II IN THE SKY ${ }^{9}$

Shine a light on lunar craters, discover what Mars is made of, measure the impacts of water flowing through a dam, and track a planet-hunting telescope as it phones home. See for yourself how pi can take you to infinity and beyond!

EXPLORE MORE: jpl.nasa.gov/edu

CORE CONUNDRUM

 Planet, including a seismometer int
detects massuakes. By measuring the
vibrations thet travel vibrations that travel across the surface
of Mars and through its interior layers, of Mars and through itis interior las measure the size of Mars' liquid core estimate its density, Knowing the sik
and density of Mars' core wil help and density of Mars' core will help us
learn more about how the planet form how its magnetic field develolopod, and
what materials make ue the core, which what materials make up the core, which will ulimately lead to a betier
understandino of how Earth Uuderstanaing
planets form.
II Mars' Core has a mass of $1.54 \times 10^{23} \mathrm{~kg}$
and a racius of $1,830 \mathrm{~km}$ as measured and a radius of $1,880 \mathrm{~km}$, as measured
by mS ight, what is the density of the corre? How does that compare to the
density of Earth's are which ranes density of Earths core, wnich ranges
from 10 to 13 g/m ${ }^{3}$? What does that
tell us about the makeup of Marcicor cor fiom 10 ot $18 \mathrm{~g} / \mathrm{cm}^{2}$? What does hat
tell us about the makeup of Mars' core LEARN MORE LEARN MORE
mars.nasa.gov/insig

TELESCOPE TANGO
NASA's TESS mission is designed to survey the entire sky in search of exoplanelts, or In itst wo-year primary mission, TES in is wo-year pimary misslon,
identifes more than 2.000 possible
exoplanets and counting.
 fies in a highly eccentric ellipitical orbit, which had never been atiempted before.
This orbit, callec $\mathrm{P} / 2$, minimizes the amo of time that light and heat from Earth and Ane Moon can interfire with data collection And it sill allows the spacecraft to make
close passes by Earth to transmit data about its indings back to scienisists. The spacecraft's 13.7 day orstit has an axis of
376.000 km at apogee and an axis of $37,000 \mathrm{~km}$ at apogee and an axis of
$108,400 \mathrm{~km}$ at perigee. Each downlink tro TESS takes about three hours to complee.
While TESS actually moves at difiererent
speeds throughout its orbit - from 0.5 km at apogee to $4 \mathrm{~km} / \mathrm{s}$ at perigee - if its velociy stayed uniorm, how - many
kilometers would TTESS need to tovel to kilometers would TESS need to
successtuly transmit tits data?
Learn more
LEARN MORE
exoplanets.nasa.gov/tess

