Blogs

Blogs


Earth climate visualization videoYoutube video

“Do we think about the aerosol propellant in our underarm deodorant every day?” Gavin Schmidt, climatologist and director of The Goddard Institute for Space Studies (GISS), asked me. “I don’t think we even have aerosols anymore,” I answered, wondering where he was going with this.

“That’s the point,” he continued, “and nobody cares. Nobody cares where your energy comes from; nobody cares whether your car is electric or petrol. People confuse energy supply with where the energy is supplied from.” He was trying to make the point that as long as people have the things they want, it doesn’t matter, to the vast majority of us, how we get them. This means that as long as the light switch still turns on the lights, most people would barely notice if we were to shift from burning fossil fuels to energy sources with less impact on Earth’s climate (just as people don’t notice that ozone-depleting propellants aren’t used in aerosol cans any more).

I was eager to speak with Dr. Schmidt because of his passion for communicating climate science to public audiences on top of his work as a climatologist. Schmidt is a co-founder and active blogger at Real Climate and was also awarded the inaugural Climate Communications Prize, by the American Geophysical Union (AGU) in 2011. “My goal in communicating,” he explained, “is a totally futile effort to raise the level of the conversation so that we actually discuss the things that matter.”

Since the mere mention of a computer model can cause an otherwise normal person’s face to glaze over, I thought Schmidt, a leader in climate simulations and Earth system modeling, would be the ideal candidate to explain one of the most important, yet probably one of the most misunderstood, instruments scientists have for studying Earth’s climate. See, people commonly confuse climate and weather, and this confusion is perhaps most pronounced when it comes to understanding the difference between a weather forecast and a climate simulation.

Numerical laboratory

Schmidt’s work routine is much like that of any other scientist. He spends a few months preparing experiments, then a few more months conducting the experiments, then a few more months refining and improving the experiments, then a few more months going back and looking at fine details, then a few more months … you get the idea. Climate scientists use complex computer simulations as numerical laboratories to conduct experiments because we don’t have a bunch of spare Earths just lying around. These simulations model Earth’s conditions as precisely as possible. “A single run can take three months on up on super computers,” Schmidt said. “For really long runs, it can take a year.” NASA scientists can reserve time for High-End Computing Capability at the NASA Advanced Supercomputing facility and/or the NASA Center for Climate Simulation to run simulations. Like an astronomer who reserves time on a large telescope to run her experiments, Schmidt books time on these computers to run his.

Schmidt asks the computer to calculate the weather in 20-minute time steps and see how it changes. Every 20 minutes it updates its calculation over hundred-year or even thousand-year periods in the past or the future. “The models that we run process about three to four years of simulation, going through every 20 minute time step, every real day.”

A typical climate simulation code is large, as in 700,000 lines of computer code large. For comparison, the Curiosity Rover required about 500,000 lines of code to autonomously descend safely on Mars, a planet 140 million miles away with a signal time delay of about 14 minutes. The size of a typical app, such as our Earth Now mobile app, is just over 6,000 lines of code. Climate simulations require such a large quantity of code because Earth’s climate is so extraordinarily complex. And, according to Schmidt, “Complexity is quite complex.”

Like a scientist who runs an experiment in a science lab, climate modelers want code that’s consistent from one experiment to another. So they spend most of their time developing that code, looking at code, improving code and fixing bugs.

The model output is compared to data and observations from the real world to build in credibility. “We rate the predictions on whether or not they’re skillful; on whether we can demonstrate they are robust.” When models are tested against the real world, we get a measure of how skillful the model is at reproducing things that have already happened. Then we can be more confident about the accuracy in predicting what’s going to happen.

Schmidt wants to find out where the models have skill and where they provide useful information. For example, they’re not very useful for tornado statistics, but they're extremely useful on global mean temperature. According to Schmidt, the credible and consistently reliable predictions include ones that involve adding carbon dioxide to the atmosphere. “You consistently get increases in temperature and those increases are almost always greater over land than they are in the ocean. They’re always larger in the Arctic than in the mid-latitudes and always more in the northern hemisphere than the southern, particularly Antarctica. Those are very, very robust results.”

Lately, his team has been working on improving the code for sea ice dynamics to include the effects of brine pockets (very salty fluid within the ice matrix) as well as the wind moving the ice around. For example, to understand the timeline for Arctic sea ice loss, his team has to work on the different bits of code for the wind, the temperature, the ocean and the water vapor and include the way all these pieces intersect in the real world. After you improve the code, you can see the impact of those improvements.

I asked Schmidt what people’s behavior would look like “if they understood that burning fossil fuels produces carbon dioxide, which causes global warming.” He replied, “People would start focusing on policies and processes that would reduce the amount of fossil fuels without ruining the economy or wrecking society.” Then he added, “I think, I hope! that people will get it before it’s too late.”

I hope so, too.

› Visit Earth Right Now to comment on this post

TAGS: EARTH, CLIMATE, CLIMATE MODELS

READ MORE

Illustration of NASA's ocean-observing satellites orbiting Earth

Bring out the trumpeters! We’re preparing for another satellite launch. Woohoo! This time it’s Jason-3, an altimetry mission that will observe sea surface topography from space. It’s a legacy mission that continues the 23-year record of global sea level measurements started by TOPEX/Poseidon and carried on by Jason-1 and -2.

When I think of the word “legacy,” I normally become all melancholy ‘n’ stuff, because the word reminds me of what I was doing when those previous satellites went up and of all the people, science and stories that have influenced my life since. So this morning, on my drive to work, I tuned in to a '70s music radio station to funky disco my way out of my melancholy funkiness. (Take that, '80s music heads!)

But no, really, TOPEX/Poseidon was totally cool. (The acronym “TOPEX” comes from “TOPography EXperiment” and Poseidon is the Greek god of the sea; “Jason” is from Jason and the Argonauts, also from Greek mythology.) It launched in 1992 and was the first revolutionary precision oceanography satellite. It transformed the way we study the ocean, because the view from space is the only way to truly observe the vastness of the ocean on a global scale. Since TOPEX/Poseidon began collecting data in 1993, global sea level has risen 80 millimeters. That’s 3 inches in just over two decades. Holy moly! Now you see why it’s so important to have an uninterrupted stream of satellite data that extends far into the future.

Before TOPEX/Poseidon, there was Seasat, which was designed to find out if global satellite monitoring of Earth’s ocean was even feasible. It launched in 1978 and operated for just over 100 days. And yupity do dah, now we know that satellite observations are feasible.

Just like its predecessors, Jason-3 is a radar altimeter, an instrument that measures sea surface height by precisely knowing the satellite’s position in its orbit and by measuring the distance between itself and the top of the ocean. You see, the ocean surface is constantly changing, from waves, to tides, to El Niño, to sea level rise. As increased global warming causes more and more glacial ice and ice sheets to melt into Earth’s ocean, and as this same warming heats the ocean surface, causing the warmer water to expand and sea levels to rise higher, it’s absolutely crucial to have highly accurate, continuous global sea level measurements.

Furthermore, since the majority of Planet Earth is covered by ocean, and since water is exceptionally good at storing heat, the ocean will continue to play an enormous role in Earth’s long-term climate.

Jason-3 will launch from Vandenberg Air Force Base in July or August. I’ll be keeping you up-to-date on all of the goings on about the launch and its preparation. Meanwhile, you can find out more about Jason-3 and all of NASA's ocean surface topography missions here:

http://sealevel.jpl.nasa.gov/
http://sealevel.jpl.nasa.gov/missions/jason3/

I look forward to your comments.

- Laura

› Visit Earth Right Now to comment on this post

Jason-3 is an international partnership led by the National Oceanic and Atmospheric Administration with participation from NASA, France's Centre Nationale d'Etudes Spatiales (the French space agency) and EUMETSAT, the European Organisation for the Exploitation of Meteorological Satellites. JPL built Jason-3's radiometer, GPS and laser reflector; is procuring the launch; and will help oversee the science team, which is responsible for ensuring the quality of the data.

TAGS: EARTH, OCEANS, JASON-3, SATELLITES, CLIMATE CHANGE

READ MORE

Animated gif of Ceres rotating

Dear Emboldawned Readers,

A bold adventurer from Earth is gracefully soaring over an exotic world of rock and ice far, far away. Having already obtained a treasure trove from its first mapping orbit, Dawn is now seeking even greater riches at dwarf planet Ceres as it maneuvers to its second orbit.

The first intensive mapping campaign was extremely productive. As the spacecraft circled 8,400 miles (13,600 kilometers) above the alien terrain, one orbit around Ceres took 15 days. During its single revolution, the probe observed its new home on five occasions from April 24 to May 8. When Dawn was flying over the night side (still high enough that it was in sunlight even when the ground below was in darkness), it looked first at the illuminated crescent of the southern hemisphere and later at the northern hemisphere.

When Dawn traveled over the sunlit side, it watched the northern hemisphere, then the equatorial regions, and finally the southern hemisphere as Ceres rotated beneath it each time. One Cerean day, the time it takes the globe to turn once on its axis, is about nine hours, much shorter than the time needed for the spacecraft to loop around its orbit. So it was almost as if Dawn hovered in place, moving only slightly as it peered down, and its instruments could record all of the sights as they paraded by.

We described the plans in much more detail in March, and they executed beautifully, yielding a rich collection of photos in visible and near infrared wavelengths, spectra in visible and infrared, and measurements of the strength of Ceres' gravitational attraction and hence its mass.

To gain the same view Dawn had, simply build your own ion-propelled spaceship, voyage deep into the main asteroid belt between Mars and Jupiter, take up residence at the giant orb and look out the window. Or go to the image gallery here.

Either way, the sights are spectacular. And they have already gotten even better. As Dawn has been descending to its second mapping orbit, it paused ion-thrusting on May 16 and May 22 to take more pictures, helping navigators get a tight fix on its orbital location. We explained this technique of optical navigation earlier, but now it is slightly different. Dawn is so close to Ceres that the behemoth fills the camera's field of view. No longer charting Ceres' location relative to background stars, navigators now use distinctive features on Ceres itself. It was an indistinct, fuzzy little blob just a few months ago, but now the maps are becoming detailed and accurate. Mathematical analyses of the locations of specific landmarks in each picture allow navigators to determine where Dawn was when the picture was taken.

Let's see how this works. Suppose I gave you a picture I had taken in your house. (The last time I was there, I opted for the cover of darkness rather than a more visible demonstration of optical navigation, but we can still imagine.) Because you know the positions of the doors, windows, furniture, impact craters, paintings, etc., you could establish where I had been when I took the photo. Now that they have charted the positions of the features at Dawn's new home, navigators can do virtually the same thing.

In addition to aiding in celestial navigation, the photos provided still better views of the world Dawn traveled so long and so far to explore. Greater and greater detail is visible as Dawn orbits closer, and a tremendous variety of intriguing sights are coming into view. It may well be that the most interesting discoveries have not even been made yet, but for now, what captivates most people (and other readers as well) are the bright spots.

We have discussed them here and there in recent months, and their luminous power continues to dazzle us. What appeared initially as one fuzzy spot proved to be two smaller spots and now many even smaller regions as the focus has become sharper. Why the ground there reflects so much sunlight remains elusive. Dawn's finer examinations with its suite of sophisticated instruments in the second, third and then final mapping orbits will provide scientists with data they need to unravel this marvelous mystery. For now, the enigmatic lights present an irresistible cosmic invitation to go closer and to scrutinize this strange and wonderful world, and we are eager to accept. After all, we explore to learn, to know the unknown, and the uniquely powerful scientific method will reveal the nature of the bright areas and what they can tell us about the composition and geology of this complex dwarf planet.

Close-up of the bright spots on Ceres
This was Dawn's view on May 16, as it flew from its first mapping orbit to its second. This OpNav 8 photo was taken at an altitude of 4,500 miles (7,200 kilometers). Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
› Full image and caption

After having been viewed as little more than a smudge in telescopes for more than two centuries since its discovery, Ceres now is seen as a detailed, three-dimensional world. As promised, measurements from Dawn have revised the size to be about 599 miles (963 kilometers) across at the equator. Like Earth and other planets, Ceres is oblate, or slightly wider at the equator than from pole to pole. The polar diameter is 554 miles (891 kilometers). These dimensions are impressively close to what astronomers had determined from telescopic observations and confirm Ceres to be the colossus we have described.

Before Dawn, scientists had estimated Ceres' mass to be 1.04 billion billion tons (947 billion billion kilograms). Now it is measured to be 1.03 billion billion tons (939 billion billion kilograms), well within the previous margin of error. It is an impressive demonstration of the success of science that astronomers had been able to determine the heft of that point of light so accurately. Nevertheless, even this small change of less than one percent is important for planning the rest of Dawn’s mission as it orbits closer and closer, feeling the gravitational tug ever more strongly.

Let's put this change in context. Dawn has now refined the mass, making a proportionally small adjustment of about 0.01 billion billion tons (eight billion billion kilograms). Although no more than a tweak on the overall value, it is still significantly greater than the combined mass of all asteroids visited by all other spacecraft. Ceres is so immense, so massive that even if all those asteroids were added to it, the difference would hardly even have been noticeable. This serves as another reminder that the dwarf planet really is quite unlike the millions of small asteroids that constitute the main asteroid belt. This behemoth contains about 30 percent of all the mass in that entire vast region of space. Vesta, the protoplanet Dawn orbited and studied in 2011-2012, is the second most massive resident there, holding about 8 percent of the asteroid belt's mass. Dawn by itself is exploring around 40 percent of the asteroid belt's mass!

Upon concluding its first mapping orbit, Dawn powered on its remarkable ion propulsion system on May 9 to fly down to a lower altitude where it will gain a better view. We examined the nature of the spiral paths between mapping orbits last year (and at Vesta in 2011-2012).

Dawn's orbits about Ceres
Dawn's spiral descent from its first mapping orbit (RC3) to its second (survey). The two mapping orbits are shown in green. The color of Dawn's trajectory progresses through the spectrum from blue, when it began ion-thrusting on May 9, to red, when ion-thrusting concludes on June 3. The red dashed sections show where Dawn is coasting, mostly for telecommunications. The first two coast periods include OpNav 8 and 9. Image credit: NASA/JPL-Caltech
› Larger image

In its first mapping orbit, Dawn was 8,400 miles (13,600 kilometers) high, revolving once in 15.2 days at a speed of 150 mph (240 kilometers per hour). By the time it completes this descent, the probe will be at an altitude of 2,700 miles (4,400 kilometers), orbiting Ceres every 3.1 days at 254 mph (408 kilometers per hour). (All of the mapping orbits were summarized in this table.) We have discussed that lower orbits require greater velocity to counterbalance the stronger gravitational hold.

Dawn's uniquely capable ion propulsion system, with its extraordinary combination of efficiency and gentleness, propels the ship to its new orbital destination in just under four weeks. The descent requires five revolutions, each one faster than the one before. The flight profile is complicated, and sometimes Dawn even dips below the final, planned altitude and then rises to greater heights as it flies on a path that is temporarily elliptical. The overall trend, of course, is downward. As Dawn heads for its targeted circular orbit, its maneuvering is also generally reducing the orbit period, the time required to make one complete revolution around Ceres. Indeed, if Dawn stopped thrusting now, its orbit period would be about 83 hours, or 3.5 days.

Dawn will complete ion-thrusting on June 3, but it will not be ready to begin its next science observations then. Rather, as in the other new mapping orbits, the first order of business will be for navigators to measure the new orbital parameters accurately. The flight team then will install in Dawn's main computer the details of the orbit it achieved so it will always know its location.

In addition, the intensive campaign of observations is planned to begin when the robotic explorer travels from the night side to the day side over the north pole. With the three-day orbit period, that will next occur on June 5. Controllers will take advantage of the intervening time to conduct other activities, including routine maintenance of the two reaction wheels that remain operable, although they are powered off most of the time. (Two of the four failed years ago. Dawn no longer relies on these devices to control its orientation, and it is remarkable that the mission can accomplish all of its original objectives without them. But if two do function in the final mapping orbit later this year, they will help extend the spacecraft's lifetime for bonus studies.)

We have already presented the ambitious plans for this second mapping orbit, sometimes known as "the second mapping orbit" and sometimes more succinctly and confusingly as "survey orbit." As with all four of Dawn's mapping orbits, it is designed to take the spacecraft over the poles, ensuring the best possible coverage. The ship will fly from the north pole to the south over the side of Ceres facing the sun, and then loop back to the north over the side hidden in the deep dark of night. On the day side, Dawn will aim its camera and spectrometers at the lit ground, filling its memory to capacity with the readings. On the night side, it will point its main antenna to distant Earth in order to radio its findings home. At Dawn's altitude, Ceres will appear twice as wide as the camera's view. (As illustrated in this table, it will look about the size of a soccer ball seen from a yard, or a meter, away.) But as the dwarf planet rotates on its axis and Dawn sails around in its more leisurely orbit, eventually all of the landscape will come within sight of the instruments.

Only one noteworthy change has been made in the intricate plans for survey orbit since May 2014's shocking exposé. With the observations starting on June 5, the subsequent complex orbital flight to the third mapping orbit (also known as HAMO) would have begun on June 27. As we have seen, the rapidly changing orbit in the spiral descents requires a great deal of effort by the small operations team on a rigid schedule. The capable men and women flying Dawn accomplished the maneuvers flawlessly at Vesta and are well prepared for the challenges at Ceres. The work is very demanding, however, and so, just as at Vesta, the team has built into the strategy the capability to make adjustments to align most of the tasks with a conventional work schedule. The technical plans (even including the exquisitely careful husbanding of hydrazine following the loss of the two reaction wheels) fully account for such human factors. It turns out that leaving survey orbit three days later shifts a significant amount of the following work off weekends, making it more comfortable for the team members. Three days is one complete revolution, and always extracting as much from the mission as possible, they have devised another full set of observations for an eighth orbit. As a result, survey orbit may be even more extensive and productive than originally anticipated.

What awaits Dawn in the next mapping phase? The views will be three times as sharp as in the previous orbit, and exciting new discoveries are sure to come. What answers will be revealed? And what new questions (besides this one) will arise? We will know soon, as we all share in the thrill of this grand adventure. To help you keep track of Dawn's progress as it powers its way down and then conducts further observations, your correspondent writes brief (hard to believe, isn't it?) mission status updates. And although in space no one can hear you tweet, terrestrial followers can get even more frequent updates with information he provides for Twitter @NASA_Dawn.

Dawn is 3,400 miles (5,500 kilometers) from Ceres. It is also 2.30 AU (214 million miles, or 345 million kilometers) from Earth, or 855 times as far as the moon and 2.27 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 38 minutes to make the round trip.

Dr. Marc D. Rayman
12:00 p.m. PDT May 28, 2015

TAGS: DAWN, CERES, VESTA, BRIGHT SPOTS, SPACECRAFT, MISSION

  • Marc Rayman
READ MORE

Video showing a solar filament eruptionYoutube video

“I knew the names of the planets in order before I went to kindergarten," Joan Feynman, the younger sister of the famous physicist, told me. "My father was delighted by science. My brother, of course, was Richard Feynman—gifted as hell. When I was about three or four, he taught me to add numbers. I’d add them and if I got them right, he’d give me a reward. The reward was allowing me to pull his hair. As soon as I pulled his hair he’d make a terrible face.”

Joan Feynman (left) and her brother Richard (right)
Joan Feynman (left) and her brother Richard (right). Richard Feynman image courtesy of the National Nanotechnology Initiative.

Joan and I were supposed to be discussing her work on sunspots, aurora, geomagnetism and solar winds but we kept veering off on tangents, and I’m certain it was all my fault. I was charmed by her Long Island accent and wacky sense of humor, and the fact that at 88, she holds a research position at NASA’s Jet Propulsion Laboratory.

But Joan is much more than a little sister and a funny storyteller: She’s a legit solar physicist who spent a long career analyzing the patterns of sunspot frequencies and their relationship to aurora. You see, people who live meaningful lives look deeply at the world around them—deeply enough to be moved, and sometimes deeply enough to move others. So in one afternoon, she managed to transfer a bit of her passion to me. I became mesmerized, mind-blown and in awe of solar physics.

“People have been observing aurora and drawing pictures of them for thousands of years,” she explained. “We have records of them from the year 450 C.E. to 1450 C.E. The Swedes and Norwegians had made lists of what days there were aurora and the Chinese made lists. So they knew that when there was a big aurora in China, there was a big aurora in Sweden.”

Aurora over Yukon
An aurora shines over Whitehorse, Yukon. Image courtesy of David Cartier, Sr.

Obviously I know that counting sunspot and aurora frequencies sounds completely dorky. But trust me, it feels like diving into a whole other reality when you spend time talking with Joan.

She went on to describe how “aurora, the geomagnetic currents and solar flares are part of the same process. Solar flares put out huge disturbances in the magnetic field of the solar wind and in the kind of particles that come out, and they cause the aurora.” Solar geomagnetic activity varies over 11-year and 88-year cycles. The 88-year Gleissberg cycle, a variation in amplitude of the 11-year solar cycle, is what’s captivated Joan throughout her career. “The whole point of science is to understand the mysteries you see around you,” she said. And solar activity has been part of that mystery for Joan her entire life.

Check out this story about the first time she saw an aurora as a very young child:

“One night I had already gone to bed. I was supposed to stay in bed, but my brother got permission to come in and wake me up because there was an aurora in the sky over the golf course near our home in Long Island. It looked to me like marvelous lights in the sky moving back and forth. It was very impressive to me. My brother said to me that nobody knows what that’s from, which was true in 1930.”

“I was fascinated by that aurora,” she continued. “They’re gigantic, they’re impressive; everybody runs out to see them. They were mysteries. The sky is lit up red and gold and yellow and shooting.”

When I told her that I didn’t even know they had aurora in Long Island, she said, “Auroras come down to lower latitudes when they’re very big.”

Are you starting to see how I got all jacked up just listening to her? I’ve never even seen a real live aurora. It was like sitting next to a kid with a better toy. She was taunting me, describing colors, movement and wild sky. I was hooked and jealous.

I want to see one now!

Although today we understand that aurora are caused by the interaction between the Earth’s magnetosphere and the magnetic particles in the solar wind, there are still plenty of solar mysteries to keep Joan occupied. “How does the sun do that?” She wants to know. “How does the sun manage to get a cycle of 88 years?”

For me, the question is clear: “If there were lots of them in the 1930s, and there’s an 88-year cycle, does that mean I’m going to get to see them soon?”

She answered: “It’s time for me to write the next paper on this: Are they back?”

I look forward to your comments.

- Laura

› Visit Earth Right Now to comment on this post

TAGS: AURORA, EARTH, JOAN FEYNMAN, SUN, SOLAR FLARES

READ MORE

Rainbow

When you read my blog, you’re either going to say “no way” or “finally.” And honestly, I’m kind of saying both, but definitely leaning more toward the latter.

See, normally I’m weighed down by the epic crisis known as global climate change (ugh). But this morning, I’m thinking: "finally." At last, Earth’s climate is going to get the attention it deserves. Finally, enough people are showing they care and it’s going to make a difference. Finally.

True, it’s hard to believe—even for me. But deep in my bones, I feel the tide starting to turn. (And by using that expression, I do not mean higher tides are flooding low-lying regions. That’s been going on for a while.)

What I mean is that everywhere I turn I see people paying attention to Earth’s climate. Not enough attention yet, mind you, but at least people are talking about it. And for the first time in a long time, I feel hopeful.

Maybe this optimism has something to do with the rainbow I saw while walking out in the rain over the weekend. Maybe it’s because NASA’s Global Climate Change website won both the People’s Voice and the juried Webby Awards for Best Green Site, and our Earth Now mobile app won in the Education and Reference category.

Whatever it is, I hope you’ll join me in my moment of optimism, because together—you and me—we are responsible for making this planet the kind of world we want to live in.

Bring it.

- Laura

› Visit Earth Right Now to comment on this post

TAGS: EARTH, CLIMATE CHANGE, RAINBOW

READ MORE

Goldstone Antenna Construction Model

In October 1963, the Advanced Antenna System, also known as the 210-foot (64-meter) Mars antenna, was under construction at the Goldstone Deep Space Instrumentation Facility. The site was being cleared and a foundation dug, an access road was nearing completion, and a reservoir was built to provide water during construction. Assembly of the antenna required a 200-ton guy derrick, used to lift large pieces into place. In preparation for this stage of construction, scale models of the antenna and the guy derrick were built, showing how the derrick would be anchored to the desert floor by long cables.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, DSN, GOLDSTONE, ANTENNA

  • Julie Cooper
READ MORE

Anaglyph of Ceres

Let's get Dawn to business, Dear Readers,

Dawn's assignment when it embarked on its extraordinary extraterrestrial expedition in 2007 can be described quite simply: explore the two most massive uncharted worlds in the inner solar system. It conducted a spectacular mission at Vesta, orbiting the giant protoplanet for 14 months in 2011-2012, providing a wonderfully rich and detailed view. Now the sophisticated probe is performing its first intensive investigation of dwarf planet Ceres. Dawn is slowly circling the alien world of rock and ice, far from Earth and far from the sun, executing its complex operations with the prowess it has demonstrated throughout its ambitious journey.

Following an interplanetary trek of 7.5 years and 3.1 billion miles (4.9 billion kilometers), Earth's ambassador arrived in orbit on March 6, answering Ceres' two-century-old celestial invitation. With its advanced ion propulsion system and ace piloting skills, it has maneuvered extensively in orbit. Traveling mostly high over the night side of Ceres, arcing and banking, thrusting and coasting, accelerating and decelerating, climbing and diving, the spaceship flew to its first targeted orbital altitude, which it reached on April 23.

Dawn is at an altitude of about 8,400 miles (13,600 kilometers) above the mysterious terrain. This first mapping orbit is designated RC3 by the Dawn team and is a finalist in the stiff competition for the coveted title of Most Confusing Name for a Ceres Mapping Orbit. (See this table for the other contestants.) Last month we described some of the many observations Dawn will perform here, including comprehensive photography of the alien landscapes, spectra in infrared and visible wavelengths, a search for an extremely tenuous veil of water vapor and precise tracking of the orbit to measure Ceres' mass.

Illustration of Dawn’s four mapping orbits
Dawn’s four mapping orbits, shown to scale in altitude with the size of Ceres, which is about 590 miles (950 kilometers) in diameter. See this table for descriptions of the orbits and links to the activities scheduled for each. Image credit: NASA/JPL-Caltech

On the way down to this orbit, the spacecraft paused ion thrusting twice earlier this month to take pictures of Ceres, as it had seven times before in the preceding three months. (We presented and explained the schedule for photography during the three months leading up to RC3 here.) Navigators used the pictures to measure the position of Ceres against the background of stars, providing crucial data to guide the ship to its intended orbit. The Dawn team also used the pictures to learn about Ceres to aid in preparing for the more detailed observations.

We described last month, for example, adjusting the camera settings for upcoming pictures to ensure good exposures for the captivating bright spots, places that reflect significantly more sunlight than most of the dark ground. Scientists have also examined all the pictures for moons of Ceres (and many extra pictures were taken specifically for that purpose). And thanks to Dawn's pictures, everyone who longs for a perspective on the universe unavailable from our terrestrial home has been transported to a world one million times farther away than the International Space Station.

The final pictures before reaching RC3 certainly provide a unique perspective. (You can see Dawn's pictures of Ceres here.) On April 10 and April 14-15, Dawn peered down over the northern hemisphere and watched for two hours each time as Ceres turned on its axis, part of the unfamiliar cratered terrain bathed in sunlight, part in the deep dark of night. This afforded a very different view from what we are accustomed to in looking at other planets, as most depictions of planetary rotations are from nearer the equator to show more of the surface. (Indeed, Dawn acquired views like that in its February "rotation characterizations.") The latest animations of Ceres rotating beneath Dawn are powerful visual reminders that this capable interplanetary explorer really is soaring around in orbit about a distant, alien world. Following the complex flight high above the dark hemisphere, where there was nothing to see, the pictures also show us that the long night's journey into day has ended.

Animated sequence of images from NASA's Dawn spacecraft showing the northern terrain on the sunlit side of dwarf planet Ceres
This animated sequence of images from NASA's Dawn spacecraft shows northern terrain on the sunlit side of dwarf planet Ceres. Dawn took these images on April 14 and 15 from a vantage point 14,000 miles (22,000 kilometers) above Ceres' northern hemisphere. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA | › Full image and caption

Gradually descending atop its blue-green beam of high velocity xenon ions, Dawn crossed over the terminator -- the boundary between the dark side and the lit side -- on April 15 almost directly over the north pole. On April 20, on final approach to RC3, it flew over the equator at an altitude of about 8,800 miles (14,000 kilometers).

The spacecraft completed its ion thrusting shortly after 1:00 a.m. PDT on April 23. What an accomplishment this was! From the time Dawn left its final mapping orbit at Vesta in July 2012, this is where it has been headed. The escape from Vesta's gravitational clutches in September 2012, the subsequent two and a half years of interplanetary travel and entering into orbit around Ceres on March 6, as genuinely exciting and important as it was, all really occurred as consequences of targeting this particular orbit.

In September 2014, the aftereffects of being struck by cosmic radiation compelled the operations team to rapidly develop a complex new approach trajectory because they still wanted to achieve this very orbit, where Dawn is now. And the eidetic reader will note that even when the innovative flight profile was presented five months ago (with many further details in subsequent months), we explained that it would conclude on April 23. And it did! Here we are! All the descriptions and figures plus a cool video elucidated a pretty neat idea, but it's also much more than an idea: it's real!! A probe from Earth is in a mapping orbit around a faraway dwarf planet.

When it had accomplished the needed ion thrusting, the veteran space traveler turned to point its main antenna to Earth so mission controllers could prepare it for the intensive mapping observations. The first task was to measure the orbital parameters so they could be transmitted to the spacecraft.

A few readers (you and I both know who you are) may have noted that in Dawn Journals during the last year, we have described the altitude of RC3 as 8,400 miles and 13,500 kilometers. Above, however, it is 13,600 kilometers. This is not a mistake. (It would be a mistake if the previous sentence were written, "Above, howevr, it is 13,600 kilometers.") This subtle difference belies several important issues about the orbits at Ceres. Let's take a further look.

As we explained when Dawn resided at Vesta, the orbital altitude we present is always an average (and rounded off, to avoid burdening readers with too many unhelpful digits). Vesta, Ceres, Earth and other planetary bodies are not perfect spheres, so even if the spacecraft traveled in a perfect circle, its altitude would change. They all are somewhat oblate, being wider across the equator than from pole to pole. In addition, they have more localized topography. Think of flying in a plane over your planet. If the pilot maintains a constant altitude above sea level, the distance above the ground changes because the elevation of the ground itself varies, coming closer to the aircraft on mountains and farther in valleys. In addition, as it turns out, orbits are not perfect circles but tend to be slightly elliptical, as if the plane flies slightly up and down occasionally, so the altitude changes even more.

In their exquisitely detailed planning, the Dawn team has had to account for the unknown nature of Ceres itself, including its mass and hence the strength of its gravitational pull. Dawn is the only spacecraft to orbit large, massive planetary bodies that were not previously visited by flyby spacecraft. Mercury, Venus, the moon, Mars, Jupiter and Saturn all were studied by spacecraft that flew past them before subsequent missions were sent to orbit them. The first probes to each provided an initial measurement of the mass and other properties that were helpful for the arrival of the first orbiters. At Vesta and Ceres, Dawn has had to discover the essential characteristics as it spirals in closer and closer. For each phase, engineers make the best measurements they can and then use them to update the plans for the subsequent phases. As a result, however, plans are based on impressive but nevertheless imperfect knowledge of what will be encountered at lower altitudes. So even if the spacecraft executes an ion thrust flight profile perfectly, it might not wind up exactly where the plan had specified.

There are other reasons as well for small differences between the predicted and the actual orbit. One is minor variations in the thrust of the ion propulsion system, as we discussed here. Another is that every time the spacecraft fires one of its small rocket thrusters to rotate or to stabilize its orientation in the zero-gravity conditions of spaceflight, that also nudges the spacecraft, changing its orbit a little. (See here for a related example of the effect of the thrusters on the trajectory.)

The Dawn flight team has a deep understanding of all the sources of orbit discrepancies, and they always ensure that their intricate plans account for them. Even if the RC3 altitude ended up more than 300 miles (500 kilometers) higher or lower than the specified value, everything would still work just fine to yield the desired pictures and other data. In fact, the actual RC3 orbit is within 25 miles (40 kilometers), or less than one tenth what the plan was designed to accommodate, so the spacecraft achieved a virtual cosmic bullseye!

In the complex preparations on April 23, one file was not radioed to Dawn on time, so late that afternoon when the robot tried to use this file, it could not find it. It responded appropriately by running protective software, stopping its activities, entering "safe mode" and beaming a signal back to distant Earth to indicate it needed further instructions. After the request arrived in mission control at JPL, engineers quickly recognized what had occurred. That night they reconfigured the spacecraft out of safe mode and back to its normal operational configuration, and they finished off the supply of ice cream in the freezer just outside the mission control room. Although Dawn was not ready to begin its intensive observation campaign in the morning of April 24, it started later that same day and has continued to be very productive.

Dawn is a mission of exploration. And rather than be constrained by a fast flight by a target for a brief glimpse, Dawn has the capability to linger in orbit for a very long time at close range. The probe will spend more than a year conducting detailed investigations to reveal as much as possible about the nature of the first dwarf planet discovered, which we had seen only with telescopes since it was first glimpsed in 1801. The pictures Dawn has sent us so far are intriguing and entrancing, but they are only the introduction to this exotic world. They started transforming it from a smudge of light into a real, physical place and one that a sophisticated, intrepid spacecraft can even reach. Being in the first mapping orbit represents the opportunity now to begin developing a richly detailed, intimate portrait of a world most people never even knew existed. Now, finally, we are ready to start uncovering the secrets Ceres has held since the dawn of the solar system.

Dawn is 8,400 miles (13,600 kilometers) from Ceres. It is also 2.66 AU (247 million miles, or 398 million kilometers) from Earth, or 985 times as far as the moon and 2.64 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 44 minutes to make the round trip.

Dr. Marc D. Rayman
10:30 p.m. PDT April 29, 2015

P.S. Our expert outreach team has done a beautiful job modernizing the website, and blog comments are no longer included. I appreciate all the very kind feedback, expressions of enthusiasm, interesting questions and engaging discussions that the community of Dawnophiles has posted over the last year or so. Now I will devote the time I had been spending responding to comments to providing more frequent mission status updates as well as fun and interesting tidbits you can follow on Twitter @NASA_Dawn.

TAGS: DAWN, CERES, BRIGHT SPOT, SPACECRAFT, MISSION

  • Marc Rayman
READ MORE

Peas with an image of Earth

"Excuse me. What kind of plants are those?"

I was squatting down in my front yard as I do every morning, picking veggies for breakfast, when I heard a voice behind me. I stood up and turned around. It was a neighbor from across the street and three houses down. "They're peas," I told him.

A few years back, we were among the first in our neighborhood to rip out the grass in our parkway so we could plant drought-tolerant succulents and other cool-looking plants instead of boring, old, water-sucking grass. Little did I know that, along with saving money and water, the process also attracted the curiosity of lots of people on our street. We were bucking the trend, breaking the norm, doing something different. And people wanted to hear all about our new way-cooler-looking-than-grass plants.

Then we created a vegetable garden in the front yard. The goal was to have a cool modern-looking yard and have some fun growing and eating good food. We succeeded in harvesting enough kale, tomatoes, artichokes, chard and peas to feast on for many weeks (and I was able to include my own home-grown items in the yummy edible NASA satellite models I made).

But our gardening exploits brought us another unexpected advantage. We were already growing food in our backyard and side yard, but we learned that when you plant cool stuff in the front yard, lots of passersby stop to check it out. It's usually the artichokes that evoke the most frequent comments and questions. I mean, artichokes are weird-looking. (Shhh, don't you dare tell them I said that!) But over the years our vegetable garden has become a magnet that's attracted friendship and community in our neighborhood. And we've seen many other lawns turn into gardens, too.

There's no way to tell what will unfold when you start to do something, even the smallest thing. Actions grow and expand, sort of like the way our peas started out small, crawled past their trellises and are now getting tangled up into each other. What you create in the world can take on a life of its own, beyond what you might ever imagine.

Every Earth Day I write about taking an individual action, and every time I write this I get all kinds of criticism about how doing one small thing isn't enough.

But next time you start to think that your actions are too small to make a difference, think about me and my silly old peas. Remember that I reached down, picked a fresh pea and handed it across the stucco wall to the guy who lives down the street-the guy whom I hadn't yet connected with in all these years; one of the last of my neighbors to reach out. He told me that he and his wife saw our yard and decided to plant a garden as well.

And while you're at it, remember to celebrate Earth Day this year by joining NASA as we all share views of our favorite place on Earth on social media. We hope that if all of us take a moment to acknowledge and remember our planet, we'll feel more connected to it.

You can post photos, Vines and/or Instagram videos. Just be sure to include the hashtag #NoPlaceLikeHome - no matter what social media platform you're using.

You can also get on board now by using our #NoPlaceLikeHome emoji as your profile pic. Join the Facebook or Google+ events and invite your friends to participate. Pledge to spend one day celebrating the planet that over 7 billion people call home.

Find out more at http://www.nasa.gov/likehome/.

Thanks for everything you do to care for our planet.

I look forward to your comments.

- Laura

› Visit Earth Right Now to comment on this post

TAGS: EARTH, EARTH DAY, SUCCULENTS, CALIFORNIA DROUGHT, CLIMATE, GREEN

READ MORE

A couple of weeks ago, I received an email from a high school student in Michigan. She was working on a climate change research project and wanted to ask me a few questions, so of course I said yes. She asked me about my job at NASA, what I thought were the most pressing aspects of Earth’s changing climate, and the ocean’s role in long-term climate trends.

But then there was this question: “I like to do everything I can each day to reduce my own contribution to climate change … I want to encourage my peers to take small actions each day to help our climate, but will it really matter beyond making people feel good about themselves? ... It seems like there is nothing individuals can do.”

Now I’m a pretty direct person, but I’m also fairly kind to high school students, especially those I’ve never even met. Yet this time, I let her have it:

“You are wrong,” I stated bluntly, wishing an error buzzer noise could accompany my outgoing email message. “You are wrong about your own contribution being insignificant. One person's efforts are hugely important and don't you ever forget it.”

Sure, I understand it’s easy to feel completely overwhelmed and powerless in the face of a tremendous problem such as climate change. I work on a climate change website every day—I get it. Just thinking about climate change and other environmental issues gets depressing. These problems are too big; they feel insurmountable. And then when you want to do something, it seems like whatever you do is too small, like a tiny drop in a gigantic pit.

But each and every single individual action, no matter how small it may seem, adds to what ultimately makes a difference. You may think, “One person isn’t going to make a big difference; it’s not going to be a big deal.” But taking responsibility for how your life affects the environment is a huge deal.

The Earth is amazing. And when you look at the view from space you see that the whole Earth is your home, our home. You see that what happens on the other side of the planet matters.

So go ahead: Take the journey from “there’s not much I can do” to “there are many things I will commit to doing.” Because together, our individual actions can make a bigger impact than you might ever imagine. And since Earth Day is coming up on April 22, now is the perfect time to begin that journey.

One of the things we’re doing to celebrate Earth Day this year is asking people around the world to share on social media views of their favorite place on Earth. As we rush through our busy lives, sometimes we forget to appreciate how much we care about this place we call home. We hope that if all of us take a moment to acknowledge and remember our planet, we'll feel more connected with it. And that's one small step toward making it a better place.

You can post photos, Vines and/or Instagram videos. Just be sure to include the hashtag #NoPlaceLikeHome – no matter what social media platform you’re using.

You can also get on board now by using our #NoPlaceLikeHome emoji as your profile pic. Join the Facebook or Google+ events and invite your friends to participate. Pledge to spend one day celebrating the planet that over 7 billion people call home.

Find out more at http://www.nasa.gov/likehome/.

Thanks for everything you do to care for our planet.

- Laura

› Visit Earth Right Now to comment on this post

TAGS: EARTH, EARTH DAY, CLIMATE CHANGE, ENVIRONMENT

READ MORE

one-tenth scale Cassegrain antenna feed system

In the early 1960s, a new large-aperture, low-noise Advanced Antenna System was in its planning and early development stages for the Deep Space Instrumentation Facility (later known as the Deep Space Network). Compared with the 85-ft (26-meter) antennas then in use, the new antenna was to give a 10-decibel performance increase, with an order of magnitude increase in the data rate from future spacecraft. Feasibility studies and testing were conducted by NASA's Jet Propulsion Laboratory in Pasadena, California, and subcontractors for various technologies and antenna components.

This January 1962 photo shows a 960-mc one-tenth scale Cassegrain antenna feed system study for the Advanced Antenna System. The objective was to establish the electrical performance capabilities and operational feasibility of this type of feed system for large antennas. The mount of the test system was covered with epoxy fiberglass and polystyrene foam to limit reflection of energy during testing.

A 210-foot (64-meter) antenna, using the new technology and designs, was built at the Goldstone site in California and became operational in 1966. The antenna, DSS 14, became known as the Mars antenna when it was used to track the Mariner 4 spacecraft. It was later upgraded to 70 meters in order to track Voyager 2 as it reached Neptune.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, DEEP SPACE NETWORK, VOYAGER, MARINER, MARS, NEPTUNE, TECHNOLOGY

  • Julie Cooper
READ MORE