

Detector Possibilities for HabEx

Bijan Nemati

Jet Propulsion Laboratory, California Institute of Technology

HabEx STDT meeting August 3, 2016

HabEx Assumed Parameters

Jet Propulsion Laboratory California Institute of Technology

After

The WFIRST Experience (So Far)

WFIRST Choices for Sensors

- Conventional CCD
 - + well known, high TRL
 - read noise > $^{\sim}$ 3e- \rightarrow most likely too high for our purposes
- EMCCD (electron multiplication)
 - + very low (<0.01 e-) read noise, photon counting possible, TRL reasonably high
 - excess noise factor, charge induced current
 - Scientific CMOS (sCMOS)
 - + high frame rate, read noise down to 1 e-
 - lower QE (~60%), limited FOV in some cases

Journal of Astronomical Telescopes, Instruments, and Systems 2(1), 011007 (Jan-Mar 2016)

Technology advancement of the CCD201-20 EMCCD for the WFIRST coronagraph instrument: sensor characterization and radiation damage

Leon K. Harding,^{a,e} Richard T. Demers,^{a,e} Michael Hoenk,^a Pavani Peddada,^a Bijan Nemati,^a Michael Cherng,^e Darren Michaels,^a Leo S. Neat,^a Anthony Loc,^a Nathan Bush,^b David Hall,^b Neil Murray,^b Jason Gow,^b Ross Burgon,^b Andrew Holland,^b Alice Reinheimer,^c Paul R. Jorden,^d and Douglas Jordan^d

Electron Multiplication (EM) CCD's

- In traditional CCD's the pixels are clocked out in parallel into a serial register where they are then read out.
- In an EMCCD they are routed instead to an extended multiplication register with a high-voltage phase (10's of V) where they undergo multiplication.
- At each gain stage there is a small (typically < 2%) chance of getting an extra electron
- Since there are hundreds of multiplication elements there can be a large gain:

Consequences of Electron Multiplication

- The main benefit of electron multiplication is a boost to the signal while the read noise is still the same as for ordinary CCD
 - This effectively translates to a lower effective read noise
- The price we pay for this benefit:
 - 1. The electron multiplication is a stochastic process, so that the gain is not the same every time. This introduces an 'excess noise factor' (ENF) $\sim \sqrt{2}$
 - 2. The high voltages and high frequencies create clock-induced charge (CIC) $\sim 10^{-3}$ e-/pix/frame.
 - 3. The full-well (hence dynamic range) is proportionately reduced.

Getting The Full Value: Photon Counting

- With high enough frame rates, it is possible to get into a regime where the number of expected photons per pixel per frame is low
- If there are almost never > 1
 photons likely to hit a pixel in one
 frame time, can go into photon
 counting mode
- Here we set a threshold high enough to avoid false positives but low enough not to lose efficiency
- The advantage of photon counting is that the Excess noise factor is gone.

Coronagraph SNR

For the coronagraph the SNR is given by

$$SNR = \frac{S}{N}$$
 where: $S = r_{pl} t$ $r_{pl} = \Phi A \tau \eta$

$$S = r_{pl} t$$

$$r_{pl} = \Phi A \tau r_{pl}$$

$$N = \sqrt{\sigma_{shot}^2 + \sigma_{zodi}^2 + \sigma_{spec}^2 + \sigma_{spstr}^2 + \sigma_{det}^2}$$

shot noise of planet light

shot noise shot noise of from zodiacal mean speckle dust (local + exo)

residual detector speckle noise structure (after postprocessing)

Detector parameters of most importance:

- 1. QE
- 2. Read Noise
- Dark current
- 4. Frame Rate
- 5. Clock-induced Charge (CIC)

: photon flux

collector area

transmission

QE

Desired Yield of Planets Imaged, N

Required Integration time T

Detector Specifications

Important metric: Requisite time to reach SNR

Analytical expression for SNR:

$$SNR_p = rac{S}{N_p}$$
 where
$$\begin{cases} S = r_{pl} \ t \\ N_p = \sqrt{r_n^p \ t + \sigma_{sp}^2} \end{cases}$$
 $r_{pl} = f_{SR} \ \Phi_* \ C_{pl} \ A_{PM} \ \tau_{pl} \ \eta$

$$r_{n}^{p} = f_{SR} F^{2} \left[\Phi_{*} C_{pl} \tau_{pl} + \Phi_{*} C_{CG} I_{pk} m_{pix} \tau_{sp} + \left(\frac{d\Phi_{Z}}{d\Omega} \Delta\Omega_{PSF} \right) \tau_{Z} \right] A_{PM} \eta + F^{2} \left[i_{d} m_{pix} + q_{CIC} \frac{m_{pix}}{t_{fr}} \right] + \frac{m_{pix}}{t_{fr}} \left(\frac{\sigma_{r}}{G_{EM}} \right)^{2}$$
photonic
electronic

$$\sigma_{sp}^2 = n_{sp}t^2$$
 where $n_{sp} = \left(f_{pp} \cdot f_{SR} \cdot \Phi_* C_{CG} I_{pk} m_{pix} \tau_{sp} A_{PM} \eta\right)^2$

Can invert the equation to get the requisite time to get to a desired SNR:

$$\rightarrow t = \frac{SNR^2 r_n}{r_{pl}^2 - SNR^2 n_{sp}}$$

Note that there could be <u>no solution</u> to *t* for sufficiently poor contrast!

How much of a difference do EMCCD's make?

WFIRST Examples

Expected Rates with HabEx

Typical Scene Photometry:

10 milli-photons/sec into planet core

• Core \equiv area under the PSF within the FWHM contour ($\sim \lambda/D$ wide)

Typical Imaging Mode Rates

Assume solar system at 12 pc, imaging Earth

0.007 phot/sec into the planet PSF core

0.067 phot/sec from Zodi (2 Zodi assumption)

0.006 phot/sec from Speckle

Adapting WFIRST Photometry to HabEx (Rough)

												•				
HABEX OBSERVING SCE	ENARIO INPL	JT PARA	METERS	SNR			Detector and IFS Design	Settings			Sc	enario				
				Time to SNR			Detector Architecture									
				Item	Value Units	Comments	Item	Value	Units	Comments		Scenario	BW	Center λ	R	Focal Plane Type
Collector Dia neter	6	m	Diamet r of PM	Required Time	2.0E+06 s		Dark current	5E-04	e/pix/s	best we can expect in ~IMO		Custom	5%	6.00E-07	0	Imaging
Sec. Obsc. frac	30%	of diam		to reach SNR	564.78 hr		Clock Ind. Charge	5E-0	e/pix/fr	achievable from lab		Imaging 1	10%	4.50E-07	0	Imaging
				to reacti sivik	23.53 days		Read noise		e	eff. Read noise below		Imaging 2	10%	5.50E-07	0	Imaging
Scenario	IFS 1			Final SNR			EM gain	100	X	0		IFS 1	18%	6.60E-07	70	IFS
SNR Target	5			Item	Value Units	Comments	Quantum Eff.	729	QE	Includes Ph. Ctg. Eff. Loss		IFS 2	18%	7.70E-07	70	IFS
Detector Type	PC EMCCD			SNR Check	5.00 SNR		Pixel Size	1				IFS 3	18%	8.90E-07	70	IFS
Coronagraph Type	HLC			Signal	1443.4 <i>e</i>	Total Signal	f_SR	0.07	1	frac. Of core light in SNR ROI						
				Noise	288.7 <i>e</i>	Total Noise	Desired mpix	19.		pixels in SNR ROI	Те	escope			,	
Star Brightness	5.00	mag		Frames Needed	20332.1 frames	s for SNR target	Excess Noise Fac.		ENF	Robbins 2003, w/ N=200	Te	escope Parameters				
Star Distance	12.00	рс		Final Noise Contribution			Frame Rate	0.010	Hz	Wes used 300s		Item	Value	Units		Comments
Planet Radius	1	Re		Item		Comments	Focal Plane Architecture					Diffraction Limit	1.10E-07	rad	1	FWHM on sky (λ /D)
Planet SMA	1	AU		Shot	37.993 e	signal shot noise	Imager Critical λ	450	nm	Nyquist sampled			0.02268913			
Frame Time	100	S	Specify a time	Speckle	44.168 e	<sp> shot noise</sp>	Imager Sampling	0.34	(λ/D) / pix			Col. Area	28.274			Area of PM
Post-proc Factor	10%	f_pp	resid. speckle str.	Zodi	142.268 <i>e</i>	zodi shot	IFS Critical λ	600	nm	Nyquist sampled		Nspec	13	spectral eler	nents	
Zodi (Exo+local)	2	zodi	(loc+exo) / loc	Dark Current	140.291 e		IFS LensI per PSF	2	lenslets	across PSF core	1					
Contrast Improvement	2	Х	over WFIRST HLC	CIC	44.364 e		IFS Spatial Samp	2	rows	pixels in spatial dir.		tector Configurations				
				Read	0.000 e		IFS Spectral Samp	2	cols	pixels / spect. Elem.	lm	aging Detector Options				-
Coron. Raw Contrast		before p	oost processing	Speckle Structure	195.083 e	residual Speckle	IFS sampling on sky	0.010	arcsec	/ lenslet @ crit. λ		Option	CCD	EMCCD	PC EMCCE	Comments
Planet Contrast	2.3E-10			SNR By Frame								Read Noise (e-)	3	75	0	
				Item		Comments	Rates of signal and back	ground into	the SNR re	gion of interest		EM Gain	1	1000	1000	
Science Instrument	IFS			SNR 1 Frame	0.0476 SNR		Stellar Flux			-		ENF	1	1.41	1	
Center lambda	6.60E-07	m	V-band ctr.	Signal	0.07 e		Item	Value	Units	Comments		Pixel Size	13	13	13	
Bandwidth	18%		V-band is 16.18%	Noise	1.49 e		Photon Flux		ph/(s*m2)			Ph. Counting eff.	1	1	0.8	Fraction above Phot. Ctg Discr. Threshold
Spec Resolution	70	R		Shot	0.27 e		Gen. Phot Flux	1.1E+0	, , , ,	From GSPEC (RV list)	Fo	cal Plane Attributes	150			
Constitution Decision	17	5 . .		Speckle	0.31 e		Planet Contrast	2.3E-1	1	Planet Contrast		Item	IFS	Imaging	Units	Comments
Scene Signal and Back	ground (per	Frame)		Zodi	1.00 e		Planet Elec Rate	7.1E-0		PSF core (electron)		Shape f SR	streak	circle		
Core (photons)	Value	Units	Comments	Dark Current CIC	0.98 <i>e</i> 0.31 <i>e</i>		Speckle elec rate	9.59E-0	mag/as^2	PSF core (electron)		mpix	0.079 19.36	1.0 6.76		
Planet Phot	0.099		PSF core (photon)	Read	0.31 e		Local Zodi Flux per solid ang.	1.7E+1		brightness density inc. exo zodi		Піріх	19.30	6.76		
Speckle Phot	0.033		PSF core (photon)	Speckle Struc.	0.00 e		Zodi elec rate	1.0E-0		per pixel	Co	ronagraph				
Zodi Phot	1.383		PSF core	эрескіе знис.	0.01		Noise Rate Total	0.02		all but Speckle struc.		onagraph Specs				
Core (phot/s)	1.303	priot	rsi core	Nominal HahEx Targe	t and Scaling from H	Habex to WFIRST Tables	Noise Nate Total	0.02	. c/3	un but speckle struc.		Item	HLC	SPC	Units	Comments
Item	Value	Units	Comments	distance	10.0 pc	laber to William Tables	Throughput					Radius	1.58E-01	2.37E-01		Commence
Planet Phot Rate	9.9E-04		PSF core (photon)	SMA min	0.60 AU		· · · · · · · · · · · · · · · · · · ·					Intensity	6.62E-12	5.06E-12		Speckle intensity at r (normalized to flux)
Speckle Phot Rate	1.3E-03	-	PSF core	HABEX diam	6.00 <i>m</i>		Item	Value	Units	Comments		Contrast	7.79E-10	3.33E-09)	Intensity/PSF Peak
Zodi Phot Rate	1.4E-02		PSF core	Nom Wavelength	550 nm		Tohs	0.8		obscuration fraction		Core Throughput	3.09E-02	2.91E-02		Frac light incident on primary in FWHM of
Per Pixel (photons)		p		DiffLimitHabex	0.019 arcsec		т			pupil mask obscuration(HLC)		PSF Peak	4.25E-03	1.52E-03		Frac light in peak pixel of PSF centered at r
Planet Phot	0.005	nhot	per pixel (in core)	Planet Angle min	0.060 arcsec		трир	0.3		occulter transmission		Area	2.01E-03	4.98E-03	arcsec^2	Area of FWHM of PSF centered at r
Speckle Phot		phot	per pixel	WAmin	3.17 lam/D		HabEx Improvement	1	X	bet er throughoutput		Occular Transmission	3.94E-01	2.06E-01		Occulter*Iyot stop transmission at r
Zodi Phot		phot	per pixel	WFIRST WA min	3.00 lam/D		T	0.09	N	fro t of pl light in PSF core		Min Working Angle	2.10	2.40	λ/D	Throughputs
Per Pixel (elec/s)		p	p = p =	scale factor		to HX WA to look up in WF t	table T.	0.5		transmissions and reflections		Max Working Angle	10.50	9.20	1	Throughputs
Planet Elec Rate	3.7E-05	e/s	per pixel (in core)	Planet albedo	0.4 a		Tel	0.9		transmissin of BW filter		Tt	0.53	0.49		Throughputs
Speckle Elec Rate	5.0E-05	<u> </u>	per pixel	Working Angle	3.67 \(\lambda/D\)		Tool	0.3	-	polarizer		CG intrinsic sampling	0.30	0.20		sampling used by John Krist in generating
Zodi Elec Rate	1.0E-02	-, -	per pixel	Lookup WA	3.47 λ/D	scale factor applied	Test	1.89		planet throughput		CG intrinsic mpix	8.73	19.63		pixels within PSF core assuming instrinsics
Jet Propulsio			pe. pinei	LOOKUP ****	3.47	seare juctor applied	τ _{speckle}	19.09		polarizer		Coambiempix	5.73	15.00	7 7 7 7 7 7	piness mann of core assuming matimists
California Institu							* spескіе	7.5%		planet throughput						
							zodi	1.37	1	pranet intougriput					1	<u> </u>

HabEx Comparison: CCD vs. Photon Counting EMCCD

PC EMCCD

HABEX OBSERVING SCE	NAKIO INPO	TPARA	MICTERS	SN				
				Tim	ne to SNR			
					Item	Value	Units	Comments
Collector Diameter	6	m	Diameter of PM		Required Time	4.0E+06	S	
Sec. Obsc. frac.	30%	of diam			to reach SNR	1108.73	hr	
					to reach sixin	46.20	days	
Scenario	IFS 1			Fin	al SNR			
SNR Target	5				Item	Value	Units	Comments
Detector Type	CCD				SNR Check	5.00	SNR	
Coronagraph Type	HLC				Signal	3542.1	e	Total Signal
					Noise	708.4	е	Total Noise
Star Brightness	5.00	mag			Frames Needed	1995.7	frames	for SNR target
Star Distance	12.00	рс		Fin	al Noise Contribution	ns		
Planet Radius	1	Re			Item	Value	Units	Comments
Planet SMA	1	AU			Shot	59.5	е	signal shot noise
Frame Time	2000	5	Specify a time		Speckle	69.2	e	<sp> shot noise</sp>
Post-proc Factor	5%	f_pp	resid. speckle str.		Zodi	222.9	е	zodi shot
Zodi (Exo+local)	2	zodi	(loc+exo) / loc		Dark Current	196.6	е	
Contrast Improvement	2	х	over WFIRST HLC		CIC	13.9	е	
					Read	589.7	е	
Coron. Raw Contrast	7.8E-10	before p	ost processing		Speckle Structure	239.4	е	residual Speckle
Planet Contrast	2.3E-10			SNI	R By Frame			,
					Item	Value	Units	Comments
Science Instrument	IFS				SNR 1 Frame	0.1189		
Center lambda		m	V-band ctr.		Signal	1.77		
Bandwidth	18%		V-band is 16.18%		Noise	14.93	е	
Spec Resolution	70	R			Shot	1.33	е	
	-				Speckle	1.55	е	
Scene Signal and Backg	round (per	Frame)			Zodi	4.99		
Core (photons)	()	,			Dark Current	4.40		
Item	Value	Units	Comments		CIC	0.31		
Planet Phot		phot	PSF core (photon)		Read	13.20	_	
Speckle Phot		phot	PSF core		Speckle Struc.	0.12		
Zodi Phot	27.652	•	PSF core		opeome or aci			
Core (phot/s)		prior	7 57 6576	No	minal HabEx Targe	t and Scaling	from F	labex to WFIRST Ta
Item	Value	Units	Comments	110	distance	10.0		labex to William Ta
Planet Phot Rate		phot/s	PSF core (photon)		SMA min	0.60	-	
Speckle Phot Rate		phot/s	PSF core		HABEX diam	6.00	_	
Zodi Phot Rate		phot/s	PSF core		Nom Wavelength		nm	
	1.41-02	ρποιγ3	I SI COIE					
Per Pixel (photons)					DiffLimitHabex		arcsec	
Planet Phot	0.102	phot	per pixel (in core)		Planet Angle min		arcsec	
Speckle Phot	0.14	phot	per pixel		WAmin	3.17	lam/D	
Zodi Phot	1.4	phot	per pixel		WFIRST WA min	3.00	lam/D	
Per Pixel (elec/s)					scale factor	0.95	Apply t	to HX WA to look up ii
Planet Elec Rate	4.6E-05	e/s	per pixel (in core)		Planet albedo	0.4	а	
Speckle Elec Rate	6.2E-05	-, -	per pixel		Working Angle		λ/D	
Shervie Fier vare	U.ZE-U5	C/3	per pixer		WOLKING AUGIE	5.07	. 0, 0	
Zodi Elec Rate	1.2E-02	,	per pixel		Lookup WA		λ/D	scale factor applied

HABEX OBSERVING SCE	NARIO INPL	JT PARA	METERS	SNR			
				Time to SNR			
				Item	Value	Units	Comments
Collector Diameter	6	m	Diameter of PM	Do avviso d Time	1.2E+06	s	
Sec. Obsc. frac.	30%	of diam		Required Time to reach SNR	346.43	hr	
				to reach sink	14.43	days	
Scenario	IFS 1			Final SNR			
SNR Target	5			Item	Value	Units	Comments
Detector Type	PC EMCCD			SNR Check	5.00	SNR	
Coronagraph Type	HLC			Signal	885.4	е	Total Signal
				Noise	177.1	е	Total Noise
Star Brightness	5.00	mag		Frames Needed	12471.3	frames	for SNR target
Star Distance	12.00	рс		Final Noise Contribution	ons		
Planet Radius	1	Re		Item	Value	Units	Comments
Planet SMA	1	AU		Shot	29.8	е	signal shot no
Frame Time	100	5	Specify a time	Speckle	34.6	е	<sp> shot nois</sp>
Post-proc Factor	5%	f_pp	resid. speckle str.	Zodi	111.4	е	zodi shot
Zodi (Exo+local)	2	zodi	(loc+exo) / loc	Dark Current	109.9		
Contrast Improvement	2	х	over WFIRST HLC	CIC	34.7		
				Read	0.0		
Coron. Raw Contrast	7.8E-10	before p	ost processing	Speckle Structure	59.8		residual Speck
Planet Contrast	2.3E-10		l l	SNR By Frame		_	
				Item	Value	Units	Comments
Science Instrument	IFS			SNR 1 Frame	0.0476		
Center lambda		m	V-band ctr.	Signal	0.07		
Bandwidth	18%		V-band is 16.18%	Noise	1.49		
Spec Resolution	70	R	V 20110 15 2012075	Shot	0.27		
Spec nesolation	70	,,,		Speckle	0.31		
Scene Signal and Backg	round Inor	Erama)		Zodi	1.00		
Core (photons)	Touriu (per	rranne		Dark Current	0.98		
Item	Value	Units	Comments	CIC	0.31		
Planet Phot		phot	PSF core (photon)	Read	0.00		
Speckle Phot		phot	PSF core	Speckle Struc.	0.00		
Zodi Phot		phot	PSF core	эрескіе эпис.	0.00	c	
Core (phot/s)	1.303	ρποι	I SI COIC	Nominal HabEx Targ	et and Scaling	from L	lahey to WEIE
Item	Value	Units	Comments	distance	10.0		labex to WFIN
Planet Phot Rate	9.9E-04		PSF core (photon)	SMA min	0.60	_	+
Speckle Phot Rate	1.3E-03	, .,.	PSF core	HABEX diam	6.00		
Zodi Phot Rate	1.4E-02	,	PSF core	Nom Wavelength		nm	
	1.4E-02	μποι/s	r Si CUIE				1
Per Pixel (photons)				DiffLimitHabex		arcsec	
Planet Phot	0.005	phot	per pixel (in core)	Planet Angle min	0.060	arcsec	
Speckle Phot	0.01	phot	per pixel	WAmin	3.17	lam/D	
Zodi Phot	0.1	phot	per pixel	WFIRST WA min	3.00	lam/D	
Per Pixel (elec/s)				scale factor	0.95	Apply t	to HX WA to loc
Planet Elec Rate	3.7E-05	e/s	per pixel (in core)	Planet albedo	0.4		
	5.0E-05		per pixel	Working Angle	_	λ/D	-
Speckle Elec Rate							

Is the search over? Not Quite!

- One other important factor especially for any CCD type device is charge transfer efficiency (CTE)
- There are two main sources of inefficiency
 - 1. Interactions of charge packets with the clocking potentials

Cosmic Rays Limit Frame Exposure Times Limit Frame Exposure Times

- Full frame science-grade CCD201 image.
 - Temp = -85 °C (188 K)
 - Gain = 500
 - Exposure = 500s
 - Read Noise = 90e⁻
- Observed tails extend hundreds of pixels, disappearing into the large read noise
 - Tails will be worse at 165K
 - Tails will be worse at higher gain
 - Tails will consume multiple rows
 - There will be many more in space

Fractional RMS Error vs. Trap Capture Time

Fast trap capture times cause the most image degradation

Jet Propulsion Laboratory California Institute of Technology

Trapping Effects in EMCCD

Fractional Error vs. Trap Release Time (with 1% Frame and Serial Traps)

 $\beta = 0.5$: Expected and realistic case

What aspects do we look for in a detector?

- For a coronagraph, ideally photon counting
- Low Noise
 - Read Noise < 1 e- / pix / frame
 - Dark Current < 1e-3 e- / pix / sec
 - Clock Induced Charge < 1e-2 e- /pix/ frame
- Enough Pixels
- High Quantum Efficiency
- Graceful response to cosmic rays
 - Displacement damage → traps
 - Ionizing Dose → image degradation
- High Charge Transfer Efficiency (in CCD type architectures)

What can be done for the 900nm-1000nm region?

• Light entering sensor is absorbed according to:

$$I = I_0 e^{-\alpha z}$$

- α (c m^{-1}) is the absorption coefficient
- Penetration depth is $1/\alpha$
- At penetration depth, only 1/e (37%) of the incident photons are left. The absorbed photons (1-1/e=63%) participate in signal creation:
 - This becomes the upper bound for QE
- Important example:
 - Silicon with ~100 um thickness has a QE upper bound of 63% at a wavelength of $1 \mu m$ (see figure)
 - This thickness is achieved by 'deep depletion' (DD) and has the additional advantage of less fringing in narrow band light at the red end
 - But care needed to avoid greater surface dark current

Possible Sensors to Explore Further for HabEx

				•		QE 400nm	
Detector Type	CCD/ CMOS	Format	Pixel Size (microns)	Read Noise (e-)	Dark Current (e-/pixel/s)	650nm 1000nm	Issues
CCD201 (e2v)	EMCCD	1k x 1k (or 1 x 2)	13	6e-3 /pixel/frame	1e-4 at 160K	52%, 90% 11%	Electron Multiplying CCD in single photon (high gain) mode, If used in lower-gain mode, shot noise is multiplied by sqrt(2). Performance may degrade with radiation due to electron traps in imaging area.
Electron Bombarded CMOS	CMOS (with gain)	1920 x 1200 (M611)		Low			Very new, but worth pursuing for a 2030 mission. Made by Intevac.
Micro Channel Plate	Micro Channel	~ 1k x 1k		Very Low	~ 3e-5 (very low)		Efficiency loss due to micro channel fill factor. But significant flight heritage. Traps not an issue. Best for 600 nm and bluer.
Geiger-Mode Avalanche Photodiode	CMOS	256 x 256	25	0 theoretical			Large arrays are low TRL. Have not demonstrated theoretical performance. Pixels smaller than 20 microns would be difficult.
Skipper CCD	Front- Illuminated CCD	1k x 1k	15	As low as 0.2 e			Lab only? Output stage allows non-destructive reads, so multiple reads reduce noise.
BAE/Fairchild sCMOS	Front- illuminated CMOS	2560 X 2160	6.5	1-2	Extrapolated to 0.001 at 150 K	36%,54% 4%	Cannot read out in a way that reduces noise further for long integration time (cannot do non-destructive reads - per Boyd Fowler at BAE/Fairchild)
MKIDs	Super Conducting						Must cool to milli-K range. Resolving power of 70 not demonstrated.

Jet Propulsion Laboratory
California Institute of Technology