and all of humankind is along for the extraordinary experience.

We have had a preview of Dawn’s approach phase, and in November we looked at the acrobatics the spacecraft performs as it glides gracefully into orbit. Now the adventurer is executing those intricate plans, and it is flying beautifully, just the way a seasoned space traveler should.

Dawn’s unique method of patiently, gradually reshaping its orbit around the sun with its ion propulsion system is nearly at its end. Just as two cars may drive together at high speed and thus travel at low speed relative to each other, Dawn is now close to matching Ceres’ heliocentric orbital motion. Together, they are traveling around the sun at nearly 39,000 mph (almost 64,000 kilometers per hour), or 10.8 miles per second (17.4 kilometers per second). But the spaceship is closing in on the world ahead at the quite modest relative speed of about 250 mph (400 kilometers per hour), much less than is typical for interplanetary spaceflight.

Dawn has begun its approach imaging campaign, and the pictures are wonderfully exciting. This month, we will take a more careful look at the plans for photographing Ceres. Eager readers may jump directly to the summary table, but others may want to emulate the spacecraft by taking a more leisurely approach to it, which may aid in understanding some details.

While our faithful Dawn is the star of this bold deep-space adventure (along with protoplanet Vesta and dwarf planet Ceres), the real talent is behind the scenes, as is often the case with celebrities. The success of the mission depends on the dedication and expertise of the members of the Dawn flight team, no farther from Earth than the eighth floor of JPL’s building 264 (although occasionally your correspondent goes on the roof to enjoy the sights of the evening sky). They are carefully guiding the distant spacecraft on its approach trajectory and ensuring it accomplishes all of its tasks.

To keep Dawn on course to Ceres, navigators need a good fix on where the probe and its target are. Both are far, far from Earth, so the job is not easy. In addition to the extraordinarily sophisticated but standard methods of navigating a remote interplanetary spacecraft, using the radio signal to measure its distance and speed, Dawn’s controllers use another technique now that it is in the vicinity of its destination.

From the vantage point of Earth, astronomers can determine distant Ceres’ location remarkably well, and Dawn’s navigators achieve impressive accuracy in establishing the craft’s position. But to enter orbit, still greater accuracy is required. Therefore, Dawn photographs Ceres against the background of known stars, and the pictures are analyzed to pin down the location of the ship relative to the celestial harbor it is approaching. To distinguish this method from the one by which Dawn is usually navigated, this supplementary technique is generally known as “optical navigation.” Unable to suppress their geekiness (or, at least, unmotivated to do so), Dawn team members refer to this as OpNav. There are seven dedicated OpNav imaging sessions during the four-month approach phase, along with two other imaging sessions. (There will also be two more OpNavs in the spiral descent from RC3 to survey orbit.)

The positions of the spacecraft and dwarf planet are already determined well enough with the conventional navigation methods that controllers know which particular stars are near Ceres from Dawn’s perspective. It is the analysis of precisely where Ceres appears relative to those stars that will yield the necessary navigational refinement. Later, when Dawn is so close that the colossus occupies most of the camera’s view, stars will no longer be visible in the pictures. Then the optical navigation will be based on determining the location of the spacecraft with respect to specific surface features that have been charted in previous images.

To execute an OpNav, Dawn suspends ion thrusting and turns to point its camera at Ceres. It usually spends one or two hours taking photos (and bonus measurements with its visible and infrared mapping spectrometer). Then it turns to point its main antenna to Earth and transmits its findings across the solar system to the Deep Space Network.

Animated gif of series of images of Ceres takien by Dawn spacecrat on Jan. 25, 2015

This animation of Ceres rotating was made by combining images taken by the Dawn spacecraft on Jan. 25 over the course of one hour in OpNav 2. Dawn was 147,000 miles (237,000 kilometers) from Ceres. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

While it is turning once again to resume ion thrusting, navigators are already starting to extract information from the images to calculate where the probe is relative to its destination. Experts update the design of the trajectory the spacecraft must follow to reach its intended orbital position and fine-tune the corresponding ion thrust flight plan. At the next communications session, the revised instructions are radioed back across the solar system, and then the reliable robot carries them out. This process is repeated throughout the approach phase.

Dawn turned to observe Vesta during that approach phase more often than it does on approach to Ceres, and the reason is simple. It has lost two of its four reaction wheels, devices used to help turn or stabilize the craft in the zero-gravity, frictionless conditions of spaceflight. (In full disclosure, the units aren’t actually lost. We know precisely where they are. But given that they stopped functioning, they might as well be elsewhere in the universe; they don’t do Dawn any good.)

Dawn’s sentient colleagues at JPL, along with excellent support from Orbital Sciences Corporation, have applied their remarkable creativity, tenacity and technical acumen to devise a strategy that allows all the original objectives of exploring Ceres to be met regardless of the condition of the wheels, even the (currently) healthy ones. Your correspondent refers to this as the “zero reaction wheel plan” One of the many methods that contributed to this surprising resilience was a substantial reduction in the number of turns during all remaining phases of the mission, thus conserving the precious hydrazine propellant used by the small jets of the reaction control system. Guided by their successful experience at Vesta, experts determined that they could accommodate fewer OpNavs during the approach to Ceres, thus saving turns. (We will return to the topic of hydrazine conservation below.)

The images serve several purposes besides navigation. Of course, they provide a tantalizing preview of the intriguing world observed from Earth since 1801. Each picture whets our appetite! What will Ceres look like as it comes into sharper focus? Will we see evidence of a subsurface ocean? What unexpected shapes and structures will we find? What strange new features will show up? Just what is that bright spot? Quite simply: we don’t know. It would be a pretty good idea to send a spacecraft there to find out!

Scientists scrutinize all the photos for moons of Ceres, and OpNavs 3-7 will include many extra images with exposures chosen to help reveal moons. In addition, hundreds more pictures will be taken of the space around Ceres in the hours before and after OpNav 3 to allow an even more thorough search.

On two occasions during the approach, Dawn will take images and spectra throughout a complete Ceres rotation of slightly over nine hours, or one Cerean day. During that time, Dawn’s position will not change significantly, so it will be almost as if the spacecraft hovers in place as the dwarf planet pirouettes beneath its watchful eye, exhibiting most of the surface. These “rotation characterizations” (known by the stirring names RC1 and RC2) will provide the first global perspectives.

As Dawn flies into orbit, it arcs around Ceres. In November, we described the route into orbit in detail, and one of the figures there is reproduced here. Dawn will slip into Ceres’ gravitational embrace on the night of March 5 (PST). But as the figure shows, its initial elliptical orbit will carry it to higher altitudes before it swoops back down. As a result, pictures of Ceres will grow for a while, then shrink and then grow again.

Dawn’s approach trajectory. We are looking down on the north pole of Ceres. The sun is off the figure far to the left. The spacecraft flies in from the left and then is captured on the way to the apex of its orbit. It gets closer to Ceres during the first part of its approach but then recedes for a while before coming in still closer at the end. Lighting by the sun is not depicted here, but when Dawn is on the right side of the figure, it only sees a crescent of Ceres, which is illuminated from the left. (The white circles are at one-day intervals.) Image credit: NASA/JPL

Because of the changing direction to Ceres, Dawn does not always see a fully illuminated disk, just as the moon goes through its familiar phases as its position relative to the sun changes. The hemisphere of the moon facing the sun is bright and the other is dark. The half facing Earth may include part of the lit side and part of the dark side. Sometimes we see a full moon, sometimes gibbous, and sometimes a thin crescent.

The table shows what fraction of Ceres is illuminated from Dawn’s perspective. Seeing a full moon would correspond to 100 percent illumination. A half moon would be 50 percent, and a new moon would be zero percent. In OpNav 6, when Ceres is 18 percent illuminated, it will be a delicate crescent, like the moon about four days after it’s new.

Four views of Ceres taken by the Hubble telescope
Four views of Ceres as it rotates, as seen with Hubble Space Telescope, were the best we had before OpNav 2. All of Dawn’s pictures from now on will show finer detail. Image credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), and L. McFadden (University of Maryland, College Park)

OpNav images of a narrow crescent won’t contain enough information to warrant the expenditure of hydrazine in all that turning. Moreover, the camera’s precision optics and sensitive detector, designed for revealing the landscapes of Vesta and Ceres, cannot tolerate looking too close to the sun, even as far from the brilliant star as it is now. Therefore, no pictures will be taken in March and early April when Dawn is far on the opposite side of Ceres from the sun. By the end of April, the probe will have descended to its first observational orbit (RC3), where it will begin its intensive observations.

The closer Dawn is to Ceres, the larger the orb appears to its camera, and the table includes the (approximate) diameter the full disk would be, measured in the number of camera pixels. To display greater detail, each pixel must occupy a smaller portion of the surface. So the “resolution” of the picture indicates how sharp Dawn’s view is.

We also describe the pictures in comparison to the best that have been obtained with Hubble Space Telescope. In Hubble’s pictures, each pixel covered about 19 miles (30 kilometers). Now, after a journey of more than seven years through the solar system, Dawn is finally close enough to Ceres that its view surpasses that of the powerful telescope. By the time Dawn is in its lowest altitude orbit at the end of this year, its pictures will be well over 800 times better than Hubble’s and more than 600 times better than the OpNav 2 pictures from Jan. 25. This is going to be a fantastic year of discovery!

Beginning of activity in Pacific Time zone Distance from Dawn to Ceres in miles (kilometers) Ceres diameter in pixels Resolution in miles (kilometers) per pixel Resolution compared to Hubble Illuminated portion of disk Activity
Dec 1, 2014 740,000
(1.2 million)
9 70
0.25 94% Camera calibration
Jan 13, 2015 238,000
27 22
0.83 95% OpNav 1
Jan 25 147,000
43 14
1.3 96% OpNav 2
Feb 3 91,000
70 8.5
2.2 97% OpNav 3
Feb 12 52,000
121 4.9
3.8 98% RC1
Feb 19 28,000
221 2.7
7.0 87% RC2
Feb 25 25,000
253 2.3
8.0 44% OpNav 4
Mar 1 30,000
207 2.9
6.5 22% OpNav 5
Apr 10 21,000
304 2.0
9.6 18% OpNav 6
Apr 15 14,000
455 1.3
14 50% OpNav 7

Some of the numbers may change slightly as Dawn’s trajectory is refined and even as estimates of the strength of Ceres’ gravitational tug improve. (Dawn is already feeling that pull, even though it is not yet in orbit.) Still, this should help you fill out your social calendar for the next few months.

To get views like those Dawn has, you can build your own spaceship and fly it deep into the heart of the main asteroid belt to this intriguing world of rock and ice. Or you can visit our Ceres image gallery to see pictures as soon as they are released. If you chose the first option, use your hydrazine wisely!

As we discussed above, to explore Ceres without the use of the reaction wheels that were essential to the original design, mission controllers have worked very hard to conserve hydrazine. Let’s see how productive that effort has been. (You should be able to follow the story here without careful focus on the numbers. They are here for the more technically oriented readers, accountants and our old friends the Numerivores.)

Dawn launched in Sept. 2007 with 101 pounds (45.6 kilograms) of hydrazine. The ship escaped from Vesta in Sept. 2012, four weeks after the second reaction wheel failed during the climb out of Vesta’s gravitational hole. (By the way, Dawn is now more than one thousand times farther from Vesta than it is from Ceres. It is even farther from Vesta than Earth is from the sun!) At the beginning of the long interplanetary flight to Ceres, it still had 71.2 pounds (32.3 kilograms) left. As it had expended less than one-third of the original supply through the end of the Vesta expedition, that might seem like plenty. But it was not. Without the reaction wheels, subsequent operations would consume much more hydrazine. Indeed, engineers determined that even if they still had the entire amount that had been onboard at launch, it would not be enough. The Ceres objectives were at serious risk!

The flight team undertook an aggressive campaign to conserve hydrazine. They conceived more than 50 new candidate techniques for reducing hydrazine consumption in the 30-month journey to Ceres and the 18 months of Ceres operations and systematically but quickly assessed every one of them.

The team initially calculated that the long interplanetary flight between the departure from Vesta and the beginning of the Ceres approach phase would consume 27.6 pounds (12.5 kilograms) of hydrazine even if there were no errors, no glitches, no problems and no changes in the plans. Following the intensive conservation work, they determined that the spacecraft might instead be able to complete all of its assignments for only 9.7 pounds (4.4 kilograms), an astonishing 65 percent reduction. (Keep track of that mass through the end of the next paragraph.) That would translate directly into more hydrazine being available for the exploration of Ceres. They devised many new methods of conducting the mission at Ceres as well, estimating today that it will cost less than 42.5 pounds (19.3 kilograms) with the zero reaction wheel plan. (If the two remaining wheels operate when called upon in the lowest orbit, they will provide a bonus reduction in hydrazine use.)

Dawn’s two years and four months of interplanetary cruise concluded on Dec. 26, 2014, when the approach phase began. Although the team had computed that they might squeeze the consumption down to as low as 9.7 pounds (4.4 kilograms), it’s one thing to predict it and it’s another to achieve it. Changes to plans become necessary, and not every detail can be foreseen. As recounted in October, the trip was not entirely free of problems, as a burst of cosmic radiation interrupted the smooth operations. Now that the cruise phase is complete, we can measure how well it really went. Dawn used 9.7 pounds (4.4 kilograms), exactly as predicted in 2012. Isn’t flying spacecraft through the forbidding depths of the interplanetary void amazing?

This success provides high confidence in our ability to accomplish all of the plans at Ceres (even if the remaining reaction wheels are not operable). Now that the explorer is so close, it is starting to reap the rewards of the daring 3.0-billion-mile (4.9-billion-kilometer) journey to an ancient world that has long awaited a terrestrial emissary. As Dawn continues its approach phase, our growing anticipation will be fueled by thrilling new pictures, each offering a new perspective on this relict from the dawn of the solar system. Very soon, patience, diligence and unwavering determination will be rewarded with new knowledge and new insight into the nature of the cosmos.

Dawn is 121,000 miles (195,000 kilometers) from Ceres, or half the average distance between Earth and the moon. It is also 3.63 AU (338 million miles, or 544 million kilometers) from Earth, or 1,390 times as far as the moon and 3.69 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take one hour to make the round trip.

Dr. Marc D. Rayman
7:00 p.m. PST January 29, 2014

› Read more entries from Marc Rayman's Dawn Journal


  • Marc Rayman

Illustration of Dawn's spiral transfer from HAMO to LAMO

Illustration of Dawn's low altitude mapping orbit.

Dear Omnipodawnt Readers,

Dawn draws ever closer to the mysterious Ceres, the largest body between the sun and Pluto not yet visited by a probe from Earth. The spacecraft is continuing to climb outward from the sun atop a blue-green beam of xenon ions from its uniquely efficient ion propulsion system. The constant, gentle thrust is reshaping its solar orbit so that by March 2015, it will arrive at the first dwarf planet ever discovered. Once in orbit, it will undertake an ambitious exploration of the exotic world of ice and rock that has been glimpsed only from afar for more than two centuries.

An important characteristic of this interplanetary expedition is that Dawn can linger at its destinations, conducting extensive observations. Since December, we have presented overviews of all the phases of the mission at Ceres save one. (In addition, questions posted by readers each month, occasionally combined with an answer, have helped elucidate some of the interesting features of the mission.) We have described how Dawn will approach its gargantuan new home (with an equatorial diameter of more than 600 miles, or 975 kilometers) and slip into orbit with the elegance of a celestial dancer. The spacecraft will unveil the previously unseen sights with its suite of sophisticated sensors from progressively lower altitude orbits, starting at 8,400 miles (13,500 kilometers), then from survey orbit at 2,730 miles (4,400 kilometers), and then from the misleadingly named high altitude mapping orbit (HAMO) only 910 miles (1,470 kilometers) away. To travel from one orbit to another, it will use its extraordinary ion propulsion system to spiral lower and lower and lower. This month, we look at the final phase of the long mission, as Dawn dives down to the low altitude mapping orbit (LAMO) at 230 miles (375 kilometers). We will also consider what future awaits our intrepid adventurer after it has accomplished the daring plans at Ceres.

It will take the patient and tireless robot two months to descend from HAMO to LAMO, winding in tighter and tighter loops as it goes. By the time it has completed the 160 revolutions needed to reach LAMO, Dawn will be circling Ceres every 5.5 hours. (Ceres rotates on its own axis in 9.1 hours.) The spacecraft will be so close that Ceres will appear as large as a soccer ball seen from less than seven inches (17 centimeters) away. In contrast, Earth will be so remote that the dwarf planet would look to terrestrial observers no larger than a soccer ball from as far as 170 miles (270 kilometers). Dawn will have a uniquely fabulous view.

As in the higher orbits, Dawn will scrutinize Ceres with all of its scientific instruments, returning pictures and other information to eager Earthlings. The camera and visible and infrared mapping spectrometer (VIR) will reveal greater detail than ever on the appearance and the mineralogical composition of the strange landscape. Indeed, the photos will be four times sharper than those from HAMO (and well over 800 times better than the best we have now from Hubble Space Telescope). But just as in LAMO at Vesta, the priority will be on three other sets of measurements which probe even beneath the surface.

All of the mass within Ceres combines to hold Dawn in orbit, exerting a powerful gravitational grip on the ship. But as the spacecraft moves through its orbit, any variations in the internal structure of Ceres from one place to another will lead to slight perturbations of the orbit. If, for example, there is a large region of unusually dense material, even if deep underground, the craft will speed up slightly as it travels toward it. After Dawn passes overhead, the same massive feature will slightly retard its progress, slowing it down just a little.

Dawn will be in almost constant radio contact with Earth during LAMO. When it is pointing its payload of sensors at the surface, it will broadcast a faint radio signal through one of its small auxiliary antennas so exquisitely sensitive receivers on a planet far, far away can detect it. At other times, in order to transmit its findings from LAMO, it will aim its main antenna directly at Earth. In both cases, the slightest changes in speed toward or away from Earth will be revealed in the Doppler shift, in which the frequency of the radio waves changes, much as the pitch of a siren goes up and then down as an ambulance approaches and then recedes. Using this and other remarkably powerful techniques mastered for traveling throughout the solar system, navigators will carefully plot the tiny variations in Dawn’s orbit and from that determine the distribution of mass throughout the interior of the dwarf planet.

The spacecraft will use its sophisticated gamma ray and neutron detector (GRaND) to determine the atomic constituents of the material on the surface and to a depth of up to about a yard (a meter). Gamma rays are a very, very high frequency form of electromagnetic radiation, beyond visible light, beyond ultraviolet, beyond even X-rays. Neutrons are very different from gamma rays. They are the electrically neutral particles in the nuclei of atoms, slightly more massive than protons, and in most elements, neutrons outnumber them too. It would be impressive enough if GRaND only detected these two kinds of nuclear radiation, but it also measures the energy of each kind. (Unfortunately, that description doesn’t lend itself to such a delightful acronym).

Most of the gamma rays and neutrons are byproducts of the collisions between cosmic rays (radiation from elsewhere in space) and the nuclei of atoms in the ground. (Cosmic rays don’t do this very much at Earth; rather, most are diverted by the magnetic field or stopped by atoms in the upper atmosphere.) In addition, some gamma rays are emitted by radioactive elements near the surface. Regardless of the source, the neutrons and the gamma rays that escape from Ceres and travel out into space carry a signature of the type of nucleus they came from. When GRaND intercepts the radiation, it records the energy, and scientists can translate those signatures into the identities of the atoms.

The radiation reaching GRaND, high in space above the surface, is extremely faint. Just as a camera needs a long exposure in very low light, GRaND needs a long exposure to turn Ceres’ dim nuclear glow into a bright picture. Fortunately, GRaND’s pictures do not depend on sunlight; regions in the dark of night are no fainter than those illuminated by the sun.

For most of its time in LAMO, Dawn will point GRaND at the surface beneath it. The typical pattern will be to make 15 orbital revolutions, lasting about 3.5 days, staring down, measuring each neutron and each gamma ray that encounters the instrument. Simultaneously, the craft will transmit its broad radio signal to reveal the gentle buffeting by the variations in the gravitational field. On portions of its flights over the lit terrain, it will take photos and will collect spectra with VIR. Then the spacecraft will rotate to point its main antenna to distant Earth, and while it makes five more circuits in a little more than a day, it will beam its precious discoveries to the 230-foot (70-meter) antennas at NASA’s Deep Space Network.

Dawn will spend more time in each successive observational phase at Ceres than the ones before. After two months in HAMO, during which it will complete about 80 orbits, the probe will devote about three months to LAMO, looping around more than 400 times. That is more than enough time to collect the desired data. Taxpayers have allocated sufficient funds to operate Dawn until June 2016, allowing some extra time for the flight team to grapple with the inevitable glitches that arise in such a challenging undertaking. As in all phases, mission planners recognize that complex operations in that remote and hostile environment probably will not go exactly according to plan, but even if some of the measurements are not completed, enough should be to satisfy all the scientific objectives.

The indefatigable explorer will work hard in LAMO. Aiming its sensors at the surface beneath it throughout its 5.5-hour orbits does not happen naturally. Dawn needs to keep turning to point them down. When it is transmitting its scientific bounty, it needs to hold steady enough to maintain Earth in the sights of its radio antenna. An essential element of the design of the spacecraft to achieve these and related capabilities was the use of three reaction wheels. By electrically changing the speed at which these gyroscope-like devices rotate, the probe can turn or stabilize itself. Because they are so important, four were included, ensuring that if any one encountered difficulty, the ambitious mission could continue with the other three.

As long-time readers know, one did falter in June 2010. Another stopped operating in August 2012. The failure of two such vital devices could have proven fatal for a mission, but thanks to the expertise, creativity, swiftness, and persistence of the members of the Dawn flight team, the prospects for completing the exploration of Ceres are bright.

› Continue reading Marc Rayman’s August 2014 Dawn Journal


  • Marc Rayman

Artist's concept of the Dawn spacecraft and a TIE Fighter from 'Star Wars'

Dear Studawnts and Teachers,

Patient and persistent, silent and alone, Dawn is continuing its extraordinary extraterrestrial expedition. Flying through the main asteroid belt between Mars and Jupiter, the spacecraft is using its advanced ion propulsion system to travel from Vesta, the giant protoplanet it unveiled in 2011 and 2012, to Ceres, the dwarf planet it will reach in about eight months.

Most of these logs since December have presented previews of the ambitious plan for entering orbit and operating at Ceres to discover the secrets this alien world has held since the dawn of the solar system. We will continue with the previews next month. But now with Dawn three quarters of the way from Vesta to Ceres, let's check in on the progress of the mission, both on the spacecraft and in mission control at JPL.

The mission is going extremely well. Thank you for asking.

For readers who want more details, read on ...

The spacecraft, in what is sometimes misleadingly called quiet cruise, has spent more than 97 percent of the time this year following the carefully designed ion thrust flight plan needed to reshape its solar orbit, gradually making it more and more like Ceres' orbit around the sun. This is the key to how the ship can so elegantly enter into orbit around the massive body even with the delicate thrust, never greater than the weight of a single sheet of paper.

The probe is equipped with three ion engines, although it only uses one at a time. (The locations of the engines were revealed shortly after launch when the spacecraft was too far from Earth for the information to be exploited for tawdry sensationalism.) Despite the disciplined and rigorous nature of operating a spaceship in the main asteroid belt, the team enjoys adding a lighthearted touch to their work, so they refer to the engines by the zany names #1, #2, and #3.

Darth Vader and his Empire cohorts in "Star Wars" flew TIE (Twin Ion Engine) Fighters in their battles against Luke Skywalker and others in the Rebel Alliance. Outfitted with three ion engines, Dawn does the TIE Fighters one better. We should acknowledge, however, that the design of the TIE Fighters did appear to provide greater agility, perhaps at the expense of fuel efficiency. Your correspondent would concur that when you are trying to destroy your enemy while dodging blasts from his laser cannons, economy of propellant consumption probably shouldn't be your highest priority.

All three engines on Dawn are healthy, and mission controllers consider many criteria in formulating the plan for which one to use. This called for switching from thruster #2 to thruster #1 on May 27. Thruster #1 had last been used to propel the ship on Jan. 4, 2010. After well over four years of inaction in space, it came to life and emitted the famous blue-green beam of high velocity xenon ions right on schedule (at 4:19:19 pm PDT, should you wish to take yourself back to that moment), gently and reliably pushing the spacecraft closer to its appointment with Ceres.

Without the tremendous capability of ion propulsion, a mission to orbit either Vesta or Ceres alone would have been unaffordable within NASA's Discovery program. A mission to orbit both destinations would be altogether impossible. The reason ion propulsion is so much more efficient than conventional chemical propulsion is that it can turn electrical energy into thrust. Chemical propulsion systems are limited to the energy stored in the propellants.

Thanks to Dawn's huge solar arrays, electrical energy is available in abundance, even far from the brilliant sun. To make accurate predictions of the efficiency of the solar cells as Dawn continues to recede from the sun, engineers occasionally conduct a special calibration. As we described in more detail a year ago, they command the robot to rotate its panels to receive less sunlight, simulating being at greater solar distances, as the ion propulsion system is throttled to lower power levels. Following the first such calibration on June 24, 2013, we assured readers (including you) that we would repeat the calibration as Dawn continued its solar system travels. So you will be relieved to know that it was performed again on Oct. 14, Feb. 3, and May 27, and another is scheduled for Sept. 15. Having high confidence in how much power will be available for ion thrusting for the rest of the journey allows navigators to plot the best possible course. Dawn is on a real power trip!

The reason for going to Ceres, besides it being an incredibly cool thing to do, is to use the suite of sophisticated sensors to learn about this mysterious dwarf planet. (In December, we will describe what is known about Ceres, just in time for it to change with Dawn's observations.) Controllers activated and tested the cameras and all the spectrometers this summer, verifying that they remain in excellent condition and as ready to investigate the uncharted lands ahead as they were for the fascinating lands astern. The engineers also installed updated software in the primary camera in June and are ready to install it in the backup camera next month to enhance some of the devices' functions. All of the scientific instruments are normally turned off when Dawn is not orbiting one of its targets. They will be powered on again in October for a final health check before the approach phase, during which they will provide our first exciting new views of Ceres.

To achieve a successful mission at Ceres, in addition to putting the finishing touches on the incredibly intricate plans, the operations team works hard to take good care of the spacecraft, ensuring it stays healthy and on course. In the remote depths of space, the robot has to be able to function on its own most of the time, but it does so with periodic guidance and oversight by its human handlers on a faraway planet. That means they need to stay diligent, keep their skills sharp, and remain watchful for any indications of undesirable conditions. On July 22, the team received information showing that Dawn was in safe mode, a special configuration invoked by onboard software to protect the spacecraft and the mission, preventing unexpected situations from getting out of control.

As engineers inspected the trickle of telemetry, they began to discover that this was a more dire situation than they had ever seen for the distant craft. Among the surprises was an open circuit in one of the pressurized cells of the nickel-hydrogen battery, a portion of the reaction control system that was so cold that its hydrazine propellant was in danger of freezing, temperatures elsewhere on the spacecraft so low that the delicate cameras were at risk of being damaged, and a sun sensor with degraded vision. To make it still more complicated, waveguide transfer switch #5, used to direct the radio signal from the transmitter inside the spacecraft to one of its antennas for beaming to Earth, was stuck and so would not move when software instructed it to. Other data showed that part of the computer memory was compromised by space radiation. As if all that were not bad enough, one of the two star trackers, devices that recognize patterns of stars just as you might recognize constellations to determine your orientation at night without a compass or other aids, was no longer functional. Further complicating the effort to get the mission back on track was an antenna at the Deep Space Network that needed to be taken out of service for emergency repairs. And the entire situation was exacerbated by Dawn already being in its lowest altitude orbit around Ceres (the subject of next month's log), so for part of every 5.5-hour orbital revolution, it was out of contact as the world beneath it blocked the radio signal.

Confronted with an almost bewildering array of complex problems, the team of experts spent three days working through them with their usual cool professionalism, ultimately finding ways to overcome each obstacle to continue the mission. It would be extraordinarily, even unbelievably, unlikely for so many separate problems to stack up so quickly, even for a ship in the severe conditions of deep space, more than 232 million miles (374 million kilometers) from Dawn mission control on the top floor of JPL's building 264. However, it easily can happen in an operational readiness test (ORT, pronounced letter by letter and not as a word, for those readers who want to conduct their own ORTs). The telemetry came from the spacecraft simulator, just down the hall from the mission control room, and the problems were the fiendishly clever creations of the ORT mastermind. (So now you may calm down, reassured that the scenario just described did not actually happen.)

The team conducted ORTs (and even an ORTathon) before launch in 2007, before Vesta in 2011, and as recently as May 2013. They will hold another in August.

While mission controllers exercised their skills in the ORT, the real spacecraft continued streaking through the asteroid belt, its interplanetary travels bringing it 45 thousand miles (73 thousand kilometers) closer to Ceres each day. But it is not only the Dawn team members who are part of this adventure. The stalwart explorer is transporting everyone who ever gazes in wonder at the night sky, everyone who yearns to know what lies beyond the confines of our humble home, and everyone awed by the mystery, the grandeur, and the immensity of the cosmos. Fueled by their passionate longing, the journey holds the promise of exciting new knowledge and thrilling new insights as a strange world, glimpsed only from afar for more than two centuries, is soon to be unveiled.

Dawn is 4.2 million miles (6.7 million kilometers) from Ceres. It is also 2.67 AU (248 million miles, or 399 million kilometers) from Earth, or 995 times as far as the moon and 2.63 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 44 minutes to make the round trip

Dr. Marc D. Rayman
6:00 p.m. PDT July 31, 2014

› Read more of Marc Rayman's Dawn Journals


  • Marc Rayman

Ranger 7 Spacecraft Model

Several different full-size and scale models were made of the Ranger spacecraft (Block I, II, and III configurations). Scale models were used by the projects at NASA's Jet Propulsion Laboratory at a time when there was no computer animation. Engineers and scientists used them to visualize the spacecraft and its orientation as it reached the moon or a planet.

Three members of the Ranger 7 television experiment team stand near a scale model and lunar globe. From left: Ewen Whitaker, Dr. Gerard Kuiper, and Ray Heacock. Kuiper was the director of the Lunar and Planetary Laboratory (LPL) at the University of Arizona. Whitaker was a research associate at LPL. Heacock was the Lunar and Planetary Instruments section chief at JPL.

› Learn more about the Ranger 7 mission

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL's Library and Archives Group.


  • Julie Cooper

Temperature Structure Radiometer

In 1979 there was a Clear Air Turbulence (CAT) Flight Test Program at the NASA Jet Propulsion Laboratory that used a microwave radiometer to measure the temperature at various altitudes in order to map the inversion layers that can cause turbulence for aircraft.

In 1980 a new 55 GHz radiometer was developed by the Microwave Observational Systems Section (383) to passively measure the temperature of oxygen molecules in the air. The Temperature Structure Radiometer (TSR) was flown over the western United States on a NASA CV-990 aircraft based at Ames Research Center. It was mounted inside the cabin, with a view through a special microwave-transparent window. An HP 9825 desktop computer controlled the scan sequence, recorded raw data and converted the readings to an “altitude temperature profile” display. With the information provided by a CAT avoidance sensor, pilots would be able to navigate to a smoother altitude for greater safety and comfort. In this 1981 photo, Bruce Gary (senior scientist, Observational Systems Division, at right) and Jim Johnston (383 section manager) look at the new TSR.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL's Library and Archives Group.


  • Julie Cooper

Survey orbit

Artist's concept of Dawn orbiting Ceres" alt="Artist's concept of Dawn orbiting Ceres

Dear Dawnosaurs,

Silently streaking through the main asteroid belt, emitting a blue-green beam of xenon ions, Dawn continues its ambitious interplanetary expedition. On behalf of creatures on distant Earth who seek not only knowledge and insight but also bold adventure, the spacecraft is heading toward its appointment with Ceres. In about 10 months, it will enter orbit around the ancient survivor from the dawn of the solar system, providing humankind with its first detailed view of a dwarf planet.

This month we continue with the preview of how Dawn will explore Ceres. In December we focused on the "approach phase," and in January we described how the craft spirals gracefully into orbit with its extraordinary ion propulsion system. The plans for the first observational orbit (with a marvelously evocative name for a first examination of an uncharted world: RC3 — is that cool, or what?), at an altitude of 8,400 miles (13,500 kilometers), were presented in FebruaryLast month, we followed Dawn on its spiral descent from each orbital altitude to the next, with progressively lower orbits providing better views than the ones before. Now we can look ahead to the second orbital phase, survey orbit.

In survey orbit, Dawn will make seven revolutions at an altitude of about 2,730 miles (4,400 kilometers). At that distance, each orbit will take three days and three hours. Mission planners chose an orbit period close to what they used for survey orbit at Vesta, allowing them to take advantage of many of the patterns in the complex choreography they had already developed. Dawn performed it so beautifully that it provides an excellent basis for the Ceres encore. Of course, there are some adjustments, mostly in the interest of husbanding precious hydrazine propellant in the wake of the loss of two of the spacecraft's four reaction wheels. (Although such a loss could have dire consequences for some missions, the resourceful Dawn team has devised a plan that can achieve all of the original objectives regardless of the condition of the reaction wheels.)

We had a preview of survey orbit at Vesta four years ago, and we reviewed the wonderfully successful outcome in September 2011. When we develop the capability to travel backwards in time, we will insert a summary of what occurred in survey orbit at Ceres here: _______…… Well, nothing yet. So, let's continue with the preview.

As in all phases at Ceres (and Vesta), Dawn follows what space trajectory experts (and geeks) call a polar orbit. The ship's course will take it above the north pole, and then it will sail south over the side bathed in the light of the sun. After flying over the south pole, Dawn will head north. Although the surface beneath it will be dark, the spacecraft will be high enough that it will not enter the dwarf planet's shadow. The distant sun will constantly illuminate the large solar arrays.

The leisurely pace in survey orbit allows the explorer to gather a wealth of data during the more than 37 hours on the day side. It will train its science camera and visible and infrared mapping spectrometer (VIR) on the surface lit by the sun. The camera will collect hundreds of images using all seven of its color filters. It will reveal details three times finer than it observed in RC3 orbit and 70 times sharper than the best we have from the Hubble Space Telescope. VIR will acquire millions of spectra to help scientists determine the minerals present as well as the temperature and other properties of the surface. While the sensors are pointed at the surface, the main antenna cannot simultaneously be aimed at Earth, so the robot will store its pictures and spectra.

One Cerean day, the time it takes Ceres to rotate once on its axis, is a little over nine hours. (For comparison, Earth, as some of its residents and visitors know, takes 24 hours. Jupiter turns in just under 10 hours, Vesta in five hours and 21 minutes, and your correspondent's cat Regulus in about 0.5 seconds when chasing a laser spot.) So as Dawn travels from the north pole to the south pole, Ceres will spin underneath it four times. Dawn will be close enough that even the wide field of view of its camera won't capture the entire disc below, from horizon to horizon, but over the course of the seven orbits, the probe will see most of the surface. As in developing the plan for Vesta, engineers (like certain murine rodents and male humans) are keenly aware that as careful, as thorough, and as diligent as they are, their schemes don't always execute perfectly. In the unknown, forbidding depths of space with a complex campaign to carry out, glitches can occur and events can go awry. The plan is designed with the recognition that some observations will not be achieved, but those that are promise great rewards.

Most of the time, the spacecraft will gaze straight down at the alien terrain immediately beneath it. But on the first, second, and fourth passages over the day side of Ceres, it will spend some of the time looking at the limb against the blackness of space. Pictures with this perspective will not only be helpful for establishing the exact shape of the dwarf planet but they also will provide some very appealing views for eager sightseers on Earth.

In addition to using the camera and VIR, Dawn will measure space radiation with its gamma ray and neutron detector (GRaND). GRaND will still be too far from Ceres to sense the nuclear particles emanating from it, but recording the radiation environment will provide a valuable context for the sensitive measurements it will make at lower altitudes.

When Dawn's orbit takes it over the dark side, it will turn away from the dwarf planet it is studying and toward the planet it left in 2007 where its human colleagues still reside. With its 5-foot (1.52-meter) main antenna, it will spend most of the day and a half radioing its precious findings across uncounted millions of miles (kilometers) of interplanetary space. (Well, you won't have to count them, but we will.)

In addition to the instrument data it encodes, Dawn's radio signal will allow scientists and engineers to measure how massive Ceres is. By observing the Doppler shift (the change in frequency caused by the spacecraft's motion), they can determine how fast the ship moves in orbit. Timing how long the signals (traveling at the universal limit of the speed of light) take to make the round trip, navigators can calculate how far the probe is and hence where it is in its orbit. Combining these (and including other information as well) allows them to compute how strongly Ceres pulls on its orbital companion. The strength of its gravitational force reveals its heft.

By the end of survey orbit, Dawn will have given humankind a truly extraordinary view of a dwarf planet that has been cloaked in mystery despite more than 200 years of telescopic studies. As the exotic world of rock and ice begins to yield its secrets to the robotic ambassador from Earth, we will be transported there. We will behold new landscapes that will simultaneously quench our thirst for exploration and ignite our desire for even more. It is as humankind reaches ever farther into the universe that we demonstrate a part of what it means to be human, combining our burning need for greater understanding with our passion for adventure and our exceptional creativity, resourcefulness and tenacity. As we venture deeper into space, we discover much of what lies deep within ourselves.

Dawn is 7.2 million miles (12 million kilometers) from Ceres. It is also 1.87 AU (174 million miles, or 280 million kilometers) from Earth, or 695 times as far as the moon and 1.84 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 31 minutes to make the round trip.

› Continue reading Marc Rayman's May 31, 2014, Dawn Journal


  • Marc Rayman

Advanced Lunar Studies Field Test

The last of the Surveyor lunar landers, Surveyor 7, was launched on January 7, 1968, and operated on the surface of the moon for about six weeks. Later that year, additional geoscience studies were carried out in the Mojave Desert using a spare surface sampler arm. A four-wheel-drive camper truck simulated an automated rover and was used to study the procedures and equipment necessary for remote geoscience. The truck was equipped with various sampler instruments, four TV cameras mounted on the top of the vehicle and one portable TV camera. Inside the camper was a simulated Space Flight Operations Center, with TV monitors, controllers for the cameras and instruments, and recording equipment. The field test observer (sitting in the camper) would survey the geology of the test area and carry out sampling operations remotely. Ritchie Coryell (System Design and Integration Section), Roy Brereton (Advanced Studies Office) and Earle Howard (Lunar and Planetary Instruments Section) all worked on this field test program.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL's Library and Archives Group.


  • Julie Cooper

Artist's concept of the Dawn spacecraft

Illustration of Dawn's orbits from RC3 to survey orbit

Illustration of Dawn's orbits from HAMO to LAMO

Dear Compedawnt Readers,

Less than a year from its rendezvous with dwarf planet Ceres, Dawn is continuing to make excellent progress on its ambitious interplanetary adventure. The only vessel from Earth ever to take up residence in the main asteroid belt between Mars and Jupiter, the spacecraft grows more distant from Earth and from the sun as it gradually closes in on Ceres. Dawn devotes the majority of its time to thrusting with its remarkable ion propulsion system, reshaping its heliocentric path so that by the time it nears Ceres, the explorer and the alien world will be in essentially the same orbit around the sun.

In December, we saw what Dawn will do during the "approach phase"; to Ceres early in 2015, and in January, we reviewed the unique and graceful method of spiraling into orbit. We described in February the first orbit (with the incredibly cool name RC3) from which intensive scientific observations will be conducted, at an altitude of 8,400 miles (13,500 kilometers). But Dawn will take advantage of the extraordinary capability of ion propulsion to fly to three other orbital locations from which it will further scrutinize the mysterious world.

Let’s recall how the spacecraft will travel from one orbit to another. While some of these plans may sound like just neat ideas, they are much more than that; they have been proven with outstanding success. Dawn maneuvered extensively during its 14 months in orbit around Vesta. (One of the many discussions of that was in November 2011.) The seasoned space traveler and its veteran crew on distant Earth are looking forward to applying their expertise at Ceres.

As long-time readers of these logs know so well, the ion thrust is uniquely efficient but also extremely low. Ion propulsion provides acceleration with patience. Ultimately the patience pays off, enabling Dawn to accomplish feats far beyond what any other spacecraft has ever had the capability to do, including orbiting two extraterrestrial destinations. The gentle thrust, comparable to the weight of a single sheet of paper, means it takes many weeks to maneuver from one observational orbit to another. Of course, it is worthwhile to spend that much time, because each of the orbital phases is designed to provide an exciting trove of scientific data.

Those of you who have navigated around the solar system, as well as others who have contemplated the nature of orbits without having practical experience, recognize that the lower the orbital altitude, the faster the orbital motion. This important principle is a consequence of gravity’s strength increasing as the distance between the massive body and the orbiting object decreases. The speed has to be higher to balance the stronger gravitational pull. (For a reminder of some of the details, be sure to go here before you go out for your next orbital expedition.)

While Dawn slowly reduces its altitude under the faint pressure of its ion engine, it continues circling Ceres, orbiting in the behemoth’s gravitational grip. The effect of combining these motions is that the path from one altitude to another is a spiral. And as Dawn descends and zips around Ceres faster and faster, the spirals get tighter and tighter.

The first coils around Ceres will be long and slow. After completing its investigations in RC3, the probe will spiral down to”survey orbit,”; about 2,700 miles (4,400 kilometers) above the surface. During that month-long descent, it will make only about five revolutions. After three weeks surveying Ceres from that new vantage point, Dawn will follow a tighter spiral down to the (misleadingly named) high altitude mapping orbit (HAMO) at 910 miles (1,470 kilometers). In the six-week trip to HAMO, the craft will wind around almost 30 times. It will devote two months to performing extensive observations in HAMO. And finally as 2015 draws to a close, it will fly an even more tightly wound course to reach its low altitude mapping orbit (LAMO) at 230 miles (375 kilometers), where it will collect data until the end of the mission. The ship will loop around 160 times during the two months to go from HAMO to LAMO. (We will preview the plans for survey orbit, HAMO and LAMO in May, July and August of this year, and if all goes well, we will describe the results in 2015 and 2016.)

Designing the spiral trajectories is a complex and sophisticated process. It is not sufficient simply to activate the thrust and expect to arrive at the desired destination, any more than it is sufficient to press the accelerator in your car and expect to reach your goal. You have to steer carefully (and if you don’t, please don’t drive near me), and so does Dawn. As the ship revolves around Ceres, it must constantly change the pointing of the blue-green beam of high velocity xenon ions to stay on precisely the desired winding route to the targeted orbit. The mission control team at JPL will program the ship to orient its thruster in just the right direction at the right time to propel itself on the intended spiraling course.

Aiming a thruster in the direction needed to spiral around Ceres requires turning the entire spacecraft. Each thruster is mounted on its own gimbal with a limited range of motion. In normal operation, the gimbal is positioned so that the line of thrust goes through the center of the ship. When the gimbal is swiveled to another direction, the gentle force from the ion engine causes the ship to rotate slowly. This is similar to the use of an outboard motor on a boat. When it is aligned with the centerline of the boat, the craft travels straight ahead. When the motor is turned, it continues to propel the boat but also turns it. In essence, Dawn’s steering of its thrust is accomplished by pivoting the ion engine.

A crucial difference between the boat and our interplanetary ship is that with the former, the farther the motor is turned, the tighter the curving course. (Another difference is that the spacecraft wouldn’t float.) Dawn doesn’t have that liberty. For our craft, the gimballing of the thruster needs to be carefully coordinated with the orbital motion, as if the motorboat operator needed to compensate for a curving current. This has important implications at Ceres. Sophisticated as it is, Dawn knows its own location in orbit only by virtue of information mission controllers install onboard to predict where it will be at any time. That is based on their best computations of Ceres’ gravity, the planned operation of the ion propulsion system, and many other considerations, but it will never be perfectly accurate. Let’s take a look at two of the reasons.

Ceres, like Vesta, Earth, the moon, Mars, and other planets or planetary-type bodies, has a complex gravity field. The distribution of materials of different densities within the interior creates variations in the strength of the gravitational force, so Dawn will feel a slightly changing tug from Ceres as it travels in orbit. But there is a noteworthy difference between Ceres’ gravity field and the fields of those other worlds: Ceres’ field is unknown. We will have to measure it as we go. The subtle irregularities in gravity as Dawn descends will cause small deflections from the planned trajectory. Our ship will be traversing unknown, choppy waters.

Other phenomena will lead to slight discrepancies as well. The ion propulsion system will be responsible for changing the orbit, so even tiny deviations from the intended thrust eventually may build up to have a significant effect. This is no different from any realistic electrical or mechanical system, which is sure to have imperfections. If you planned a trip in which you would drive 60.0 miles (96.6 kilometers) at 60.0 mph (96.6 kilometers per hour), you could expect to arrive in exactly 60.0 minutes. (No surprises there, as it isn’t exactly rocket science.) But even if you maintained the speedometer as close to 60 as you could, it would not be accurate enough to indicate the true speed. If your actual speed averaged 60.4 mph (97.2 kilometers per hour), you would arrive 24 seconds early. Perhaps that difference wouldn’t matter to you (and if it did, you might consider replacing your car with a spaceship), but such minuscule errors, when compounded by Dawn’s repeated spirals around Ceres, would make a difference in achieving its carefully chosen orbit.

As a result of these and other effects, mission controllers will need to adjust the complex flight plan as Dawn travels from one observational orbit to another. So it will thrust for a few days and then stop to allow navigators to get a new fix on its position. When it points its main antenna to Earth, the Doppler shift of its radio signal will reveal its speed, and the time for radio signals (traveling, as all readers know so well, at the universal limit of the speed of light) to make the round trip will yield its distance. Combining those measurements with other data, mission controllers will update the plan for where to point the thruster at each instant during the next phase of the spiral, check it, double check it, and transmit it to the faraway robot, which will then put it into action. This intensive process will be repeated every few days as Dawn maneuvers to lower orbits.

The flight team succeeded brilliantly in performing this kind of work at Vesta, but they will encounter some differences at Ceres.

› Continue reading Marc Rayman's April 30, 2014, Dawn Journal


  • Marc Rayman