Frank Werner
Scientist
About
Bio
- Atmospheric physics and meteorology at Johannes Gutenberg University of Mainz, Germany and University of Uppsala, Sweden from 2004-2009
- Graduate student in atmospheric sciences at University of Leipzig, Germany from 2009-2014
- Postdoctoral research associate at University of Maryland, Baltimore County and Leibniz Institute for Tropospheric Research in Leipzig, Germany from 2015-2019
- Postdoctoral research associate at JPL from 2019-2022
- Scientist at JPL since 2022
Research Interests
Remote sensing of tropospheric and stratospheric composition, Earth's magnetosphere, atmospheric radiative transfer, retrieval theory, aerosol-cloud interactions, using machine learning in measurement science applications.
Topic Area(s)
Search Keyword(s)
Achievements
Awards & Recognitions
- Paper Award | Annual PhD Award of the Leibniz Institute of Tropospheric Research in Leipzig, Germany (2012)
- Paper Award | ICCP Poster Award for Early Career Scientists of the International Conference on Clouds and Precipitations in Leipzig, Germany (2012)
- Paper Award | Student Award of the ERCA Winter School in Grenoble, France (2010)
Publications
[30] Millán, L. F., Read, W. G., Santee, M. L., Lambert, A., Manney, G. L., Neu, J. L., Pitts, M. C., Werner, F., Livesey, N. J., Schwartz, M. J. (2024), The Evolution of the Hunga Hydration in a Moistening Stratosphere, Geophys. Res. Lett., 51, e2024GL110841, doi: 10.1029/2024GL110841
[29] Santee, M. L., Lambert, A., Froidevaux, L., Manney, G. L., Schwartz, M. J., Millán, L. F., Livesey, N. J., Read, W. G., Werner, F., and Fuller, R. A. (2023), Strong Evidence of Heterogeneous Processing on Stratospheric Sulfate Aerosol in the Extrapolar Southern Hemisphere Following the 2022 Hunga Tonga-Hunga Ha’apai Eruption, J. Geophys. Res. Atmos., 128, e2023JD039169, doi: 10.1029/2023JD039169
[28] Manney, G. L., Santee, M. L., Lambert, A., Millán, L. F., Minschwaner, K., Werner, F., Lawrence, Z. D., Read, W. G., Livesey, N. J., and Wang, T. (2023), Siege in the Southern Stratosphere: Hunga Tonga-Hunga Ha’apai Water Vapor Excluded From the 2022 Antarctic Polar Vortex, Geophys. Res. Lett., 50, e2023GL103855, doi: 10.1029/2023GL103855
[27] Werner, F., Livesey, N. J., Millán, L. F., Read, W. G., Schwartz, M. J., Wagner, P. A., Daffer, W. H., Lambert, A., Tolstoff, S. N., and Santee, M. L. (2023), Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder, Atmos. Meas. Tech., 16, 2733–2751, doi: 10.5194/amt-16-2733-2023, Highlight paper
[26] Tang, A., Khanal, S., Virbila, G., Livesey, N. J., Werner, F., Chattopadhyay, G., and Chang, M.- C. F. (2023), A 2.0 GS/s Two-Stage Quad-Channel Digital Downconverter for a 380 GHz Spaceborne Atmospheric H2O Monitoring Instrument, IEEE Trans. Circuits Syst. II Express Briefs, 70, 21–25, doi: 10.1109/TCSII.2022.3205848
[25] Manney, G. L., Millán, L. F., Santee, M. L., Wargan, K., Lambert, A., Neu, J. L., Werner, F., Lawrence, Z. D., Schwartz, M. J., Livesey, N. J., and Read, W. G. (2022), Signatures of Anomalous Transport in the 2019/2020 Arctic Stratospheric Polar Vortex, J. Geophys. Res., 127, e2022JD037407, doi: 10.1029/2022JD037407
[24] Millán, L. F., Santee, M. L., Lambert, A., Livesey, N. J., Werner, F., Schwartz, M. J., Pumphrey, H. C., Manney, G. L., Wang, Y., Su, H., Wu, L., Read, W. G., and Froidevaux, L. (2022), The Hunga Tonga-Hunga Ha’apai Hydration of the Stratosphere, Geophys. Res. Lett., 49, e2022GL099381, doi: 10.1029/2022GL099381
[23] Santee, M. L., Lambert, A., Manney, G. L., Livesey, N. J., Froidevaux, L., Neu, J. L., Schwartz, M. J., Millán, L. F., Werner, F., Read,W. G., Park, M., Fuller, R. A., and Ward, B. M. (2022), Prolonged and pervasive perturbations in the composition of the Southern Hemisphere mid- latitude lower stratosphere from the Australian New Year’s fires., Geophys. Res. Lett., 49, doi: 10.1029/2021GL096270
[22] Werner, F., Schwartz, M J., Livesey, N. J., Read, W. G., Santee, M. L., and Wind, G. (2021), Improved cloud detection for the Aura Microwave Limb Sounder: Training an artificial neural network on colocated MLS and Aqua-MODIS data, Atmos. Meas. Tech., 14, 7749–7773, doi: 10.5194/amt-14-7749-2021
[21] Deneke, H., Barrientos-Velasco, C., Bley, S., Hünerbein, A., Lenk, S., Macke, A., Meirink, J. F., Schroedter-Homscheidt, M., Senf, F., Wang, P., Werner, F., and Witthuhn, J. (2021), Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: implementation and examples, Atmos. Meas. Tech., 14, 5107–5126, doi: 10.5194/amt-14-5107-2021
[20] Schwartz, M. J., Santee, M. L., Pumphrey, H. C., Manney, G. L., Lambert, A., Livesey, N. J., Millán, L., Neu, J. L., Read, W. G., and Werner, F. (2020), Australian new year’s pyroCb impact on stratospheric composition., Geophys. Res. Lett., 47, doi: 10.1029/2020GL090831
[19] Werner, F., Schwartz, M J., Livesey, N. J., Read, W. G., and Santee, M. L. (2020), Extreme outliers in lower stratospheric water vapor over North America observed by MLS: Relation to overshooting convection diagnosed from colocated Aqua-MODIS data., Geophys. Res. Lett., 47, doi: 10.1029/2020GL090131
[18] Werner, F., and Deneke, H. (2020), Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: evaluation of candidate approaches with MODIS observations, Atmos. Meas. Tech., 13, 1089–1111, doi: 10.5194/amt-13-1089- 2020
[17] Werner, F., Zhang, Z., Wind, G., Miller, D. J., and Platnick, S. (2018), Improving cloud optical property retrievals for partly cloudy pixels using coincident higher–resolution single band measurements: A feasibility study using ASTER observations, J. Geophys. Res., 123, 12253—12276, doi: 10.1029/2018JD028902, Highlight paper
[16] Grosvenor, D. P., Souderval, O., Zuidema, P., Ackerman, A. S., Alexandrov, M. D., Cairns, B., Chiu, C., Christensen, M., Feingold, G. , Hunerbein, A., Knist, C., McCoy, D. , Merk, D., Painemal, D., Rosenfeld, D., Russchenberg, H., Sinclair, K., van Diedenhoven, B., Werner, F., Wood, R., Zhang, Z., and Quaas, J. (2018), Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives, Rev. Geophys., 56, 409–453, doi: 10.1029/2017RG000593, Highlight paper
[15] Miller, D. J., Zhang, Z., Platnick, S., Ackerman, A. S., Werner, F., Cornet, C., and Knobel- spiesse, K. (2018), Comparisons of bispectral and polarimetric retrievals of marine boundary layer cloud microphysics: case studies using a LES–satellite retrieval simulator, Atmos. Meas. Tech., 11, 3689—3715, doi: 10.5194/amt-11-3689-2018
[14] Werner, F., Zhang, Z., Wind, G., Miller, D. J., and Platnick, S. (2018), Quantifying the impacts of subpixel reflectance variability on cloud optical thickness and effective radius retrievals based on high–resolution ASTER observations, J. Geophys. Res., 123, 1–20, doi: 10.1002/2017JD027916
[13] Krisna, T. C., Wendisch, M., Ehrlich, A., Jäkel, E., Werner, F., Weigel, R., Borrmann, S., Mahnke, C., Pöschl, U., Meinrat, O. A., Voigt, C., and Machado, L. A. T. (2018), Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds, Atmos. Chem. Phys., 18, 4439–4462, doi: 10.5194/acp-18-4439-2018
[12] Schäfer, M., Bierwirth, E., Ehrlich, A., Jäkel, E., Werner, F., and Wendisch, M. (2017), Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground– based and airborne spectral imaging, Atmos. Chem. Phys., 17, 2359–2372, doi: 10.5194/acp-17-2359- 2017
[11] Voigt, C., Schumann, U., Minikin, A., Abdelmonem, A., Afchine, A., Borrmann, S., Boettcher, M., Buchholz, B., Bugliaro, L., Costa, A., Curtius, J., Dollner, M., Dörnbrack, A., Dreiling, V., Ebert, V., Ehrlich, A., Fix, A., Forster, L., Frank, F., Fütterer, D., Giez, A., Graf, K., Grooß, J.- U., Groß, S., Heimerl, K., Heinold, B., Hüneke, T., Järvinen, E., Jurkat, T., Kaufmann, S., Kenntner, M., Klingebiel, M., Klimach, T., Kohl, R., Krämer, M., Krisna, T. C., Luebke, A., Mayer, B., Mertes, S., Molleker, S., Petzold, A., Pfeilsticker, K., Port, M., Rapp, M., Reutter, P., Rolf, C., Rose, D., Sauer, D., Schäfler, A., Schlage, R., Schnaiter, M., Schneider, J., Spelten, N., Spichtinger, P., Stock, P., Walser, A., Weigel, R., Weinzierl, B., Wendisch, M., Werner, F., Wernli, H., Wirth, M., Zahn, A., Ziereis, H., and Zöger, M. (2017), ML—CIRRUS – The airborne experiment on natural cirrus and contrail cirrus with the high–altitude long–range research aircraft HALO, Bull. Amer. Meteor. Soc., 98, 271–288, doi: 10.1175/BAMS-D-15-00213.1
[10] Wolf, K., Ehrlich, A., Hüneke, T., Pfeilsticker, K., Werner, F., Wirth, M., and Wendisch, M. (2017), Potential of remote sensing of cirrus optical thickness by airborne spectral radiance measurements in different viewing angles and nadir geometry, Atmos. Chem. Phys., 17, 4283–4303, doi: 10.5194/acp-17-4283-2017
[9] Finger, F., Werner, F., Klingebiel, M., Ehrlich, A., Jäkel, E., Voigt, M., Borrmann, S., Spichtinger, P., and Wendisch, M. (2016), Spectral optical layer properties of cirrus from collocated airborne measurements – a feasibility study, Atmos. Chem. Phys., 16, 7681–7693, doi: 10.5194/acp-16-7681-2016
[8] Wendisch, M., Pöschl, U., Andreae, M. O., Machado, L. A. T., Albrecht, R., Schlager, H., Rosenfeld, D., Martin, S. T., Abdelmonem, A., Afchine, A., C. Araùjo, A. C., Artaxo, P., Aufmhoff, H., Barbosa, H. M. J., Borrmann, S., Braga, R., Buchholz, B., Cecchini, M. A., Costa, A., Curtius, J., Dollner, M., Dorf, M., Dreiling, V., Ebert, V., Ehrlich, A., Ewald, F., Fisch, G., Fix, A., Frank, F., Fütterer, D., Heckl, C., Heidelberg, F., Hüneke, T., Jäkel, E., Järvinen, E., Jurkat, T., Kanter, S., Kästner, U., Kenntner, M., Kesselmeier, J., Klimach, T., Knecht, M., Kohl, R., Kölling, T., Krämer, M., Krüger, M., Krisna, T. C., Lavric, J. V., Longo, K., Mahnke, C., Manzi, A. O., Mayer, B., Mertes, S., Minikin, A., Molleker, S., Münch, S., Nillius, B., Pfeilsticker, K., Pöhlker, C., Roiger, A., Rose, D., Rosenow, D., Sauer, D., Schnaiter, M., Schneider, J., Schulz, C., de Souza, R. A. F., Spanu, A., Stock, P., Vila, D., Voigt, C., Walser, A., Walter, D., Weigel, R., Weinzierl, B., Werner, F., Yamasoe, M. A., Ziereis, H., Zinner, T., and Zöger, M. (2016), The ACRIDICON–CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO, Bull. Amer. Meteor. Soc., 97, 1885–1908, doi: 10.1175/BAMS-D-14-00255.1
[7] Werner, F., Wind, G., Zhang, Z., Platnick, S., Di Girolamo, L., Zhao, G., Amarasinghe, N., and Meyer, K. (2016), Marine boundary layer cloud property retrievals from high–resolution ASTER observations: case studies and comparison with Terra MODIS, Atmos. Meas. Tech., 9, 5869–5894, doi: 10.5194/amt-9-5869-2016
[6] Zhang, Z., Werner, F., Cho, H.-M., Wind, G., Platnick, S., Ackerman, A. S., Girolamo, L. D., Marshak, A., and Meyer, K. (2016), A framework based on 2–D Taylor expansion for quantifying the impacts of subpixel reflectance variance and covariance on cloud optical thickness and effective radius retrievals based on the bispectral method, J. Geophys. Res., 121, 7007–7025, doi: 10.1002/2016JD024837
[5] Wehner, B., Werner, F., Ditas, F., Shaw, R. A., Kulmala, M., and Siebert, H. (2015), Observations of new particle formation in enhanced UV irradiance zones near cumulus clouds, Atmos. Chem. Phys., 15, 11701–11711, doi: 10.1002/jgrd.50334
[4] Werner, F., F. Ditas, H. Siebert, M. Simmel, B. Wehner, P. Pilewskie, T. Schmeissner, R. A. Shaw, S. Hartmann, H. Wex, G. C. Roberts, and M. Wendisch (2014), Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus, J. Geophys. Res., 119, 1534–1545, doi: 10.5194/acp-15-11701-2015
[3] Siebert, H., Bethke, J., Bierwirth, E., Conrath, T., Dieckmann, K., Ditas, F., Ehrlich, A., Farrell, D., Hartmann, S., Izaguirre, M. A., Katzwinkel, J., Nuijens, L., Roberts, G., Schäfer, M., Shaw, R. A., Schmeissner, T., Serikov, I., Stevens, B., Stratmann, F., Wehner, B., Wendisch, M., Werner, F., and Wex, H. (2013), The fine-scale structure of the trade wind cumuli over Barbados – an introduction to the CARRIBA project, Atmos. Chem. Phys., 13, 10061–10077, doi: 10.5194/acp-13-10061-2013
[2] Werner, F., H. Siebert, P. Pilewskie, T. Schmeissner, R. A. Shaw, and M. Wendisch (2013), New airborne retrieval approach for trade wind cumulus properties under overlying cirrus, J. Geophys. Res., 118, 3634–3649, doi: 10.1002/jgrd.50334
[1] Henrich∗, F., Siebert, H., Jäkel, E., Shaw, R. A., and Wendisch, M. (2010), Collocated mea- surements of boundary layer cloud microphysical and radiative properties: A feasibility study, J. Geophys. Res., 115, D24214, doi: 10.1029/2010JD013930