JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Earth
.

New Study Finds Sea Level Rise Accelerating

Written by Katie Weeman Feb 13, 2018
Global sea level rise is accelerating incrementally over time rather than increasing at a steady rate, as previously thought, according to a new study based on 25 years of NASA and European satellite data.
Credit: NASA's Goddard Space Flight Center/Kathryn Mersmann

The rate of global sea level rise has been accelerating in recent decades, rather than increasing steadily, according to a new study based on 25 years of NASA and European satellite data.

The rate of global sea level rise has been accelerating in recent decades, rather than increasing steadily, according to a new study based on 25 years of NASA and European satellite data.

This acceleration, driven mainly by increased melting in Greenland and Antarctica, has the potential to double the total sea level rise projected by 2100 when compared to projections that assume a constant rate of sea level rise, according to lead author Steve Nerem. Nerem is a professor of Aerospace Engineering Sciences at the University of Colorado Boulder, a fellow at Colorado's Cooperative Institute for Research in Environmental Sciences (CIRES), and a member of NASA's Sea Level Change team.

Global sea level rise is accelerating incrementally over time rather than increasing at a steady rate, as previously thought, according to a new study based on 25 years of NASA and European satellite data.

If the rate of ocean rise continues to change at this pace, sea level will rise 26 inches (65 centimeters) by 2100 -- enough to cause significant problems for coastal cities, according to the new assessment by Nerem and colleagues from NASA's Goddard Space Flight Center in Greenbelt, Maryland; CU Boulder; the University of South Florida in Tampa; and Old Dominion University in Norfolk, Virginia. The team, driven to understand and better predict Earth's response to a warming world, published their work Feb. 12 in the journal Proceedings of the National Academy of Sciences.

"This is almost certainly a conservative estimate," Nerem said. "Our extrapolation assumes that sea level continues to change in the future as it has over the last 25 years. Given the large changes we are seeing in the ice sheets today, that's not likely."

Rising concentrations of greenhouse gases in Earth's atmosphere increase the temperature of air and water, which causes sea level to rise in two ways. First, warmer water expands, and this "thermal expansion" of the ocean has contributed about half of the 2.8 inches (7 centimeters) of global mean sea level rise we've seen over the last 25 years, Nerem said. Second, melting land ice flows into the ocean, also increasing sea level across the globe.

These increases were measured using satellite altimeter measurements since 1992, including the Topex/Poseidon, Jason-1, Jason-2 and Jason-3 satellite missions, which have been jointly managed by multiple agencies, including NASA, Centre national d'etudes spatiales (CNES), European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Oceanic and Atmospheric Administration (NOAA). NASA's Jet Propulsion Laboratory in Pasadena, California, manages the U.S. portion of these missions for NASA's Science Mission Directorate. The rate of sea level rise in the satellite era has risen from about 0.1 inch (2.5 millimeters) per year in the 1990s to about 0.13 inches (3.4 millimeters) per year today.

"The Topex/Poseidon/Jason altimetry missions have been essentially providing the equivalent of a global network of nearly half a million accurate tide gauges, providing sea surface height information every 10 days for over 25 years," said Brian Beckley, of NASA Goddard, second author on the new paper and lead of a team that processes altimetry observations into a global sea level data record. "As this climate data record approaches three decades, the fingerprints of Greenland and Antarctic land-based ice loss are now being revealed in the global and regional mean sea level estimates."

Even with a 25-year data record, detecting acceleration is challenging. Episodes like volcanic eruptions can create variability: the eruption of Mount Pinatubo in 1991 decreased global mean sea level just before the Topex/Poseidon satellite launch, for example. In addition, global sea level can fluctuate due to climate patterns such as El Ninos and La Ninos (the opposing phases of the El Nino-Southern Oscillation), which influence ocean temperature and global precipitation patterns.

Nerem and his team used climate models to account for the volcanic effects and other datasets to determine the El Nino/La Nina effects, ultimately uncovering the underlying rate and acceleration of sea level rise over the last quarter century.

The team also used tide gauge data to assess potential errors in the altimeter estimate.

"The tide gauge measurements are essential for determining the uncertainty in the global mean sea level acceleration estimate," said co-author Gary Mitchum, University of South Florida College of Marine Science. "They provide the only assessments of the satellite instruments from the ground." Others have used tide gauge data to measure sea level acceleration, but scientists have struggled to pull out other important details from tide-gauge data, such as changes in the last couple of decades due to more active ice sheet melt.

In addition to NASA's involvement in missions that make direct sea level observations from space, the agency's Earth science work includes a wide-ranging portfolio of missions, field campaigns and research that contribute to improved understanding of how global sea level is changing. Airborne campaigns such as Operation IceBridge and JPL's Oceans Melting Greenland gather measurements of ice sheets and glaciers, while computer modeling research improves our understanding of how Antarctica and Greenland will respond in a warming climate.

In 2018, NASA will launch two new satellite missions that will be critical to improving future sea level projections: the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission, a partnership with GeoForschungsZentrum (GFZ) in Germany, will continue measurements of the mass of the Greenland and Antarctic ice sheets; while the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) will make highly accurate observations of the elevation of ice sheets and glaciers.

News Media Contact

Patrick Lynch

301-286-2102

patrick.lynch@nasa.gov

Alan Buis

818-354-0474

alan.buis@jpl.nasa.gov

2018-029

Related News

Earth .

NASA, US and European Partner Satellite Returns First Sea Level Measurements

Technology .

NASA Confirms New SIMPLEx Mission Small Satellite to Blaze Trails Studying Lunar Surface

Earth .

New Data Confirm 2020 SO to Be the Upper Centaur Rocket Booster From the 1960's

Earth .

Follow Sentinel-6 Michael Freilich in Real Time As It Orbits Earth

Climate Change .

US-European Mission Launches to Monitor the World's Oceans

Climate Change .

Sentinel-6 Michael Freilich Satellite Prepared for Launch

Climate Change .

Study: Urban Greenery Plays a Surprising Role in Greenhouse Gas Emissions

Climate Change .

NASA TV to Air Sentinel-6 Michael Freilich Launch, Prelaunch Activities

Earth .

Earth May Have Captured a 1960s-Era Rocket Booster

Earth .

The Anatomy of Glacial Ice Loss

Explore More

Topic .

Earth

Image .

Kilauea Volcano, Hawaii

Infographic .

Inside Hurrricanes

Image .

Mt. Etna, Italy

Image .

Sentinel-6 Michael Freilich First Light Waveform

Image .

Sentinel-6 Michael Freilich First Light Sea Level

Image .

Providencia Island, Colombia

Image .

Kliuchevskoi Volcano, Kamchatka, Russia

Video .

NASA and SpaceX Launch U.S.-European Mission to Monitor World’s Ocean

Image .

Grand Ethiopian Renaissance Dam

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono