

HabEx Targets pre-screening: Astrometric Measurements

Bertrand Mennesson

Jet Propulsion Laboratory, California Institute of Technology

STDT Meeting JPL, August 3 2016

Copyright 2016 California Institute of Technology. U.S. Government sponsorship acknowledged

The interest of pre-screening

- Other options for SY increase:
- pre-screening of exozodi levels (LBTI, WFIRST, others?)
- coping with binaries (Belikov MSWC etc)
 - Worth noting that RV and astrometric measurements complement and reinforce each other

 use both if possible

The pros of Astrometry

- Stand-alone mass determination
- Works on broader target sample (F stars OK, all inclinations OK)
- Less sensitive to stellar jitter than RV or TSI

Period	$rms(\Delta X)$	$rms(\Delta Y)$	rms(RV) without conv.	rms(RV) with conv.	rms(TSI)
all	0.07	0.05	0.33	2.4	3.6×10^{-4}
high1	0.09	0.06	0.42	1.42	4.5×10^{-4}
high2	0.08	0.05	0.37	1.62	3.9×10^{-4}
low	0.02	0.01	0.08	0.44	1.2×10^{-4}

"Using the Sun to estimate Earth-like planets detection capabilities" (Lagrange et al. 2011)

Breaks mass vs non coplanarity degeneracies in multiple systems

The cons of µas Astrometry

- Micro arcsec astrometry of solar type stars has to be done in space
- Expensive (\$500M)
- Proved difficult in the past

Mission Opportunities: US

- Explorers (MIDEX) call: Draft AO released on July 21, 2016
 - Cost cap likely too low (250M + ELV + any contributions < 100M)
- Probe Class mission concept studies as part of the Decadal survey preparations
 - Upcoming AO release this August
 - NOIs due mid-Sept 2016
 - Full proposals due to NASA mid-Nov
 - Cost range = 400 M to 1B

Mission Opportunities: ESA THEIA (M5)

- THEIA is a µas astrometric observatory
 - Based on a super-stable TMA telescope (0.8m primary and 0.6 deg FoV)
- THEIA addresses 3 main science topics:
 - Dark Matter (small scale structure- Observations of 25 MW dwarf satellites galaxies)
 - Compact Objects (quark stars)
 - Nearby Earths (10% of a 3-year mission):
 - census of ~50 nearby Sun-like stars with 95% completeness for Earth mass planets in HZ
 - Assumes 50 1h visits per star at 0.85 μas accuracy per visit per hour of exposure
- Submitted to 2014 ESA Cosmic Vision call for M4 (cost cap = 440M€)
 - Not selected but positive overall feedback
- Will be re-proposed in October 2016 as M5 candidate (cost cap = 550M€)
- PI: Celine Boehm, Durham University