TI IN THE SKY⁸

Force Field

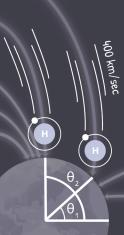
What force does a hydrogen ion at $\pi/4$ radians from the equator observe? What about at the North Pole ($\pi/2$ radians)?

1. Convert microteslas to teslas and kilometers per second to meters per second.

$$60\mu T = 6 \cdot 10^{-5} T$$

 $400 \text{ km/s} = 4 \cdot 10^{5} \text{ m/s}$

2. Enter the known values into the Lorentz force equation and compute.


$$F = (1.602 \cdot 10^{-19} \text{ C}) \cdot (4 \cdot 10^{5} \text{ m/s}) \cdot (6 \cdot 10^{-5} \text{ T}) \cdot \sin (\pi/4)$$

$$F \approx 3 \cdot 10^{-18} \text{ N}$$

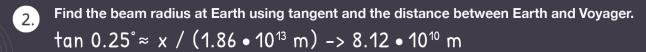
$$F = (1.602 \cdot 10^{-19} \text{ C}) \cdot (4 \cdot 10^{5} \text{ m/s}) \cdot (6 \cdot 10^{-5} \text{ T}) \cdot \sin (\pi/2)$$

$$F \approx 4 \cdot 10^{-18} \text{ N}$$

Does the relative magnetic field agree or disagree with what you'd expect about the location of auroras?

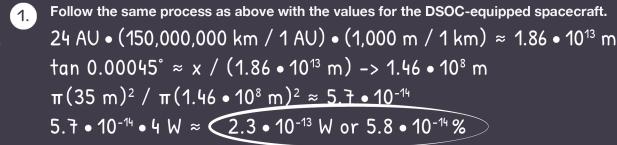
1. Agrees. A larger Lorentz force occurs at the North Pole where the formation of auroras is more common.

TI IN THE SKY8



Signal Solution

What fraction of Voyager's original signal is received by a 70 meter antenna on Earth?


1. Convert astronomical units to meters. $124 \text{ AU} \cdot (150,000,000 \text{ km} / 1 \text{ AU}) \cdot (1,000 \text{ m} / 1 \text{ km}) = 1.86 \cdot 10^{13} \text{ m}$

3. Find the ratio of the antenna area (radius of 35 m) to the signal area. $\pi(35 \text{ m})^2 / \pi(8.12 \bullet 10^{10} \text{ m})^2 \approx 1.9 \bullet 10^{-19}$

What fraction of the signal from a DSOC-equipped spacecraft is received?

By what factor is DSOC more effective?

1. Divide the received wattage of the DSOC spacecraft's signal by that of Voyager's.

2.3 • 10⁻¹³ / 2.3 • 10⁻¹⁸ = 10⁵ or 100,000 times more effective

TT IN THE SKY⁸

Whirling Wonder

How fast, in rotations per minute, do Ingenuity's blades spin?

1. Convert radians to rotations per minute (1 rotation = 2π radians). (250 rad / sec) • (60 sec / 1 min) • (1 rotation / 2π radians) $\approx 2,400 \text{ rpm}$

How does that compare to a typical helicopter on Earth?

Divide Ingenuity rotations per minute by Earth helicopter rotations per minute.
 2,400 rpm / 500 rpm = 4.8
 Ingenuity's blades spin ~ 5 times faster

TI IN THE SKY8

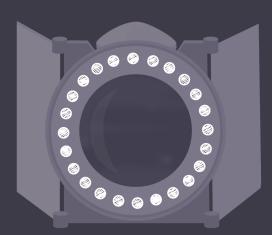
Sample Science

How many pads needed to make contact with Bennu's surface to meet the mission requirement?

. Compute the area of each sample pad.

A =
$$\pi r^2$$

 $\pi (0.75 \text{ cm})^2 \approx 1.8 \text{ cm}^2$


2. Divide the mission requirement for contact with Bennu's surface by the area of the sample pad.

26 cm² ÷ (1.8 cm²/pad)
$$\approx$$
 15 pads

If all 24 pads contacted Bennu, how much asteroid surface area would the contact pads sample?

Multiply the number of pads by the surface area contacted by one pad.

