

FY24 Topic Areas Research and Technology Development (TRTD)

Snow Water Equivalent Retrieval Using Sentinel-1 and UAVSAR Repeat-Pass Interferometry

Principal Investigator: Shadi Oveisgharan (334)**; Co-Investigators:** Emre Havazli (334), Robert Zinke (334)

Strategic Focus Area: Water and carbon cycles

Objectives: The objective of this work was to show for the first time the quantitative evidence to justify using repeat-pass interferometry as a viable new method for SWE retrieval. We were the first to propose evaluating the performance of InSAR SWE retrieval using a time series of **"spaceborne"** Seninel-1. We will recommend the optimum revisit time for SWE retrieval using differential interferometry for future NASA Snow mission. **Background:** 2017 Decadal Survey calls for Snow Water Equivalent (SWE) measurement using active sensor (radar) as part of the DS Earth Explorer mission category. Different methods are used for SWE retrieval: 1) Multi-frequency passive (low resolution), 2) Lidar (does not work in cloud, limited foot print), 3) SoOp (extremely limited coverage, but penetration)

through vegetation), 4) Multi-freq (X- and Ku-) radar backscattered power (a priori information is needed, saturates at deep snow), 5) Zero baseline repeat-pass interferometry (loss of temporal coherence):

 $\Delta \phi = -2\kappa_0 (\cos \theta - \sqrt{\epsilon} - \sin^2 \theta) \Delta d$

Approach and Results:

<u>Using 6 days Revisit Sentinel-1 for *ASWE* Estimation</u>

- 6-day repeat Sentinel-1 time series data is used between 12/1/20 to 3/30/21 over Idaho
 - Tropospheric noise from the unwrapped phase is removed by using the Miami InSAR Time-series software in Python (MintPy)
 - The unwrapped phase is converted to ΔSWE
 - The average of two in situ stations is used as the reference point

Comparing Retrieved Sentinel-1 and In Situ total SWE

Site	LDIAR Date	Correlat ion
BS	2/19/20	0.51
BS	3/15/21	0.47
MC	2/19/20	0.66
MC	3/15/21	0.59
DC	2/19/20	0.56

 There is very good resemblance and correlation (between 0.47 to 0.66) between LIDAR snow depth and Sentinel SWE. The highlight of this study.

Comparing Retrieved Sentinel-1 and In Situ DSWE

Different Parameters Effect on Temporal Coherence

- There is 0.82 correlation between Sentinel-1 and In Situ ∆SWE.
 The RMSE error is 0.76cm. The highlight of this study.
- We use Δ SWE for the time series to come up with SWE(t_k) = Σ Δ SWE(t_i) (t_i < t_k)
- In almost all the stations there is very good correlation between in situ and Sentinel-1 SWE
- For some stations (16 out of 31 stations), the total SWE error is less than 2 cm. The highlight of this study.

Temporal coherence decreases with the increase of slope and vegetation height as expected.

Temporal Coherence Effect on SWE Retrieval Performance

 The correlation between retrieved SWE and LIDAR snow depth increases with higher temporal coherence. Therefore, temporal coherence has a huge impact

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

RPD-000 Clearance Number: CL#00-0000

Copyright 2024. All rights reserved.

 Temporal coherence is minimum around 270 aspect angles, facing west. These regions face the sun in the afternoon and snow melting occurs accordingly

Significance/Benefits to JPL and NASA:

- The successful SWE retrieval results shown in this study would become the basis for a new and more accurate SWE retrieval approach for the snow community. It will help in generating SWE product using NISAR data with a reliable estimate of the uncertainty.
- In the next 10 years, we have the opportunity to launch an InSAR mission for SWE retrieval with sufficiently frequent revisits by adding of a smallsat to the future SDC/NISAR/ROSE-L missions.

Publications:

- [A] Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, Hans Peter Marshall, "Snow water equivalent retrieval over Idaho Part 1: Using Sentinel-1 repeat-pass interferometry," submitted to The Cryosphere, Feb. 2024
- [B] Shadi Oveisgharan, Emre Havazli, Robert Zinke, Zachary Hoppinen, "Evaluating the Performance of SWE Retrieval Using Sentinel-1 Interferometric Data and QSI LIDAR data," Presented to IGARSS 2024, Athen, Greece.
- [C] Shadi Oveisgharan, Emre Havazli, Robert Zinke, Zachary Hoppinen, "Evaluating the Performance of SWE Retrieval Using Sentinel-1 Interferometric Data and QSI LIDAR data over Idaho and California," in preparation to submit to The Cryosphere

PI/Task Mgr. Contact Information:

Email: <u>Shadi.Oveisgharan@jpl.nasa.gov</u>

Phone: 650-353-1661