

TT IN THE SKY⁹

Answer Key

Lunar Logic

How much area does one of Lunar Flashlight's lasers cover in a single pulse?

Core Conundrum

What is the density of Mars' core?

Convert km to cm. $1,830 \text{ km} \cdot (100,000 \text{ cm} / 1 \text{ km}) = 183,000,000 \text{ cm} = 1.83 \cdot 10^8 \text{ cm}$

 $V = 4/3\pi r^3$

2. Calculate the volume of Mars' core.

3. Convert kg to g.

 $V = 4/3\pi (1.83 \cdot 10^8 \text{ cm})^3$

Mars' core is less dense.

What does that tell us about the makeup of Mars' core?

Mars' core is made of less dense material than Earth's core.

Dam Deduction

Compute the velocity of the powered outflow.

What is the powered outflow if 1 penstock is open?

1.

 $(1,320 \text{ m}^3/\text{s}) / (1,350 \text{ m}^3/\text{s}) \approx 98\%$

Compute the ratio of powered outflow to total outflow.

a high percentage of total outflow

The potential for environmental impact is high.

stayed uniform? Plug in the values for the semi-major axis (apogee axis/2) and the semi-minor axis

Telescope Tango How many kilometers would TESS need to travel to successfully transmit its data if its velocity

(perigee axis/2) into the equation for the perimeter of an ellipse to find the total distance

$$\sqrt{((3 \cdot 188,000 \text{ km}) + 54,200 \text{ km}) \cdot (188,000 \text{ km})}$$

$$P \approx 820,100 \text{ km}$$
 Divide the downlink time by the time it takes TESS to complete its orbit to find the percentage of the orbit spent sending data back to Earth.

 $0.009 \cdot 820,100 \text{ km} \approx (7,380 \text{ km})$

covered in this time:

Note: There are many ways to solve this problem. One way is to use the Ramanujan

