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Objectives
Analysis, design, tape-out, and measurements of low-phase-noise millimeter-wave voltage-controlled oscillators in a commercial foundry SiGe HBT process.
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Scalable Coupled Oscillator Design Experimental Results, Analysis, and Future Work
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* Different Waveforms with different ISFs
* Post-measurement EM simulation of the entire VCO such as class F.
I | layout brings the results closer to measurements. * Invent different oscillator topologies which
A above unit quad cell can be scaled * The 1/f3 region of measured phase noise is still not only depends on magnetic coupling
in 2D with magnetic coupling. considerably higher compared with simulation. when creating coupled oscillator arrays.

Publication and Experimental Results Summary

Design/ Author VCC (V) Current Phase Noise* Max. Frequency Tuning Range | FoM, * FoM, * No of Cores Technology
Design 1 1.5V 5.5mA (max) |-96.5dBc/Hz 37.3 GHz 03/0)2 GHz (9.0 -179.2 dB -179.2 dB 1 180 nm SiGe
Design 2 1.5V 22 mA (max) -102.3 dBc/Hz 35.1 GHz OZA);) GHz (5.5 -178.0 dB -173.4 dB 4 180 nm SiGe
This Work , 3.1 GHz (8.7 .
Design 3 1.5V 88 mA (max) -106.9 dBc/Hz 34.7 GHz %) -176.5dB -175.9dB 16 180 nm SiGe
0
Design 4 1.5V 352 mA (max) |Oscillators did not lock into a single frequency. 64 180 nm SiGe
Design 5 1.5V 1408 mA (max) | Oscillators did not lock into a single frequency. 256 180 nm SiGe
f Ppc fosc TR% Ppc * Phase noise, FoOM, FoM; and are considered with
FoM, = PN| , —20log (E +10 log(lmw) oMy = PN IdB — 20log Af )\ 10 + 10log (1 mW) 1 MHz offset from carrier frequency.
National Aeronautics and Space Administration C e . .
Significance/Benefits to JPL and NASA: The long-term goal of this
Jet Propulsion Laboratory collaboration is to develop a compact W-band transceiver for application in W- || Publications:
California Institute of Technology band radars in upcoming missions. The development of this compact radar has NA
Pasadena, California several significant building blocks that require innovations in mm-wave circuit
www.nhasa.gov design and development to produce a compact system. One of which is a very
Clearance Number: CL#23-5276 low phase noise oscillator that results in a high-performance LO for RF and a || Pl/Task Mgr. Contact Information:
Poster Number: RPD#000 high-performance clock for digital subsystems of the radar. Hence resulting in || Email: Mohammad.Ashtijou@jpl.nasa.gov
Copyright 2024. All rights reserved. high performance radar that allows optimization of velocity and range
"Reviewed and approved for public distribution via the ambiguities for radar landers and precise measurements in minuscule fragments
URS". of molecules and particles of space and earth atmospheric environment.
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