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Obiecti

Develop, implement, and test prototype
algorithms for fusing data from three notional
future JPL PBL missions identified in the PBL
Report (a sounder, a microwave, and a
radar/lidar modeled on the DIAL and DAR
instrument concepts).

Demonstrate that we can evaluate
accuracies, uncertainties, and computational
costs of fused data products that will result
from different design choices.

Backaround

One the most important conclusions of a
recent NASA study on future PBL
observation is that no single instrument can
observe the PBL adequately, and that “..the
production suite of a spaceborne PBL
mission...should combine each component’s
information  content in and  optimal
manner...”

Statistical methods for combining such
heterogeneous data are based on spatial
statistical models.

These methods are purely data driven. A
physical model can be used incorporated to
drive temporal dynamics (this is data
assimilation), but that is not our objective
here.

In this project, we built a spatial statistical
model to quantify the relationship between
the (three-dimensional) PBL spatial field and
notional observations of it by three
instruments: a sounder-like instrument, a
microwave instrument, and a radar-like
instrument flying down the center of the
sounder/microwave swath.

The PBL variable studied here is relative
humidity.

Signifi

This is crucial data processing technology for
future PBL missions. Instead of performing trade
studies for individual instruments in formulation,
data fusion allows us to do so for combinations of
instruments that provide complementary data.
These results provide proof-of-concept for
methods  to simulate basic  observing
characteristics, perform data fusion, and evaluate
results quantitatively.
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Basic idea: We postulated a probabilistic model that describes the behavior of a full, 3D water vapor field. Then we added a probabilistic
specification of how observed data relate to the full field, and finally used basic rules of probability to obtain the conditional probability distribution
of the true-but-not-directly-observed field, given the observed data.

Data: We used data from the Regional Atmospheric Modeling System (RAMS; Cotton, W. R., and co-authors, 2003) for December 30, 2016 over
the Democratic Republic of Congo in Africa: latitude -5.142 to -5.056, longitude 24.06 to 24.15, and up to 20 km altitude. Clouds (opaque to
infrared) inherited.

Pseudo-observations from three instruments were constructed as overlapping spatial aggregates with Gaussian weighting functions, and
independent multiplicative measurement errors of 15%. Resolutions represent two “edge cases”: best-case and current case.

Best 20km x NA x 300m
Current 20km x NA x 300m

500m x 500m x 1km
10km x 10km x 1km

5km x 5km x 1km
20km x 20km x 2km

Z=FY+e e~N(0,Vy), Y=Hn+4é, 6 ~N(0,Vs), n~N(0K).

Statistical model:
T Vector of all voxels’ / ! I

Observation vector Vertical basis matrix Coefficient vector errors: €6

Aggregation matrix “true” values

Estimate mean vector and covariance matrix of “True” vector given “Observation” vector => fused estimate and uncertainty at "target”
resolution. Target resolution is finest instrument resolution in each direction. Estimate vertical basis matrix H from radar-like pseudo-
observations, and horizontal spatial dependence n from all pseudo-observations.

Fused estimates and their uncertainties obtained from usual Gaussian Process conditional mean vector and covariance matrix formulas.
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