

FY24 R&TD Innovative Spontaneous Concepts (ISC)

Miniaturized and rugged infrared multispectral sensor for small planetary platforms

Principal Investigator: Alexander Soibel (389); Co-Investigators: D. Ting, G. Mariani

Strategic Focus Area: Innovative Spontaneous Concepts

Objectives:

Demonstration of a multi-

spectral sensor operating in

1.8 – 2.6 μ m band with a

spectral resolution of 100 nm,

evaluation of its performance

mineral and design of the

electronics to ensure a time-

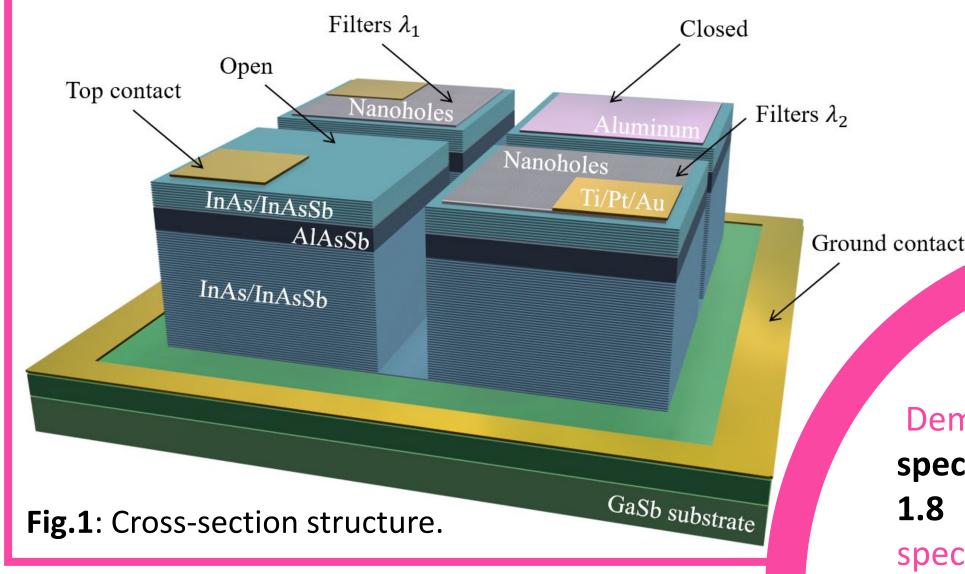
consumption, digital output.

for

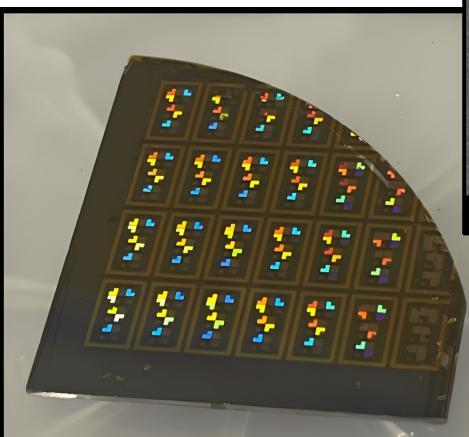
phased,

detection of selected

low-power


How?

We have chosen to fabricate **periodic metallic arrays of holes** using aluminum (Figure 2b), which can serve as plasmonic filters in Mid-Wavelength infrared (MWIR) range. Our approach involves integrating these nanohole filters onto the surface of high-


Why?

Despite a well-known need for spectrometers on chip, it is extremely difficult to build one capable of providing a high spectral resolution and broad spectral coverage. > However, for many applications the goal is less emphasis on a high-resolution spectrum, but on dependent characterization and identification of the materials based on spectral properties of the reflected light.

performance InAs/InAsSb barrier **infrared photodetectors**.

Fabrication

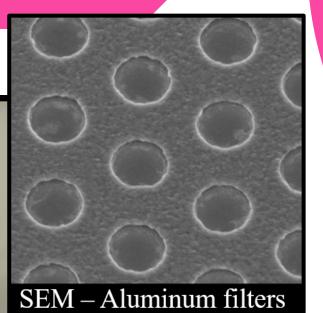
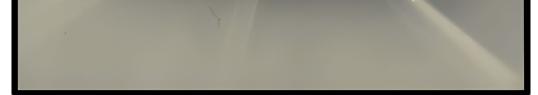


Fig.2: Sample fabricated and SEM images.

- > Multiple chemical elements of interest have their fingerprint in short and midwavelength infrared (SWIR and MWIR): e. g. H2O, clays, hydrated silica, Al-bearing clays, hydrated silica, gypsum.
- > Sensors onboarded on Mars exploration helicopters or surface penetrators need optimization of SWaP parameters (Size, Weight and Power) required an important work on the electronics.


Benefits to JPL & NASA

Our proposed solution is significantly smaller than current NASA instruments and fits on a detector chip. Our solution targets a need for spectral sensors with small footprint, lower power consumption and light weight that can be carried by a small rover, helicopter or astronaut. Such sensors, a particularly next generation covering water absorption band near $3 \mu m$, are critically needed to support NASA's vision, of prospecting the Moon and Mars, and expanding future space exploration.

Main Results

Simulation & Design: filters transmission simulation were carried out with Lumerical FDTD software to define the design (period and diameter) of the nanohole arrays for covering SWIR spectral range.

Development of the fabrication process: as to our knowledge, the integration of aluminum nanohole filters with high-performance MWIR photodetector has never been demonstrated in the literature and represented an important technological challenge.

Simulations

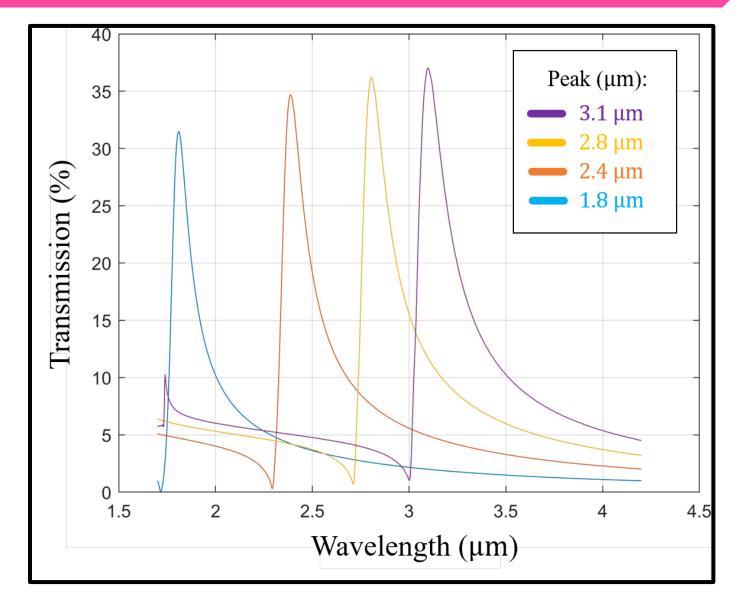


Fig.3: Filters transmission simulated.

National Aeronautics and Space Administration, Jet Propulsion Laboratory California Institute of Technology, Pasadena, California, www.nasa.gov

- The process of fabrication has been developed step-by-step.
- We studied the impact of the e-beam photolithography parameters on the resolution and geometry of the nanoholes.
- We developed and optimized a **dry-etching** chlorine-based recipe allowing a wellcontrol of the shape, rugosity, and depth of the nanoholes.

Fabrication of a first sensor: We recently finalized the process of **the first demonstration** sample of the aluminum filters. The intense colors observed in the picture prove the great quality of the surface.

Over the and characterizations: this sample has been mounted on a chip carrier, wirebonded, and spectral response measurements have been performed. The first measurements are currently being analyzed and will need **further investigation**.

Future works: In parallel, we are developing larger arrays of nanohole patterns to conduct transmission measurements on our filters. This will allow us to compare the consistency of the **experimental** results with the **simulation** of the transmission.

PI Contact Information

(818) 393-0225

Clearance Number: CL#24-4992 RPD-000

Copyright 2024. All rights reserved.