

FY24 R&TD Innovative Spontaneous Concepts (ISC)

Spectroscopy of NH₂D and ¹⁵NH₃ near 10 µm for TLS in support of planetary missions

Principal Investigator: Keeyoon Sung (329) **Co-Investigators:** Deacon Nemchick (329), Geoffrey Toon (329)

Objectives: The objective was to characterize spectroscopic line parameters of NH₃ and NH₂D in the 1000 – 1020 cm⁻¹ region, covering Tunable Laser Spectrometer (TLS) spectral range [1]. By analyzing a series of high-res spectra both from a high-purity NH₃ gas sample and from two sets of (NH₃:ND₃) mixtures, we aimed to retrieve line positions, intensities, Self- broadened collisional widths and frequency shifts, as well as their lower state energies for ¹⁴NH₃ and NH₂D. We also measured their collisional broadening by H₂, the dominant atmospheric constituent of Jovian planets. Results from this work would enable to probe atmospheric D/H ratio from NH₃ ispectra n a very narrow band at 10 μ m.

Background: Ammonia (NH₃) is found ubiquitous in space, such as giant planets in our Solar system, molecular clouds, star-forming regions, proto-stellar disks, etc. Its minor isotopologue (NH₂D) exhibits complex and densely populated transitions in the infrared region, which can serve as excellent probe, enabling physical and chemical properties to be deduced in a relatively narrow spectral range. Spectroscopy of NH₃ and NH₂D, in particular, can be used to determine D/H ratio in the planetary atmospheres, which, in turn, provides useful constraints for planetary origin and atmospheric evolution. Infrared features are strongest in the v_2 band near 10 μ m, which is covered by Tunable Laser Spectrometer (TLS) [1], thus carrying the most useful spectroscopic features for planetary atmospheric remote sensing. However, no spectroscopic characterization has been established for NH₂D to date, primarily because of experimental difficulties in a laboratory. For instance, the super strong v_2 band requires a very short gas cell (e.g., 0.5 cm long) to avoid any saturation during data acquisition. For NH₂D, a pure gas sample is not commercially available, making it even more difficult to study in a laboratory. We have resolved these two challenging issues for this RTD-ISC task as described below.

Fig. 2 Five ¹⁴NH₃ line intensities retrieved from this work are compared to HITRAN 2020 database [3]. Significant discrepancy (whose mean value is - 6%) is seen, but still agree within their uncertainties (10 -20 %) listed in the HITRAN, thus, validating the estimates of individual isotopologs abundance for the sample mixtures..

Simultaneous Fitting of 10 pure sample spectra

Simultaneous fitting of two H2-broadened spectra

Approach and Results: This project proceeded in four steps. (1) We analyzed a series of NH₃ spectra obtained using a 5 mm path long gas cell coupled to a Fouriertransform spectrometer (FTS) at JPL [Fig. 1]. Deuterated NH₃ samples were prepared on-site by mixing anhydrous $NH_3(99.99+)$ and ND_3 (D atom 99%) in a prescribed manner. As expected, deuterated NH₃ isotopologs were generated through isotopeexchange reactions [2]. We finally performed the sample characterization of the $(NH_3:ND_3)$ mixtures by comparing ¹⁴NH₃ line intensities with the public database [3] [Fig. 2], which has confirmed the relative ¹⁴NH₃ abundances that we derived based on the stochastic equilibrium. (2) We fitted all pure and deuterated NH₃ spectra simultaneously [Fig. 3a] to determine spectroscopic line parameters of NH₂D in the region for the first time. We noted, however, that most of the strong transitions (thus most useful to remote sensing) in our spectrum sets arose from both ¹⁴NH₃ and NH₂D only. (3) We also obtained two new spectra of the deuterated NH₃ sample broadened by H₂, the dominant atmospheric constituent of Jovian planets by using a 15.01 cm long gas cell (not presented). Note that a longer path cell required only small amount of NH₃ sample in which self-broadening becomes insignificant when compared to the H₂-broadening. Thus, we fit the two H₂-broadened deuterated NH₃ spectra [Fig. 3b] to retrieve H₂-broadened half widths and pressure-shifts parameters, both at room temperature. (4) We determined lower state energy (E") values of all the measured transitions through line-by-line matching referenced to NH₂D model calculations [4]. Finally, we compiled the retrieved line parameters of ¹⁴NH₃ and NH₂D as presented in Table 1.

Shroud box

Fig. 3 Spectrum fitting residuals of (a) 10 pure NH₃ and (b) H₂-broadened spectra. The two strong NH₃ and NH₂D lines inside the dashed circle (in red) are the best promising transitions for TLS observations in study of D/H ratio. The short vertical color-coded lines at the top of the spectra indicate the position of the lines included in the fitting $(^{14}NH_3 \text{ in red}, ^{15}NH_3 \text{ in green}, ^{14}NH_2D \text{ in blue}).$

Table	1	An excerpt of the table of their spectroscopic line parameters in
HITRAN	for	mat [3]. The lines in the highlighted box are those promising transitions
for D/H	obs	servations by TLS [1].

mmi	pos (cm ⁻¹)	S100%	Α	$\gamma(\mathbf{H}_2) \ \gamma(\mathbf{slf})$	E"(cm ⁻¹)	nT	δ(H ₂)	fitfix
112	1002.254300	2.704E-19	0.000E+00	.09500.323	19.4920	.75	.000000	110101
113	1002.602474	5.758E-20	0.000E+00	.07900.317	272.8990	.75	.003368	001010
113	1003.239311	1.786E-20	0.000E+00	.07200.273	337.7620	.75	.009806	000000
113	1003.260378	1.833E-20	0.000E+00	.07400.275	337.7360	.75	.008909	000010
113	1003.438615	3.872E-20	0.000E+00	.07300.283	383.7530	.75-	001820	000000
113	1003.606508	1.200E-20	0.000E+00	.07400.350	345.1720	.75	.000000	000000
113	1004.616623	2.612E-20	0.000E+00	.07500.389	436.4690	.75	.003944	000000
113	1004.887276	3.963E-20	0.000E+00	.07400.278	381.5670	.75	.004273	000010
112	1007.113500	1.874E-19	0.000E+00	.10100.510	85.9760	.75	.000000	110111
111	1007.539958	1.001E-19	0.000E+00	.09000.418	16.1730	.75	.000000	001010
111	1007.546209	3.367E-19	0.000E+00	.09300.307	19.8899	.75	.005842	001010
113	1007.867990	4.880E-20	0.000E+00	.06800.289	362.3130	.75	.002187	000010
112	1008.360500	1.469E-19	0.000E+00	.09500.424	104.6560	.75	.000000	110111
113	1008.379389	1.761E-20	0.000E+00	.08800.577	360,8820	.75	.005956	000010

Significance/Benefits to JPL and NASA: Accurate knowledge of D/H ratio provides one of critical inputs to constrain planetary atmospheric origin and evolution (e.g., atmospheric escape), original water content, and planet formation itself. We have identified the strongest NH₂D transitions in the 1000 – 1020 cm⁻¹ region, showing that the TLS probe [1] would be able to capture both NH₃ and NH₂D transitions simultaneously. These NH₃ spectroscopy updates are readily applicable to any archived or potential future planetary missions (e.g., Saturn probe under New Frontier Program at JPL). This project also provided a proof-of-concept on how to characterize spectroscopy of all other deuterated NH₃, which will pave the road for JPL proposals to NASA-SMD/ROSES calls such as SSW, EW, and APRA as well as for a planned ROSES/PDART proposal to cover the entire 700 – 1200 cm⁻¹ (8.3 – 14 μ m) region, including that of ¹⁵NH₃ that had to be dropped in this R&D-ISC task due to a substantial funding cut.

References: [1] C.R. Webster et al. Space Science Reviews (2023) 219:78. [2] B-M Cheng et al. ApJ. 647: 1535 – 1542 (2006). [3] I.E. Gordon, et al. JQSRT, 277:107949 (2022); [4] Priv. Comm. to Shanshan Yu of Jet Propulsion Lab.

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

RPD-174 Clearance Number: **CL#24-5149**

Copyright 2024. All rights reserved.

300.0020 .75 000010 113 1008.505480 3.202E-20 0.000E+00.08600.485 319.0710 .75 .000000 001010 113 1008.682410 6.722E-20 0.000E+00.05900.274 269.7410 .75-.002987 000010 113 1008.684550 6.722E-20 0.000E+00.05900.274 269.7390 .75 .006169 001010 113 1009.274015 2.366E-20 0.000E+00.07900.481 403.5790 .75 .006153 000000 302.4720 .75 .003642 113 1009.473015 1.830E-20 0.000E+00.07200.270 000010 113 1010.015345 1.877E-20 0.000E+00.07500.276 301.7960 .75 .003285 001010 111 1011.202958 2.225E-19 0.000E+00.09100.551 86.6578 .75 .013954 001010 113 1012.297771 1.229E-20 0.000E+00.08200.490 319.6670 .75 .005356 001010 111 1012.444497 1.605E-19 0.000E+00.08000.420 105.1837 .75 .009262 010000 113 1013.060947 2.764E-20 0.000E+00.06600.296 477.6320 .75 .005651 000010 381.5950 .75 .007691 113 1013.156052 4.711E-20 0.000E+00.03700.258 001010 113 1013.156352 4.711E-20 0.000E+00.08000.258 381.5940 .75 .000000 000010 111 1013.174986 2.005E-19 0.000E+00.07300.335 116.2783 .75 .007209 000000 113 1013.261720 1.647E-20 0.000E+00.07200.350 282.6610 .75 .000000 000000 113 1013.806633 1.335E-20 0.000E+00.08000.282 417.0930 .75 .000000 000010 113 1013.921425 1.229E-20 0.000E+00.07000.253 416.9450 .75 .003179 001010 113 1014.221860 4.209E-20 0.000E+00.07600.355 350.9340 .75 .002736 000000 113 1016.209903 2.750E-20 0.000E+00.07300.288 472.2380 .75 .004281 001010 113 1017.954363 3.682E-20 0.000E+00.07100.301 457.6790 .75-.001420 000000 113 1018.692522 1.429E-20 0.000E+00.07300.265 383.4340 .75 .000000 000000 113 1018.868302 5.385E-20 0.000E+00.06400.290 337.4390 .75 .000935 001010 113 1018.890562 5.382E-20 0.000E+00.06900.290 337.4130 .75 .000000 011011 _____

Notes: mmi= 111,112,113 for ${}^{14}NH_3$, ${}^{15}NH_3$, ${}^{14}NH_{2D}$; S100% = Intensity @ 296K (cm/molecule) for 100%-enriched sample; A for a place holder, γ = half-width, E''=lower state energy(cm-1); nT = temp.dependence (assumed); δ =pressure-shift; fitfix flag = 0 (floated), 1(fixed) for pos., S, γ (H₂), γ (slf), δ (H₂) δ (slf), respectively.

Publication: Keeyoon Sung, Geoffrey Toon, Deacon Nemchick, Shanshan Yu, Timothy Crawford, D. Chris Benner, and Chris R. Webster. FT-IR measurements of NH₂D transitions for the TLS window characterization near 10 µm. in prep. to be submitted to J. Quant. Spectrosc. Radiat. Transfer.

PI/Task Mgr. Contact Information:

(work) 818-354-5144, (Cell) 818-419-2947; ksung@jpl.nasa.gov