Marzia Parisi
Research Scientist
About
Research Interests
As a member of JPL's Radio Science & Solar System Radar, my research focuses on gravity science, planetary interiors, and atmospheric radio occultations, with a particular interest in the outer solar system. I study the interiors and atmospheres of gas and ice giants, as well as those of their icy moons (e.g. Enceladus, Europa, Ganymede), and have contributed to several interplanetary missions, including NASA’s Cassini and Juno, and ESA’s BepiColombo and JUICE.
Beyond my current mission involvement, I am involved in the formulation of future robotic exploration of distant worlds, such as Uranus and Enceladus, which is believed to harbor a subsurface ocean. My expertise lies in the use of gravity measurements to detect subsurface oceans and to probe the internal and atmospheric dynamics of gaseous planets. This involves analyzing how gravitational fields can reveal hidden features, such as liquid layers beneath icy surfaces or the intricate structure of planetary atmospheres (e.g. Jupiter's Great Red Spot).
My expertise combines gravity science with planetary interior and atmospheric dynamics, enhanced by hands-on experience in conducting science operations and interpreting gravity data.
Topic Area(s)
Search Keyword(s)
Achievements
Awards & Recognitions
- JPL Voyager Award (2023)
- The Edward Stone Award for Outstanding Research Publication | The depth of Jupiter’s Great Red Spot constrained by the Juno gravity overflights (2022)
- NASA Award | NASA Early Career Achievement Medal (ECAM) (2019)
- JPL Award | Charles Elachi Award for Outstanding Early Career Achievement (2018)
Publications
48) Galanti, E., Smirnova, M., [...], Parisi, M. et al. (2026), The size and shape of Jupiter. Nature Astronomy. https://doi.org/10.1038/s41550-026-02777-x
47) Friedson, A. J., Parisi, M., Mankovich, C. R. et al. (2026). The Prospects for Gravitational Seismology at Uranus with an Orbiting Spacecraft. The Planetary Science Journal, 7, 19. https://doi.org/10.3847/PSJ/ae29ed.
46) Parisi, M., Kim, S., Mankovich, C. R. et al. (2025), A Multiarc Approach to Detecting Uranus’s Normal Modes via Doppler Tracking of a Planetary Orbiter. The Planetary Science Journal, 6, 303. https://doi.org/10.3847/PSJ/ae271e
45) Petricca, F., Vance, S. D., Parisi, M. et al. (2025). Titan’s strong tidal dissipation precludes a subsurface ocean. Nature, 648, 556-561. https://doi.org/10.1038/s41586-025-09818-x
44) Mankovich, C. R., Parisi, M., Landau, D. F. & Dewberry, J. W. (2025). Isolating the gravitational influence of Uranus’s winds requires close passages inward of the rings. The Planetary Science Journal, 6, 276. https://doi.org/10.3847/PSJ/ae1ae4
43) Smirnova, M., Galanti, E., [...], Parisi, M. et al. (2025). Probing Jupiter’s Atmosphere Through Juno Radio Occultations: Analysis of the Atmospheric Thermal Structure. Geophysical Research Letters, 52, 22, e2025GL116804. https://doi.org/10.1029/2025GL116804
42) Caruso, A., Casajus, L. G., [...], Parisi, M. et al. (2025). Probing Jupiter’s Atmosphere Through Juno Radio Occultations: Methodology and Initial Observations. Geophysical Research Letters, 52, 22, e2024GL113231. https://doi.org/10.1029/2024GL113231
41) Coffin, D., Withers, P., [...], Parisi, M. et al. (2025). Juno-Derived Electron Density Profiles of the High-Latitude Jovian Ionosphere. Journal of Geophysical Research: Space Physics, 130, 6, e2025JA033754. https://doi.org/10.1029/2025JA033754
40) Mankovich, C., Friedson, A. J., Parisi, M. et al. (2025). Setting the Stage for Uranian Seismology from Rings and Radial Velocities. The Planetary Science Journal, 6, 70. https://doi.org/10.3847/PSJ/adb8eb
39) Kim, S., Parisi, M., Mankovich, C. et al. (2025). Saturn’s Small-Scale Winds Revealed by Its High-Degree Gravity Field. Geophysical Research Letters, 52, 5, e2024GL113236. https://doi.org/10.1029/2024GL113236
38) Buccino, D. R., Caruso, A., [...], Parisi, M. et al. (2025). Electron Density in Io’s Alfvén Wing Observed Via Radio Occultation With Juno. Geophysical Research Letters, 52, 4, e2024GL111568. https://doi.org/10.1029/2024GL111568
37) Park, R. S., Jacobson, R. A., [...], Parisi, M. et al. (2025). Io’s tidal response precludes a shallow magma ocean. Nature, 638, 69-73. https://doi.org/10.1038/s41586-024-08442-5
36) Parisi, M., Friedson, A. J., Mankovich, C. R. et al. (2024). Uranus Orbiter and Probe: a radio science investigation to determine the planet’s gravity field, depth of the winds and tidal deformations. The Planetary Science Journal, 5, 116. https://doi.org/10.3847/PSJ/ad4034
35) Genova, A., Parisi, M., Gargiulo, A. M. et al. (2023). Geodesy investigation with an Enceladus Orbiter. The Planetary Science Journal, 5, 40. https://doi.org/10.3847/PSJ/ad16df
34) Parisi, M., Caruso, A., Buccino, D. R. et al. (2023). Radio Occultation Measurements of Europa's Ionosphere From Juno's Close Flyby. Geophysical Research Letter, 50, 22, e2023GL106637. https://doi.org/10.1029/2023GL106637
33) Kaspi, Y., Galanti, E., [...], Parisi, M. et al. (2023). Observational evidence for cylindrically oriented zonal flows on Jupiter. Nature Astronomy, 7, 1463-1472. https://doi.org/10.1038/s41550-023-02077-8
32) Parisi, M. (2023). The case for future gravity science investigations at Saturn with a planetary orbiter. The Planetary Science Journal, 4, 152. https://doi.org/10.3847/PSJ/ace7ce
31) Friedson, A. J., Parisi, M., Cao, L. et al. (2023). Forcing of Slow Density Waves in the C Ring by Saturn’s Quasi-Toroidal Normal Modes. Icarus, 405, 115711. https://doi.org/10.1016/j.icarus.2023.115711
30) Buccino, D. R., Oudrhiri, K., Parisi, M. et al. (2023). Precision of Spacecraft Doppler Tracking at Low Signal-to-Noise Ratios. Radio Science, 58, 7, e2023RS007703. https://doi.org/10.1029/2023RS007703
29) Akins, A., Hofstadter, M., [...], Parisi, M. et al. (2023). Evidence of a Polar Cyclone on Uranus from VLA Observations. Geophysical Research Letters, 50, 10, e2023GL102872. https://doi.org/10.1029/2023GL102872
28) Gramigna, E., Parisi, M., Buccino, D. R. et al. (2023). Analysis of NASA’s DSN Venus Express radio occultation data for year 2014. Advances in Space Research, 71, 1, 1198-1215. https://doi.org/10.1016/j.asr.2022.10.070
27) Gomez-Casajus, L., Ermakov, A. I., [...], Parisi, M. et al. (2022). The Gravity Field of Ganymede after the Juno’s Extended Mission. Geophysical Research Letters, 49, 24. https://doi.org/10.1029/2022GL099475
26) Durante, D., Guillot, T., [...], Parisi, M. et al. (2022). Evidence for normal modes from Juno gravity measurements. Nature Communication, 13, 4632. https://doi.org/10.1038/s41467-022-32299-9
25) Militzer, B., Hubbard, W. B., [...], Parisi, M. et al. (2022). Juno Spacecraft Measurements of Jupiter’s Gravity Imply a Dilute Core. The Planetary Science Journal, 3, 185. https://doi.org/10.3847/PSJ/ac7ec8
24) Buccino, D. R., Parisi, M., Gramigna, E. et al. (2022). Ganymede’s Ionosphere observed by a Dual-Frequency Radio Occultation with Juno. Geophysical Research Letters, 49, 23, e2022GL098420. https://doi.org/10.1029/2022GL098420
23) Cohen, I., Beddingfield, C., [...], Parisi, M. et al. (2022). New Frontiers-class Uranus Orbiter: The case for system science at an underexplored and unique world with a mid-scale mission. The Planetary Science Journal, 3, 58. https://doi.org/10.3847/PSJ/ac5113
22) Parisi, M., Vaquero, M., Hedman, M. & Tiscareno, M. (2022). Gravity Investigation of Saturn’s Inner System with the Innovative Skimmer Concept. The Planetary Science Journal, 3, 19. https://doi.org/10.3847/PSJ/ac47a0
21) Buccino, D. R, Kahan, D., Parisi, M. et al. (2021). Performance of Earth Troposphere Calibration Measurements with the Advanced Water Vapor Radiometer for the Juno Gravity Science Investigation. Radio Science, 56, 12, e2021RS007387. https://doi.org/10.1029/2021RS007387
20) Parisi, M., Kaspi, Y., Galanti, E. et al. (2021). The depth of Jupiter’s Great Red Spot constrained by the Juno gravity overflights. Science, 374(6570), 964-968. https://doi.org/10.1126/science.abf1396
19) Rymer, A. M., Runyon, K. D. [...], Parisi, M. et al. (2021). Neptune-Odyssey: A Flagship Concept for the Exploration of the Neptune-Triton System. The Planetary Science Journal, 2, 184. https://doi.org/10.3847/PSJ/abf654
18) Phipps, P., Withers, P., [...] & Parisi, M. (2021). Two years of observations of the Io plasma torus by Juno radio occultations: Results from Perijoves 1 to 15. The Journal of Geophysical Research: Space Physics. 126, 3, e2020JA028710. https://doi.org/10.1029/2020JA028710
17) Parisi, M., Galanti, E., Folkner, W. M. et al. (2020). Resolving the latitudinal short-scale gravity field of Jupiter using Slepian functions. Journal of Geophysical Research: Planets, 125, 11, e2020JE006416. https://doi.org/10.1029/2020JE006416
16) Buccino, D. R., Helled, R., Parisi, M. et al. (2020). Updated Equipotential Shapes of Jupiter and Saturn using Juno and Cassini Grand Finale Gravity Science Measurements. Journal of Geophysical Research: Planets, 125, 8, e2019JE006354. https://doi.org/10.1029/2019JE006354
15) Phipps, P., Withers, P., [...], Parisi, M. et al. (2020). Where is the Io plasma torus? A comparison of observations by Juno radio occultations to predictions from Jovian magnetic field models. Journal of Geophysical Research: Space Physics, 125, 8, e2019JA027633. https://doi.org/10.1029/2019JA027633
14) Wahl, S. M., Parisi, M., Folkner, W. M. et al. (2020). Equilibrium tidal response of Jupiter: detectability by Juno spacecraft. The Astrophysical Journal, 891, 42. https://doi.org/10.3847/1538-4357/ab6cf9
13) Durante, D., Parisi, M., Serra, D. et al. (2020). Jupiter’s gravity halfway through Juno’s mission. Geophysical, Research Letters, 47, 4. https://doi.org/10.1029/2019GL086572
12) Parisi, M., Folkner, W. M., Galanti, E. et al. (2019). A mascon approach to estimating the depth of Jupiter’s Great Red Spot with Juno gravity measurements. Planetary and Space Science, 104781. https://doi.org/10.1016/j.pss.2019.104781
11) Phipps, P., Withers, P., [...] & Parisi, M. (2019). Variations in the density distribution of the Io plasma torus as seen by radio occultations on Juno Perijoves 3, 6, and 8. The Journal of Geophysical Research: Space Physics, 124, 7, 5200-5221. https://doi.org/10.1029/2018JA026297
10) Galanti, E., Kaspi, Y., [...], Parisi, M. et al. (2019). Determining the depth of Jupiter’s Great Red Spot with Juno: a Slepian approach. The Astrophysical Journal Letters, 874, L24. https://doi.org/10.3847/2041-8213/ab1086
9) Guillot, T., Miguel, Y., [...], Parisi, M. et al. (2018). A suppression of differential rotation in Jupiter’s deep interior. Nature, 555, 227-230. https://doi.org/10.1038/nature25775
8) Kaspi, Y., Galanti, E., [...], Parisi, M. et al. (2018). Jupiter’s atmospheric jet-streams extend thousands of kilometers deep. Nature, 555, 223-226. https://doi.org/10.1038/nature25793
7) Iess, L., Folkner, W.M., Durante, D., Parisi, M. et al. (2018). The measurement of Jupiter’s asymmetric gravity field. Nature, 555, 220-222. https://doi.org/10.1038/nature25776
6) Folkner, W. M., Iess, L., [...], Parisi, M. et al. (2017). Jupiter gravity field estimated from the first two Juno orbits. Geophysical Research Letters, 44, 10, 4694-4700. https://doi.org/10.1002/2017GL073140
5) Bolton, S. J., Adriani, A., […], Parisi, M. et al. (2017). Jupiter’s interior and deep atmosphere: the first pole-to-pole pass with the Juno spacecraft. Science, 356(6340), 821-825. https://doi.org/10.1126/science.aal2108
4) Parisi, M., Galanti, E., Finocchiaro, S. et al. (2016). Probing the depth of Jupiter’s Great Red Spot with the Juno gravity experiment. Icarus, 267, 232-242. https://doi.org/10.1016/j.icarus.2015.12.011
3) Tortora, P., Zannoni, M., [...] & Parisi, M. (2016). Rhea Gravity Field and Interior Modeling from Cassini Data Analysis. Icarus, 264, 264-273. https://doi.org/10.1016/j.icarus.2015.09.022
2) Ofman, L., Parisi, M. & Srivastava A.K. (2015). Three dimensional MHD Modeling of Vertical Kink Oscillations in an Active Region Plasma Curtain. Astronomy & Astrophysics, 582, A75. https://doi.org/10.1051/0004-6361/201425054
1) Iess, L., Stevenson, D. J., Parisi, M. et al. (2014). The gravity Field and Interior Structure of Enceladus. Science, 344(6179), 78-80. https://doi.org/10.1126/science.1250551