

FY24 Topic Areas Research and Technology Development (TRTD)

Low-power giga sampling digitizer for large-format far-IR detectors

Principal Investigator: Taehoon Kim (386); Co-Investigators: Peter Day (389)

Strategic Focus Area: Components and Integrated Systems

Objective:

- Develop a low-power giga-sampling digitizer for JPL's far-IR detector systems
 - \succ Read up to 2,000 pixels of microwave kinetic inductance detectors (MKIDs)
 - > Application-specific integrated circuit (ASIC) using 65 nm CMOS process
 - > Time-interleaved (TI) architecture to achieve 2 GS/s sampling rate
 - \geq 100 mW power consumption

Background:

- PRIMA (The PRobe far-Infrared Mission for Astrophysics) mission
 - MKIDs with over 10,000 pixels for high-sensitivity far-IR and sub-mm astronomy
 - > Challenge:
 - ✓ Current solutions lack low-power, compact MKID readout electronics

- > Solution:
 - ✓ Development of a power-efficient, single-chip digitizer ASIC
 - ✓ Integration with spectrometer ASICs, optimized for large-format MKID arrays.

Approach and Results:

- Architecture
 - ➢ 32-way TI-SAR ADC
 - ✓ TI successive approximation register (TI-SAR) A2D converter
 - ✓ Each sub-channel operates at a minimum 62.5 MS/s speed
 - ✓ Achieving 2+ GS/s with the fully-integrated digitizer architecture
 - \succ Two additional reference channels for linearity and timing mismatch calibration
 - > Off-chip digital calibration engine
- SAR ADC design
 - > 11-bit non-binary split capacitive D2A converter (CDAC)
 - ✓ CDAC split into upper 6-bit (C12-C6) and lower 5-bit (C5-C0) arrays
 - ✓ Reducing input load capacitance (~470 fF)
 - > Asynchronous clocking scheme with a self-timed clock generator
 - \checkmark To avoid distributing high-speed clocks.
 - \checkmark internal clock generator triggered by a comparator.
- Simulation results
 - > Performance improvement after linearity calibration
 - > Sub-channel ADC consumes ~0.85 mW at 62.5 MS/s with a 1 V supply.
 - \succ Total power consumption for 34 ADCs and peripherals is ~50 mW. ✓ Well below the 100 mW target

Significance and Benefits to NASA and JPL :

- Miniaturized MKID readout electronics for next-generation far-IR detectors.
 - Significant reduction in power consumption
 - \checkmark 10x improvement over traditional off-the-shelf methods.

Figure 1 The digitizer architecture

Figure 2 Sub-channel SAR ADC architecture and timing diagram

comparison

EOC

> single-chip MKID solution in the PRIMA far-IR observatory, planned for the 2030s

	One sub-channel ADC	Fully integrated digitizer
Architecture	SAR	32× TI-SAR
Number of ADCs	1	34 (with two references)
Sampling rate	\geq 62.5 MS/s	$\geq 2 \text{ GS/s}$
Resolution	11 bits (1b redundancy)	
SNDR	\geq 50 dB	
Power	$\leq 1 \mathrm{mW}$	\leq 50 mW (goal: 100 mW)
		$\sim 2 \text{ mm}^2$
Area	$\sim 0.04 \ \mathrm{mm^2}$	(except for on-chip
		decoupling capacitors)

Table 1 Performance summary of one-subchannel (simulated)
 and fully integrated digitizer (estimated)

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology Pasadena, California

www.nasa.gov

RPD-000 Clearance Number: CL#00-0000 Copyright 2024. All rights reserved.

Publications:

Taehoon Kim, "Modeling and Simulation of Microwave Kinetic Inductance Detectors Readout System using Simulink and RF Blockset," submitted to IEEE Transactions on Applied Superconductivity.

PI/Task Mgr. Contact Information: Email: Taehoon.kim@jpl.nasa.gov

Figure 3 The 11-b non-binary split capacitive DAC

Figure 4 Simulated results of sub-channel SAR ADC