Blogs by Julie Cooper

Blogs by Julie Cooper

Julie Cooper is a certified archivist who identifies and processes collections for the JPL Archives, and helps researchers find information about the history of JPL.


Lunar Roving Vehicle Prototype

In 1964, at least two companies were working under contract to JPL on a Surveyor Lunar Roving Vehicle Study: Bendix Corporation Systems Division, and General Motors Corporation Defense Research Laboratories. This photo shows a prototype General Motors rover, one of several different approaches that were studied to determine their capabilities, limitations, and their impact on overall spacecraft design and performance. Twelve different spacecraft configurations were studied in detail, with variations in weight, power systems, communication method, and spaceframe size.

The final design of the Surveyor 1 through 7 lunar landers did not include a rover. NASA sponsored other lunar rover studies during the 1960s, with a variety of sizes and technical capabilities, and Apollo 15 astronauts became the first to drive a Lunar Roving Vehicle on the moon, during their 1971 mission. JPL continued to develop robotic spacecraft and rovers and, in 1997, landed Mars Pathfinder and its Sojourner rover on the red planet.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, MOON, SPACECRAFT, TECHNOLOGY, ROVER

  • Julie Cooper
READ MORE

sphere drag experiment

In 1962, JPL conducted research in low-density gas dynamics, studying the drag on a sphere in a supersonic low-density flow environment, at various temperatures and speeds (Mach 1.8 to 4.4). Experiments were conducted in JPL’s Low Density Wind Tunnel. Nozzles were wrapped in a copper coil containing liquid nitrogen to cool the apparatus. A steel or bronze ball from 1/32 to 1/8 inch in size was suspended from fine tungsten wire in the jet. Two 8 mm movie projector lamps with built-in reflectors were placed at the edge of the jet and used to raise the sphere temperature to about 1,000 kelvins.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, TECHNOLOGY

  • Julie Cooper
READ MORE

Mariner 3 Systems Test Configuration

Several spacecraft were built for the Mariner Mars 1964 mission. The ones that were actually launched were referred to as Mariner C-2 and Mariner C-3 until they were renamed Mariner 3 and Mariner 4, respectively. There was also a Proof Test Model (PTM, or Mariner C-1) and a Structural Test Model (STM). This photo shows Mariner C-2 configured for system tests in May 1964. It appears to be in the Spacecraft Assembly Facility, with the observation area at the top of the photo.

Mariner 3 was launched November 5, 1964, but the shroud did not fully eject from the spacecraft, the solar panels did not deploy, and the batteries ran out of power. The problem was fixed on Mariner 4, which began its successful journey to Mars on November 28, 1964.

Documentation found in the Archives does not identify the purpose of the sphere covering the magnetometer during this test.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, MARINER, MARS, VENUS, SOLAR SYSTEM, MISSION, SPACECRAFT, TECHNOLOGY

  • Julie Cooper
READ MORE

Mariner Mars 1964 Solar Panel Test

“Most space projects live nine lives on the test bench before they are allowed one life in flight.”* The Mariner Mars mission was on a tight schedule in 1964, so testing was not quite as extensive as it was for other missions. A full-size temperature-control model and a proof-test model went through a series of environmental and vibration tests in the 25-foot space simulator at NASA’s Jet Propulsion Laboratory and other test facilities. This photo was taken in June 1964, outside of the Spacecraft Assembly Facility at JPL. In this unusual outdoor setting, the solar panel test took place in a large plastic tent.

After testing was completed, two spacecraft and a spare (the proof-test model) were partly disassembled, carefully packed and loaded on moving vans for a trip to the Air Force Eastern Test Range in Cape Kennedy, Florida. They were inspected, reassembled, and tested again before launch.

*To Mars: the Odyssey of Mariner IV, TM33-229, 1965.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, MARS, MARINER, MISSION, SPACECRAFT, SOLAR SYSTEM,

  • Julie Cooper
READ MORE

Set of JPL Today With Al Hibbs

Before there was email, the JPL intranet, or streaming video to keep employees informed, Dr. Al Hibbs hosted a bi-weekly internal TV show to provide mission and technology updates, and discuss how current events affected JPL and NASA. It was shown on closed circuit televisions in the two cafeterias during breaks and lunch. At the time, the most common way of reaching all employees was to distribute hard copies of Universe, This Week, Director’s Letters, project status reports, and flyers.

Hibbs had worked at JPL since 1950 and was well known as the “Voice of JPL,” using his knowledge of engineering and science to explain complex concepts to the public during many of JPL’s planetary missions. In this 1980 photo, Hibbs (at left) talks to Rep. Don Fuqua of Florida, a member of the House of Representatives Science and Technology Committee.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, TV, TECHNOLOGY, COMMUNICATIONS,

  • Julie Cooper
READ MORE

Ranger 7 Spacecraft Model

Several different full-size and scale models were made of the Ranger spacecraft (Block I, II, and III configurations). Scale models were used by the projects at NASA's Jet Propulsion Laboratory at a time when there was no computer animation. Engineers and scientists used them to visualize the spacecraft and its orientation as it reached the moon or a planet.

Three members of the Ranger 7 television experiment team stand near a scale model and lunar globe. From left: Ewen Whitaker, Dr. Gerard Kuiper, and Ray Heacock. Kuiper was the director of the Lunar and Planetary Laboratory (LPL) at the University of Arizona. Whitaker was a research associate at LPL. Heacock was the Lunar and Planetary Instruments section chief at JPL.

› Learn more about the Ranger 7 mission

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL's Library and Archives Group.

TAGS: RANGER, SPACECRAFT, MISSIONS, HISTORY, VISUALIZATION, EARTH'S MOON, SOLAR SYSTEM

  • Julie Cooper
READ MORE

Temperature Structure Radiometer

In 1979 there was a Clear Air Turbulence (CAT) Flight Test Program at the NASA Jet Propulsion Laboratory that used a microwave radiometer to measure the temperature at various altitudes in order to map the inversion layers that can cause turbulence for aircraft.

In 1980 a new 55 GHz radiometer was developed by the Microwave Observational Systems Section (383) to passively measure the temperature of oxygen molecules in the air. The Temperature Structure Radiometer (TSR) was flown over the western United States on a NASA CV-990 aircraft based at Ames Research Center. It was mounted inside the cabin, with a view through a special microwave-transparent window. An HP 9825 desktop computer controlled the scan sequence, recorded raw data and converted the readings to an “altitude temperature profile” display. With the information provided by a CAT avoidance sensor, pilots would be able to navigate to a smoother altitude for greater safety and comfort. In this 1981 photo, Bruce Gary (senior scientist, Observational Systems Division, at right) and Jim Johnston (383 section manager) look at the new TSR.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL's Library and Archives Group.

TAGS: HISTORY, MISSIONS, SPACECRAFT, INSTRUMENTS

  • Julie Cooper
READ MORE

Magellan Mission to Venus

This artist's conception of the Magellan spacecraft was created in about 1983, when it was known as Venus Radar Mapper (VRM). This kind of artwork was usually based on reports and drawings provided to the artist by the project staff. By the time Magellan was launched in May 1989 aboard the space shuttle Atlantis, the configuration had changed. It was not an uncommon occurrence for the design of a spacecraft to evolve over a period of months or years, based on input from the various instrument teams and engineers working on the project. It also happened when projects encountered funding problems and were scaled down in order to meet a budget.

One 1984 VRM project document explained, "The details of the configuration of the VRM spacecraft are changing continually as the spacecraft design matures. This illustration [a line drawing that matches the configuration shown in this artwork] shows the general configuration of the VRM spacecraft .... However several details of this illustration are out of date (such as the FEM length, altimeter antenna design and placement, and the amount of STAR-48 support structure retained after VOl)." Other, less detailed drawings were quickly added to the report to show the recent updates.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL's Library and Archives Group.

TAGS: HISTORY, MAGELLAN, SPACECRAFT, MISSION, VENUS, SOLAR SYSTEM

  • Julie Cooper
READ MORE

Advanced Lunar Studies Field Test

The last of the Surveyor lunar landers, Surveyor 7, was launched on January 7, 1968, and operated on the surface of the moon for about six weeks. Later that year, additional geoscience studies were carried out in the Mojave Desert using a spare surface sampler arm. A four-wheel-drive camper truck simulated an automated rover and was used to study the procedures and equipment necessary for remote geoscience. The truck was equipped with various sampler instruments, four TV cameras mounted on the top of the vehicle and one portable TV camera. Inside the camper was a simulated Space Flight Operations Center, with TV monitors, controllers for the cameras and instruments, and recording equipment. The field test observer (sitting in the camper) would survey the geology of the test area and carry out sampling operations remotely. Ritchie Coryell (System Design and Integration Section), Roy Brereton (Advanced Studies Office) and Earle Howard (Lunar and Planetary Instruments Section) all worked on this field test program.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL's Library and Archives Group.

TAGS: HISTORY, SURVEYOR, TESTING, MISSIONS, SPACECRAFT, EARTH'S MOON, SOLAR SYSTEM

  • Julie Cooper
READ MORE

Plasma Flow Research Lab

In February 1964, the Plasma Flow Research Laboratory at NASA's Jet Propulsion Laboratory in Pasadena, Calif., was completed. It was located in Building 112 by the East Gate in what was once rocket motor test cell B. It included a 7-foot-by-14-foot stainless steel cylindrical vacuum chamber with port holes on the sides to view and photograph the tests. In this photo, Gary Russell, a group supervisor in the Propulsion Research Section, discusses the plasma facility with JPL Director William Pickering, Deputy Director Brian Sparks, Assistant Director for Research and Advanced Development Frank Goddard, and Propulsion Research Section Chief Don Bartz.

Lab-Oratory, the JPL employee newspaper, covered the opening of this new facility, describing how plasma can be generated by bodies entering an atmosphere at high speed and in the plasma lab by electrical discharge. The plasma facility at JPL could create thermally ionized gases at temperatures up to 30,000 degrees Fahrenheit. Findings from the plasma program were to be applied to power and propulsion devices, and Earth re-entry problems (thermal protection, communication blackout and electrical breakdown). This was a $1.6 million JPL task – part of the larger NASA plasma research and development program.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL's Library and Archives Group.

TAGS: HISTORY, TECHNOLOGY

  • Julie Cooper
READ MORE