Slice of History Blogs

Slice of History Blogs

Archivist Julie Cooper shares historical photos from the JPL Archives. Learn more about JPL history and explore the archives at https://beacon.jpl.nasa.gov/.


JPL’s First Digital Computer

In January 1953, JPL was in the market for its first digital computer.

After investigating the possibilities, a site visit was made to Consolidated Engineering Corporation (CEC) in Pasadena and the CEC Model 30-203 digital computer, shown in this photo, was eventually selected. The prototype at CEC was given the project number 36-101. JPL and the National Bureau of Standards were the first two customers to order the computer – the one ordered by JPL was 36-102, and the one for NBS was 36-103.

JPL's computer was finally delivered and operational in July 1954. It cost approximately $135,000 (more than $1 million in 2016 dollars). That did not include the operator's console, paper tape input and output, punch card unit, or other related equipment. It featured magnetic drum storage of about 4000 words (a "word" being a number or command) and a word length of 10 decimal digits. It contained more than 1,500 vacuum tubes.

For more information about the history of JPL, contact the JPL Archives for assistance. [Archival and other sources: Section 371 photo albums, Combined Bimonthly Summary No. 33, Datatron Chronology.)

TAGS: JPL'S FIRST DIGITAL COMPUTER, MODEL 30-203, PASADENA, CONSOLIDATED ENGINEERING CORPORTATION (CEC), MAGNETIC DRUM STORAGE

  • Julie Cooper
READ MORE

32nd anniversary of the first rocket motor test

On October 31, 1968 JPL celebrated the 32nd anniversary of the first rocket motor tests in the Arroyo Seco.

The five men in this photo were present at the series of tests that happened in 1936 and 1937, and they came back to JPL for the celebration. From left to right are: William C. Rockefeller, William A. Bollay, Edward S. Forman, Frank J. Malina, and Apollo M.O. Smith. The historical marker found in the JPL Mall was commemorated at this event, and they posed next to a replica of the rocket motor test stand. The photo below shows a print of a 1936 test stand drawing by Frank Malina. He was the Chief Engineer of what would later become JPL, and was Acting Director from 1944 to 1946.

The Bering Strait
A print of a 1936 test stand drawing by Frank Malina.

For more information about the history of JPL, contact the JPL Archives for assistance. [Archival and other sources: various History Collection documents, photo albums, Lab-Oratory.)

TAGS: ROCKET MOTOR TEST, 32ND ANNIVERSARY, ARROYO SECO

  • Julie Cooper
READ MORE

Goldstone Deep Space Instrumentation Facility, Transmitting Station, 1960

JPL photographers don’t take only technical photos, although you’ll find plenty of images of parts, testing, construction, and spacecraft assembly in the JPL Archives photo collection.

On occasion, photographers explore the surrounding area, and take more artistic photos suitable for publicity, brochures, or for display in a JPL building. The newest Historical Photo of the Month shows one example – an early deep space communications antenna in California’s Mojave Desert.

This photo shows the “Transmitting Station” at what was then called the Goldstone Deep Space Instrumentation Facility (also known as the Goldstone Tracking Station or GTS). The 10-kw radio transmitter and 85-foot antenna were installed about two years after the first station ( the “Receiving Station”) became operational in December 1958. It added voice communication and radio command capabilities to the expanding Goldstone operation.

TAGS: GOLDSTONE, DEEP SPACE INSTRUMENT FACILITY, ANTENNA, MOJAVE DESERT, TRANSMITTING STATION, GTS

  • Julie Cooper
READ MORE

Induction Wind Tunnel, 1947

Reports and brochures about the history of aerodynamic facilities at JPL usually identify the 12-inch Supersonic Wind Tunnel as the first wind tunnel at JPL.

Reports and brochures about the history of aerodynamic facilities at JPL usually identify the 12-inch Supersonic Wind Tunnel as the first wind tunnel at JPL.  It went into operation in 1949.  However, in October 1947, this small induction wind tunnel was being used in studies of air-fuel combustion and turbulence.  Studies were conducted by Division 2 (Thermal Jet Propulsion), which included Section 1 (Research Analysis), Section 10 (Ramjet), and Section 13 (Wind Tunnels).

This wind tunnel was located in building 106, also known as the Thermal Jet Test Cell.  The cooling tower for the test cell can be seen in the background.  This facility no longer exists, but it was located northeast of building 79 (former home of the 20-inch Hypersonic Wind Tunnel).

[Archival Sources:  JPL Facts and Facilities, HC3-280; Performance of the 12-Inch Wind Tunnel, Memo 4-52; JPL maps; organization charts; telephone books; and Section 326 photo albums and indexes.]

TAGS: INDUCTION WIND TUNNEL, AERODYNAMIC FACILITY

  • Julie Cooper
READ MORE

Viking 1 Landing Photos

Before personal computers, web sites, email, smart phones, and social media were commonplace, JPL posted mission photos on a bulletin board in the mall, with a caption by each photo.  This was the only way for most employees to see the images that were released to the public.

In July 1976, JPL celebrated the arrival of the Viking 1 lander on Mars.  Many images were received from the Viking orbiter and lander during that summer and some were assembled (by hand) into panoramas and mosaics.  Photos were displayed by closed-circuit television during the landing event to groups of visitors in a few locations on Lab, and were filmed or broadcast by visiting news crews.  Hard copy photos were distributed to the news media.  A small set of images from each JPL mission was typically selected for distribution to all JPLers, along with a letter of congratulations and thanks for their contributions. Decades later, many of these photographs and lithographs have found their way to the JPL Archives.

For more information about the history of JPL, contact the JPL Archives for assistance.  [Archival and other sources:  JPL photo albums and indexes; JPL Annual Reports, and The Viking Mission to Mars.]

TAGS: VIKING, 1, LANDING

  • Julie Cooper
READ MORE

Crushable Materials Tests for Surveyor

Even before Hughes Aircraft Company was selected as the contractor that would design and build the Surveyor landers, JPL began conducting tests of materials that would help to cushion the impact of a moon landing.  It was to be a soft landing, in contrast to the Ranger crash landings, but there would still be a drop of about 13 feet, where the Surveyor vernier engines would cut off and the lander would free fall to the surface of the moon.

The lander had a tripod structure, with hydraulic shock absorbers in the landing legs.  JPL also planned to use three blocks on the underside of the lander, one near each leg, that would absorb some of the impact.  Various materials, sizes, and configurations were tested, including aluminum tubes and sheets, some formed into a hexagonal honeycomb pattern.  The JPL Photolab took dozens of photos for the Engineering Research Section (354) which are identified simply as “crushable materials” and they show several series of tests completed in 1960-1962.  The results were reported in JPL’s bimonthly Space Programs Summaries and other technical reports.

For more information about the history of JPL, contact the JPL Archives for assistance.  [Archival and other sources: Surveyor Mission Reports; various Space Programs Summaries; RS36-5, vol. 2;  Section 354 photo indexes, JPL telephone books and organization charts.]

TAGS: CRUSHABLE, MATERIALS, TESTS, SURVEYOR

  • Julie Cooper
READ MORE

This image was created by Hughes artist Carlos Lopez. It was used in a Surveyor poster, which was a common practice in the days before computer aided drawing.

Surveyor mission planning began in 1960. The mission included seven spacecraft that would soft land on the Moon, using three vernier engines and a retrorocket. The spacecraft would collect data and images of the surface, in order to ensure a safe landing for Apollo astronauts a few years later. Hughes Aircraft Company was selected to design and build the landers and the project was managed by JPL, which also provided tracking and communications. Surveyor I was launched on May 31, 1966, landed on the Moon June 2, and sent back more than 11,000 photos of the lunar surface. The entire image set from Surveyors 1-7 has recently been digitized, and will soon be added to NASA’s Planetary Data System.

This image was created by Hughes artist Carlos Lopez. It was used in a Surveyor poster, which was a common practice in the days before computer aided drawing. This poster was recently received by the JPL Archives, as part of a collection of Surveyor documentation.

For more information about the history of JPL, contact the JPL Archives for assistance. [Archival and other sources: Surveyor Mission Reports, Ranger and Surveyor Fact Sheet, and the NASA Historical Data Book.]

TAGS: SURVEYOR, SOFT, LUNAR, LANDING, 1966, VERNIER, RETROROCKET

  • Julie Cooper
READ MORE

Dr. George Lewicki and Dr. Dimiter Tchernev (sitting at the microscope of the laser instrument)

From 1967 through the early 1970s, a number of studies were conducted at JPL with the goal of reducing the size of computer memory and developing miniature storage media for spacecraft computers.

These early tests used Curie-point writing to communicate the bits (ones and zeroes) of computer data. In various tests, a hot wire stylus, an electron beam, or a ruby laser were used to heat tiny dots (around one micrometer in size) on thin ferromagnetic manganese bismuthide (MnBi) film. The material was heated to just above its Curie temperature (the point at which the material is demagnetized) then cooled within a magnetic field, controlling the direction of the magnetization for each dot. The recorded bits of information were observed with polarized light using the Faraday effect. The recorded information could be completely erased by saturating the film in an applied magnetic field, then the recording process could be repeated.

The newest Historical Photo of the Month http://beacon.jpl.nasa.gov/historical-photo-of-the-month shows Dr. George Lewicki and Dr. Dimiter Tchernev who worked on this task.  It received NASA funding of $175,000 per year (about $1.2 million in 2016 dollars). The studies were documented in a series of published papers, articles in JPL Space Programs Summaries, and a press release. It was reported that one square inch of magnetic film could hold as much data as computer memory that (in 1967) took up ten cubic feet of space.

For more detailed information about the history of JPL, contact the Library and Archives Reference Desk at (818) 354-4200 or archives@jpl.nasa.gov.  If you have questions about the Historical Photo of the Month, please contact archivist Julie Cooper at Julie.A.Cooper@jpl.nasa.gov.

TAGS: MAGNETIC, DATA, STORAGE, HISTORY, COMPUTER, MEMORY, ELECTRON, RUBY, LASER

  • Julie Cooper
READ MORE

Future Mars Mission

In between 1982 and 1997, JPL had no active missions on the surface of Mars.  July 1986 was the 10th anniversary of the Viking mission, and an artist was hired to help show the possibilities of future Mars exploration. This artist’s rendering depicts a fleet of landers with astronauts aboard. The one on its side enabled cargo bay doors to open so a vehicle could be driven out onto the surface of the planet and other cargo unloaded.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: JPL MISSION SURFACE FUTURE MARS EXPLORATION HISTORY

  • Julie Cooper
READ MORE

Scientist holding a weather balloon and standing in front of large computer equipment.

In the mid-1970s, JPL evaluated several techniques for determining atmospheric water vapor effects on radiometric range. These experiments allowed the signals between spacecraft and the Deep Space Network antennas to be properly calibrated. One of the experiments was the Scanning Microwave Inversion Layer Experiment (SMILE). In May 1974, this test was conducted in El Monte, California, with a radiosonde suspended beneath a weather balloon. When the balloon reached 10,000 feet (about 3 km) it began measuring absolute pressure, ambient temperature, and relative humidity, then radioed the results to ground receivers.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, ATMOSHPHERE, WATER, VAPOR, MICROWAVE, SMILE

  • Julie Cooper
READ MORE