Hovercraft Challenge

Name:

Challenge - Distance
How far can you make your hovercraft travel before it stops on its own? Try three times.

<table>
<thead>
<tr>
<th>First Run</th>
<th>Second Run</th>
<th>Third Run</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance in cm</td>
<td>Distance in cm</td>
<td>Distance in cm</td>
<td>Distance in cm</td>
</tr>
</tbody>
</table>

What did you do to try to increase your distance? Did it work?

Challenge - Time
How long can you make your hovercraft hover before it comes to a rest on its own? Try three times.

<table>
<thead>
<tr>
<th>First Run</th>
<th>Second Run</th>
<th>Third Run</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>in seconds</td>
<td>in seconds</td>
<td>in seconds</td>
<td>in seconds</td>
</tr>
</tbody>
</table>

What did you do to try to increase your time? Did it work?

Challenge - Speed
How fast can you make your hovercraft move? Measure distance and time. Try three times.

\[
\text{Speed} = \frac{\text{distance}}{\text{time}} = \text{____ cm/sec}
\]

<table>
<thead>
<tr>
<th>First Run</th>
<th>Second Run</th>
<th>Third Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{cm}) (\frac{\text{cm}}{\text{sec}})</td>
<td>(\text{cm}) (\frac{\text{cm}}{\text{sec}})</td>
<td>(\text{cm}) (\frac{\text{cm}}{\text{sec}})</td>
</tr>
</tbody>
</table>

What did you do to try to increase your speed? Did it work?
Hovercraft Challenge

Create an Olympic sport for your
Challenge others to compete
for the Interplanetary cup.

Describe your sport:
What is its objective?
What happens when you play your sport?
What does your playing field look like?
How many teams compete?

What are the rules:

How is the game scored:

How do Isaac Newton’s Laws of Motion apply to your sport?
Could your sport be played on the International Space Station? On the moon? On Mars?

Use the other side of this page for your answers.