

# **Starshade Design Considerations for HabEx**

Doug Lisman August 03, 2016

# **Agenda**



**Exoplanet Exploration Program** 

# Key features of JPL's mechanical architecture Retarget propulsion optimization SEP power generation Solar edge scatter



## **Stiff Deployed Structure**



**Exoplanet Exploration Program** 

HabEx <u>preliminary</u> baseline is a 48-m dia. starshade (28-m disc, 10-m petals) for 40 mas IWA. WFIRST baseline is 26-m starshade (10-m disc, 8-m petals) for 72 mas IWA. Configuration shown is for a 10-m disc and 6-m petals.



High deployed stiffness is key for precise deployments and ground testability, with gravity compensation fixtures of manageable complexity.



# **Secondary Payload Launch Opportunity and Scaling**



**Exoplanet Exploration Program** 

A secondary payload can be stacked on top the compactly stowed starshade. It could be an unrelated telescope or a 2<sup>nd</sup> starshade.



Currently available Falcon-9 5-m fairing is short relative to Atlas-V and Delta-IV fairings. Taller Falcon-9 fairings options are planned.

The radial fit in the fairing limits starshade size to about 50-m dia., maybe 60-m.



# **Two-Step Deployment and Early Shape Verification**





Deployed petals and disc are stiff by themselves to enable early verification of shape.



# **Inner Disc Optical Shield Deployment**



**Exoplanet Exploration Program** 

Inner Disc Optical Shield deploys as an origami structure, along with the perimeter truss.

Gores will be of Kapton & Foam sandwich construction and semi-stiff
to make stowing and deploying kinematically repeatable.





## **Launch Restraint and Petal Unfurler**



**Exoplanet Exploration Program** 

Internal launch restraint (e.g., radially inward tensioned cords) is deemed too complex and we now adopt a relatively heavy, but much simpler external design.

Sorry, I have not cleared these images for ITAR

Mass impact is mitigated by jettisoning the module after petals unfurl (no added fuel).



# **Retarget Propulsion Optimization**



**Exoplanet Exploration Program** 

- Solar Electric Propulsion (SEP) is critical for HabEx's large mass and separation distance
- Observation performance is limited by the volume available for propellant (Xenon) inside the central cylinder (2500 kg is a preliminary estimate, <u>but not max possible</u>)
- Observation performance (# targets) is optimal with the right combination of thrust, specific impulse and propulsion dry mass

#### HabEX 4m Telescope Separation Distance (Mm)



Ion thrusters, with higher Isp but lower thrust and higher mass/power, are not advantageous but should be represented on this plot



## **SEP Power Generation**



• A large solar array will cast shadows and thermally deform the starshade.

- An alternative is to integrate thin-film solar cells with the inner disc optical shield.
  - The large area available accommodates the relatively low efficiency of thin-film cells
  - The thin cells (few microns on 25 μm substrate) should not interfere with deployment kinematics
- A 5-m dia. proof of concept model is now in development with the required areal coverage
  - Commercially available, but not space qualified CIGS cells (<u>C</u>opper <u>I</u>ndium <u>G</u>allium di-<u>S</u>elenide)
  - OS will be Kapton & Foam sandwich construction
  - 1 of 4 strings is shown to right on old OS model





# **Limiting Solar Glint**



### **Exoplanet Exploration Program**

- Sharp (< 1µm radius) and dark edges can limit solar glint to less than exo-zodiacal dust
- Flux entering the telescope is dominated by edge segments oriented broadside to Sun
- Stealth edges (high frequency waveform added) reduce flux by ~50X, but require 3-axis pointing
  - 3-axis control is practical for small starshades but much harder for large starshades (need HabEx study)
  - Also need trade study to consider lost benefit of spinning to remove errors that move with the starshade
- Another trade study is to consider diffuse vs. specular surfaces

#### Optical edge chemically etched in amorphous metal





Stealth edges can reduce flux to telescope by at least 50X

To telescope

But, requires 3-axis pointing,

Solar flux scattered to telescope is mostly broadside to Sun

But, requires 3-axis pointing, which may not be practical for HabEx due to large inertia