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Success! GIRO Transponder achieves 2e-'4 and 3e-14
10e-16 Allan Deviation at 100 s integration (in two different
calibrations) (3 — 5 x better than requirement!)
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A brass-board working-model of the GIRO transponder has been built, and has been thoroughly
tested. The results are successful! With two independent means of testing (the difficult to measure) AT LI .
Allan Deviation, the simple, analog transponder exceeds the requirement by factors of 2-3. Note: The simulated Max Directivity and the Realized Gain are 7.14 dB and 6.75 dB accordingly.

» Since we did not measure the gain, the estimated measured realized gain will be 6.5 dB.
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Surprising but gratifying performance! With the expectation of 0dB from a body-
mounted dipole antenna, a shell-grounded and resonant patch antenna achieves over
6dB Rx and Tx performance, matching simulations when measured in the chamber.
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The 3-D printed aluminum probe structure indicate nearly antipodal extreme
depression and rise.
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