Tag Search - All Blogs

Tag Search - All Blogs


Artist concept of NASA's Dawn spacecraft

Dear Dawnniversaries,

On the first anniversary of its departure from Earth, Dawn continues with what it has been doing for most of its time in space: with the greatest patience it is gently reshaping its orbit around the Sun with its ion propulsion system.

In its first year of travels, the spacecraft has thrust for a total of about 253 days, or 69% of the time. Dawn has been in powered flight for 85% of the time since the beginning of its interplanetary cruise phase in December 2007 and about 0.000000005% of the time since the Big Bang. While for most spacecraft, firing a thruster to change course is a special event, it is Dawn’s wont. All this thrusting has cost the craft only 67 kilograms (148 pounds) of its supply of xenon propellant, which was 425 kilograms (937 pounds) 1 year ago.

The thrusting so far in the mission has achieved the equivalent of accelerating the probe by 1.68 kilometers per second (3760 miles per hour). As the preceding log described, because of the principles of motion for orbital flight, whether around the Sun or any other gravitating body, Dawn is not actually traveling this much faster than when it launched. But the effective change in speed remains a useful measure of the effect of any spacecraft’s propulsive work. Having accomplished only one-eighth of the thrust time planned for its entire mission, Dawn has already exceeded the velocity change required by many spacecraft. (For a comparison with probes that enter orbit around Mars, visit the red planet yourself or refer to a previous log.)

Since launch, our readers who have remained on or near Earth have completed exactly 1 revolution around the Sun. (This log, including the date it is filed, disregards that 2008 is a leap year and that Earth actually takes almost 365.25 days to complete one orbit. Oops -- it isn’t being disregarded; in fact, it’s right there in the previous sentence, and the longer this parenthetical text goes on, the more attention is being drawn to it. As it makes no significant difference, we request readers do a better job of ignoring it than the writer is doing. Please return to the flow of the log.) Orbiting farther from the Sun than Earth, and moving at a more leisurely pace, Dawn has not traveled even two-thirds of the way around the Sun. Of course, unlike Earth, when it has completed 1 full circuit (in 2009), it will not be at the same place it started. Earth’s orbit is quite repetitive, but the combined effects of the powerful rocket launch, the extensive ion thrusting, and the gravitational deflection from Mars next February will cause the spacecraft to be farther from the Sun at the end of its first revolution than it was at the beginning.

As readers who have followed the Dawn mission during 2008 know, the spacecraft occasionally engages in activities other than routine thrusting as its adventure progresses. On August 26, mission controllers commanded the primary and backup cameras to execute their calibration routines. This not only served to confirm that both units remain healthy, but it also let engineers verify one of the new features in the software radioed to each camera in April that was not tested at that time.

On September 22, an updated version of a method to establish how much power Dawn’s extraordinary solar arrays can generate was tested successfully. The first test was conducted in July, and it yielded only some of the desired information. The revised procedure was very similar to the earlier one, principally differing in the timing of some instructions and values of parameters based on the analysis of that initial run. Because the entire activity, even including the 41-minute round-trip travel time for radio signals, required less than 3 hours in the middle of the afternoon, among the most significant changes that ever-observant mission controllers detected was that no meals were incorporated into the carefully engineered plan.

As in July, the test included rotating both solar array wings 45 degrees, so they did not point directly at the Sun, thus reducing how much light they received and converted to electrical power. The test was carried out during the spacecraft’s routine weekly interruption in thrusting to point its main antenna to Earth, but the ion propulsion system was commanded into service when it otherwise would have been idle. Its role then was not to provide propulsion (although it did so); rather, it participated because it is the greatest consumer of power onboard. Dawn’s enormous solar arrays, even turned partially away from the Sun and more than 1.66 times farther from the radiant orb than Earth is, were able to provide the 2.5 kilowatts requested by the ion drive at full power. Later in the mission, after all the data have been analyzed thoroughly, the next step in the solar array calibration will be to command the arrays to rotate farther, where they are not expected to be able to deliver all the power requested.

As Dawn begins its second year (as measured back on Earth) of interplanetary flight, the probe steadfastly continues its long journey in the quiet solitude of space, quite isolated from events on or near the distant planet that used to be its home. While no spacecraft has left the vicinity of the Earth-moon system in the year since Dawn’s departure, much has happened there, even as the explorer has remained focused on accomplishing its voyage in deep space. From the first circulation of protons at the Large Hadron Collider 100 meters (330 feet) underground, to the beginning of the Fermi Gamma-ray Space Telescope mission 550 kilometers (340 miles) overhead, to the arrival of SELENE (Kaguya) and Chang’e 1 at the moon, humankind’s thrilling work to understand nature has continued. Apparently there have been some other kinds of news as well, from shocking revelations about celebrities, to competitions among athletes and among politicians, to still more shocking revelations about celebrities, but such information is harder to find, given the news media’s nearly exclusive focus on myriad science topics. (News coverage may be different on your planet.)

Dawn is 374 million kilometers (232 million miles) from Earth, or 980 times as far as the moon and 2.49 times as far as the Sun. Radio signals, traveling at the universal limit of the speed of light, take 42 minutes to make the round trip.

Dr. Marc D. Rayman
4:34 am PDT September 27, 2008

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE

Artist concept of NASA's Dawn spacecraft

Dear Dawnivores,

The Dawn spacecraft continues to make good progress on its adventure to unlock scientific secrets hidden deep in the main asteroid belt, between Mars and Jupiter. Its path to that distant realm of the solar system is now bringing it closer to the Sun, and thanks in part to all the thrusting it has accomplished with its remarkable ion propulsion system, it has recently achieved its lowest speed so far in the mission. To understand this enigmatic behavior, read on!

As most of you who have read about or visited the solar system know, the asteroid belt is much farther from the Sun than Earth is. Dawn passed outside the orbit of Mars in June, but it has not yet traveled far enough from the Sun to reach asteroid Vesta, its first destination. Dwarf planet Ceres, Dawn's second target, resides still farther in the depths of space. So readers with memories that extend as far back as the previous paragraph may wonder why Dawn apparently is backtracking, now approaching the Sun.

Despite the many innovations that make this project so fascinating, the Dawn team has not yet discovered how to travel backwards in time. (If it had, while writing this log, we would be able now to prevent the misspelling that occurred while writing the last log.) To see why Dawn seems to be reversing course, both heading toward the Sun and traveling more slowly now than at the beginning of its mission, we need to consider some of the principles that govern space travel.

Your correspondent offered some comments on these concepts in a log for a different interplanetary mission, Deep Space 1. If not for some unexpected legal issues with certain species in spiral galaxies capable of abstract thought, we would simply reprint that material here. Instead, we shall consider some of the same ideas but with different words.

The goal of this text is to provide only the gist of some of the fundamentals. In an act of selfless charity to help our hungry friends the Numerivores of Q2237+0305, this log will include more numbers than usual. It is not necessary to study them in detail; some readers may find them helpful and others may feel free to gloss over them. In any case, we can provide an absolute guarantee that by the end, with even a casual comprehension of this material, the interested reader would not find even the doctorate level examinations from the prestigious Galactic Institute of Space Travel (known to many as "the prestigious Galactic Institute of Space Travel") to be difficult.

The overwhelming majority of craft humans have sent into space have remained in the vicinity of Earth, accompanying that planet on its annual revolutions around the Sun. The satellites of Earth (including the moon) remain bound to it by its gravity. As fast as they seem to travel compared to residents of the planet, from a solar system perspective, their incessant circling of Earth means their paths through space are not very different from Earth's itself. Everything on the surface and in Earth orbit travels around the Sun at an average of around 30 kilometers/second (67,000 miles/hour), completing one full solar orbit every year. To undertake its interplanetary exploration and travel elsewhere in the solar system, Dawn needed to break free of Earth's grasp, and that was accomplished by the rocket that carried it to space last year. Dawn and its erstwhile home went their separate ways, and the Sun became the natural reference for the spacecraft's position and speed on its travels in deep space.

Despite the enormous push the Delta II rocket delivered (with affection!) to Dawn, the spacecraft still did not have nearly enough energy to escape from the powerful Sun. So, being a responsible resident of the solar system, Dawn remains faithfully in orbit around the Sun, just as do Earth and the rest of the planets, asteroids, comets, and other members of the Sun's entourage.

Whether it is for a spacecraft or moon orbiting a planet, a planet or Dawn orbiting the Sun, the Sun orbiting the Milky Way galaxy, or the Milky Way galaxy orbiting the Virgo supercluster of galaxies (home to a sizeable fraction of our readership), any orbit is the perfect balance between the inward tug of gravity and the inexorable tendency of objects to travel in a straight path. If you attach a weight to a string and swing it around in a circle, the force you use to pull on the string mimics the gravitational force the Sun exerts on the bodies that orbit it. The effort you expend in keeping the weight circling serves constantly to redirect its path; if you let go of the string, the weight's natural motion would carry it away in a straight line (ignoring the effect of Earth's gravity).

The force of gravity diminishes with distance, so the Sun's pull on a nearby body is greater than on a more distant one. Therefore, to remain in orbit, to balance the relentless tug of gravity, the closer object must travel faster, fighting the stronger pull. The same effect applies at Earth. Satellites that orbit very close (including, for example, the International Space Station, less than 400 kilometers from the surface) must streak around the planet at about 7.7 kilometers/second (more than 17,000 miles/hour) to keep from being pulled down. The moon, orbiting 1000 times farther above, needs only to travel at about 1.0 kilometers/second (less than 2300 miles/hour) to balance Earth's weaker grip at that distance.

Notice that this means that for an astronaut to travel from the surface of Earth to the International Space Station, it would be necessary to accelerate to quite a high speed to rendezvous with the orbital facility. But then once in orbit, to journey to the much more remote moon, the astronaut's speed eventually would have to decline dramatically. Perhaps speed tells an incomplete story in describing the travels of a spacecraft, just as it does with another example of countering gravity.

A person throwing a ball is not that different from a rocket launching a satellite (although the former is usually somewhat less expensive and often involves fewer toxic chemicals). Both represent struggles against Earth's gravitational pull. To throw a ball higher, you have to give it a harder push, imparting more energy to make it climb away from Earth, but as soon as it leaves your hand, it begins slowing. For a harder (faster) throw, it will take longer for Earth's gravity to stop the ball and bring it back, so it will travel higher. But from the moment it leaves your hand until it reaches the top of its arc, its speed constantly dwindles as it gradually yields to Earth's tug. The astronaut's trip from the space station to the moon would be accomplished by starting with a high speed "throw" from the low starting orbit, and then slowing down until reaching the moon.

The rocket that launched Dawn threw it hard enough to escape from Earth, sending it well beyond the International Space Station and the moon. Indeed, the spacecraft is now more than 1 million times farther away than the station. Dawn's maximum speed relative to Earth on launch day was so high that Earth could not pull it back. As mentioned in an earlier log, Dawn was propelled to 11.46 kilometers per second (25,600 miles per hour), well in excess of the space station's orbital speed given 3 paragraphs above. But it remains under the Sun's control.

If the spacecraft had never operated its ion propulsion system, it would have coasted away from the Sun (even while Earth continued circling the Sun on its own), slowing down the entire time, reaching the top of its interplanetary arc on July 2, 2008. Then, at almost 242 million kilometers (150 million miles) from the Sun, as it succumbed to the massive star's pull, it would have begun its inward fall.

Many solar system residents find measuring distances in millions of kilometers (or miles) to be inconvenient, so it is common to use the "astronomical unit" (AU). The average distance between Earth and the Sun, nearly 150 million kilometers (93 million miles) is defined to be 1 AU. So Dawn would have reached almost 1.62 AU from the Sun without thrusting.

After that, the probe would not have fallen all the way back to the Sun, ending in a useless blaze. Because it departed from Earth, which was already orbiting the Sun, and not from a stationary platform, it began with energy adequate to keep it at Earth's orbit. Upon allowing the Sun to pull it back, it would come only to about that same orbit, reaching a minimum distance of 1.00 AU from the Sun on April 1, 2009. So Dawn would have been in an elliptical solar orbit, ranging from 1.00 AU to 1.62 AU. It would have traveled faster and faster as it swooped to its smallest distance and then slowed down again as it sailed back out to the largest distance, much like a person on a swing, slowing near the top, speeding through the lowest point, and then repeating that pattern. The change in speed with distance is an essential characteristic of all orbits.

Now think again of the ball you throw. If it had a tiny propulsion system to help it along its way, that extra boost would propel it higher, supplementing the energy you imparted to it when it left your hand. Unlike a powerful rocket that accelerates as it ascends, if the additional thrust were low, it might not be able to completely counter the slowing from Earth's gravity, but it might help reach a higher altitude before beginning its fall.

As Dawn's famously efficient ion propulsion system has given it a delicate but steady push on its flight away from the Sun, the spacecraft has been able to resist the Sun's incessant pull longer. Instead of turning back in early July, Dawn flew outward until August 8. Even with all the thrusting, it was constantly slowing down, and when the Sun's gravity overwhelmed it, it began its inward flight. But by then the ion thrusting had changed the shape of its elliptical orbit so it would not fall back as far as Earth's orbital distance. If it undertook no more thrusting after August 8, it would come back only to 1.16 AU from the Sun, reaching that distance on June 14, 2009. As we will see in future logs, it will not have the opportunity to drop even that close to the Sun however, because ion propulsion continues modifying its orbit. In addition, on approximately February 18, 2009 (the exact date and time depend on the progress of future thrusting), the probe will pass by Mars, and the gravitational deflection will cause still more changes to its orbit around the Sun, which eventually will take it to the asteroid belt.

On September 27, 2007, some 2 minutes after it had separated from its rocket, Dawn reached its highest speed relative to the Sun for the entire mission. At that time, it was traveling at about 38.95 kilometers/second (87,130 miles/hour). Earth (and its residents, including this writer) were moving around the Sun at the more leisurely pace of 29.70 kilometers/second (66,440 miles/hour).

So what has been the effect of Dawn's thrusting since then? By August 8 it had expended about 55.4 kilograms (122 pounds) of xenon propellant, some for tests during the initial checkout phase of the mission and most with the specific intent of altering its orbit around the Sun. If this were solely for the purpose of accelerating (as it is usually described, in these logs and elsewhere) without the complex patterns involved in orbital dances, the effect would have been to increase Dawn's speed by 1.38 kilometers/second (3090 miles/hour). But because of the way forces and velocities work in space travel, in pushing Dawn away from the Sun, allowing it to travel "higher" before the Sun pulled it back, the ion propulsion system helped Dawn continue away from the Sun until, on August 8, it was more than 1.68 AU from the master of the solar system. By then, its speed had fallen to 20.77 kilometers/second (46,460 miles/hour). At the same moment Dawn was orbiting the Sun at that rate, distant Earth was racing in its orbit at 29.38 kilometers/second (65,710 miles/hour).

When Dawn began coming back in toward the Sun, it was in a different part of the solar system from where it would have been had it never applied its ion propulsion system to so patiently yet persistently change the orbit the Delta rocket left it in. In the absence of any ion thrusting, the spacecraft would have been 0.45 AU (68 million kilometers or 42 million miles) away from its actual location on August 8.

Dawn will rendezvous with Vesta in about 3 years. To match that asteroid's orbit around the Sun, our robotic explorer will have to continue tuning its orbital parameters so that it will be almost 2.3 AU from the Sun while traveling at about 20 kilometers/second (45,000 miles/hour), farther and slower than its current orbit or that of its quondam planetary domicile.

Achieving the required speed and distance alone is not enough to ensure Dawn can slip into orbit around Vesta, but we will consider other aspects of this problem in a future log. In the meantime, we can think of the general problem of flying elsewhere in space as similar to climbing a hill. For terrestrial hikers, the rewards of ascent come only after doing the work of pushing against Earth's gravity to reach a higher elevation. Similarly, Dawn is climbing a solar system hill with the Sun at the bottom. It started from Earth, at 1 AU in elevation; and its first rewards await it higher up that hill at 2.3 AU, where Vesta, traveling at only about two thirds of Earth's speed, keeps its records of the dawn of the solar system. Ceres is still higher up the hill, moving even more slowly to balance the still-weaker pull of the Sun.

If this were only a climb, it would be easy to stop at the correct spot on the solar system hill. This simple analogy fails us here though, because everything is in orbital motion. With a big enough rocket, or gravitational boosts, it would not be difficult to throw Dawn hard enough that it would fly out to Vesta or beyond, and some other spacecraft have coasted past that distance from the Sun. But to enter orbit, Dawn must precisely match Vesta's path around the Sun, joining it for a portion of the asteroid's regular 3.6-year circuit around the Sun, just as Earth's natural and human-made satellites stay with it throughout its 1-year orbit. That is part of the reason the spacecraft needs ion propulsion. The ion propulsion system allows Dawn not only to carry its scientific instruments up that hill but also to "stop" on the slope, neither falling back toward the Sun nor coasting by the asteroid. When a subsequent log addresses what more is required than speed and distance, we will see why this is more difficult than it may appear. (And as we surely will have a link from that log to this one, on behalf of all present readers, we send greetings from the past to you future readers.) We are confident that in meeting this great challenge, should Dawn remain healthy, it will be a shoo-in in the next solar system Olympics, aiming not for a bronze medal, nor for one of silver or gold but rather for the most highly coveted: the xenon medal.

We promised near the beginning that for those who completed this arduous log (perhaps a challenge even greater than Dawn's interplanetary journey), the examinations at the prestigious Galactic Institute of Space Travel would not prove difficult. The reason is simple: there is no such organization; we made it up. Nevertheless, following Dawn's long and ambitious journey does not require mastery of the concepts touched upon here. All that really is needed is the desire to learn more about the cosmos, to share in one of humankind's bold adventures to explore the unknown as we set our sights on extraordinarily distant goals and aspire to something well beyond the confines of our humble home in the universe.

Dawn is 352 million kilometers (219 million miles) from Earth, or 955 times as far as the moon and 2.33 times as far as the Sun. Radio signals, traveling at the universal limit of the speed of light, take 39 minutes to make the round trip.

Dr. Marc D. Rayman
9:30 pm PDT August 24, 2008

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE

Artist concept of NASA's Dawn spacecraft

Dear Dawnminants,

Dawn continues its flight through the solar system with all systems functioning well. It is vitally important that the spacecraft is reliably staying on course and on schedule, gently and steadily thrusting with the bluish glow of its ion propulsion system; yet that doesn't lend itself to the sorts of spine-tingling, heart-pounding, hair-raising, planet-shattering logs for which Dawn is famous (at least among immigrants from brown dwarf systems reading these reports in the vicinities of active galactic nuclei). So let's turn out attention to consider a particular aspect of flying a mission with ion propulsion.

We crave power!!

Perhaps that requires a bit more detailed consideration...

Engineers are developing a method to determine how much power the solar arrays can produce. It might seem odd that with the spacecraft having been in interplanetary flight for 10 months, engineers don't already know the answer. (Other facts might seem odd as well, such as the phrase "nihil ad rem" being in this sentence. This log will address only one oddity however.)

When the spacecraft was at Earth's distance from the Sun, shortly after launch, the solar arrays would have been able to supply more than 10 kilowatts, enough to operate about 10 average homes in the US (and nearly as much as your correspondent's cat Regulus generates when Mr. Vacuum Cleaner emerges from his closet). Dawn cannot use that much electrical power, but as it pushes deeper into space, the weaker illumination by the Sun will yield less power. The craft's two solar array wings, each about 2.3 by 8.3 meters (more than 7 by 27 feet), were designed to be large enough to meet the needs of the power-hungry ion propulsion system plus all other spacecraft systems even in orbit about dwarf planet Ceres. To thrust at nearly twice Mars' average distance from the Sun, Dawn carries the most powerful solar arrays ever used on an interplanetary mission.

The only way to measure the power of the arrays is for the spacecraft actually to pull the power from them, and its ability to do that is limited. When thrusting at full throttle and using all systems normally, Dawn consumes 3.2 kilowatts. Even now, traveling farther from the Sun than Mars ever ventures, the solar arrays can provide about 4 kilowatts. If the spacecraft activated all of its nonessential components, it still could not draw this much power. That leaves engineers without an accurate determination of the full potential of the arrays.

Of course, engineers thoroughly tested the electrical power system before launch, including each of the 11,480 solar cells and all other components, and from that they constructed a mathematical simulation of the arrays. But laboratory measurements do not perfectly reproduce conditions in space, so the computational model has some uncertainty. In-flight measurements are needed to improve their simulation of how much power the solar arrays can furnish at different distances from the Sun.

Who cares how much power is available? Well, first and foremost, our readers do! After all, you've gotten this far (and even farther right now) in this log, so you must have some reason for spending otherwise good time reading about the solar arrays. The Dawn project appreciates your interest, and we want to provide the information you apparently seek, even though we have no idea why you suddenly are eager to understand the solar array performance.

As it turns out though, there is another reason for establishing the true capability of the solar arrays. As explained in many (but fewer than 10,001) previous logs, Dawn's unique mission is possible only through the persistent use of its ion propulsion system. Rather than thrusting for minutes, as most spacecraft do, Dawn will thrust for years. As power diminishes in the dim depths of space, Dawn must throttle its ion thruster to lower power (and lower thrust) levels.

Because the throttle level depends on how much power is available, to formulate the details of the craft's trajectory and other plans for the mission, engineers require knowledge of how much power the arrays will provide at any distance from the Sun. After all, it is misleading to think of ion thrusting as an ion propulsion subsystem function; rather, it is a spacecraft system function, requiring most subsystems to operate together. Apart from the inevitable (and quite unpredictable) glitches and anomalies on the spacecraft and appearances of cake in mission control, and contrary to many people's preconceived notions, since well before launch the greatest technical uncertainty in the planning of Dawn's flight has been what the solar array power will be. So far, mission engineers have incorporated a reasonable, but conservative, estimate into the solar array simulation, but to refine the plans, they need to verify or correct the numbers.

Although the arrays produce more power than can be measured now, they would produce less power if they were not pointed directly at the Sun. That could reduce their output low enough to allow the spacecraft to draw as much power as the arrays could generate in that orientation, providing the calibration measurement that is needed. (Engineers would extrapolate to reveal how powerful the arrays would be when Sun-pointed at different distances.) As is usually the case in controlling interplanetary spacecraft, the details make such a test much less simple than it might appear at first blush.

With the normal switching of heaters on and off throughout the spacecraft, the total power consumption fluctuates, and that could add "noise" to the data, making the results harder to interpret and less accurate. If the spacecraft tried to draw more power than the solar arrays could produce, the battery would temporarily make up the difference but, depending upon the circumstances, protective software onboard would intervene to turn some systems off and place the spacecraft in safe mode. While that would not threaten the health of the spacecraft, it would threaten the solar array calibration. (By the way, the battery can store only enough energy to operate the spacecraft for about an hour. The solar arrays keep it charged for its occasional use.)

The solar array calibration working group (a runner up in the highly competitive Least Cool Dawn Team Name Contest) devised a method to calibrate the solar arrays that accounted for all these and many other considerations, including the solar panel thermal equilibration time and the dependence on temperature of the power vs. voltage curve, high voltage down converter phase margin, the solar array voltage set point, power processor unit undervoltage trips, the voltage-temperature control loop for the battery on the low voltage bus, and spacecraft safety even in the event of an unrelated anomaly during the test.

While conceptually simple (rotate the solar arrays by a certain angle and measure how much power the spacecraft can draw), the calibration proved complex enough that a somewhat simplified test was deemed appropriate. The objective was to verify how the spacecraft would operate in the test conditions before committing to the full calibration. The plan was to execute the test on July 21, and if everything went perfectly, the final version would be attempted the next day. Last year, when the planning for this began, it was decided to schedule a backup opportunity late in 2008 in case the first time did not yield the desired data. (In addition, the calibration will be repeated occasionally over the course of the mission to monitor changes in the solar array characteristics, ensuring the power predictions remain accurate.)

Because electrical power is essential to the operation of all subsystems, a test of this nature calls for all subsystem personnel to scrutinize spacecraft telemetry for symptoms of unpredicted and infelicitous behavior. All commands were contained in a single file transmitted to the spacecraft, and immediate intervention would not be physically possible, as radio signals revealing the condition of the spacecraft would take nearly 18 minutes to reach Earth, and commands sent in response would require the same time to travel back to the spacecraft. Nevertheless, the team needed to be prepared to take action in the very unlikely case a problem developed, so two key measures were put in place: all stations in mission control were at the ready, and pizza was provided to help fill the gaps in this early-evening test while radio signals raced across the solar system.

The result: overall the test went well, although there was unexpected spacecraft behavior and unexpected toppings on the pizza. For the former, no response was required by the flight team, as the spacecraft executed all the commands correctly and returned to its normal configuration at the end. The test yielded only a partial set of calibration data however, apparently because some of the reconfigurations of the electrical power system and the ion propulsion system for the purposes of the test led to a few responses that were not anticipated. The spacecraft transmitted a large volume of supporting data, which will take longer to digest than the pizza, and when the satiated engineers have finished, they will determine what modifications to make for a new test. A future log will describe the next test and any corresponding changes in the food delivered to mission control.

Turning their attention on July 22 to a different topic, the team modified software in one of the many computers onboard. In January, with neither permission nor warning, a subatomic particle traveling through the solar system hit a sensitive electronic component on the spacecraft, triggering a quick sequence of events that culminated in the spacecraft entering its safe mode. Since then, programmers have developed a way to prevent space radiation that reaches that particular circuit from having the same effect. With the updated software, now the only consequence would be a notice to controllers that the device was hit, and the spacecraft would not need to enter safe mode or interrupt its activities.

The solar array test and the software change were conducted during a planned 2-day pause in thrusting. On schedule on July 23, Dawn resumed propelling itself with xenon ions. Once again the special lights adorning a wall in mission control were turned on, emitting a blue glow to remind everyone who visits or works there of the probe's patient pursuit of intriguing and unexplored worlds in the asteroid belt.

As Dawn travels through space, Earth and the Sun grow more remote. Although the journey will never bring it near the part of the solar system it used to consider home, we will see in the next log that its path to Vesta and then to Ceres is not as direct as some might expect. As part of the explanation, the log also may reveal something about this mispelling.

Dawn is 324 million kilometers (202 million miles) from Earth, or more than 885 times as far as the moon and 2.14 times as far as the Sun. Radio signals, traveling at the universal limit of the speed of light, take 36 minutes to make the round trip.

Dr. Marc D. Rayman
8:30 pm PDT July 27, 2008

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE

Artist concept of NASA's Dawn spacecraft

Dear Dawnlettantes,

Now using an ion thruster that had been powered off since October, Dawn continues to make steady progress on its journey deeper into space. In this phase of the mission, each day of thrusting changes the probe's speed by 6.7 meters/second (15 miles/hour). Dawn will operate its ion thrusters for a total of more than 5 years, providing the extraordinary boost required to orbit both main belt asteroid Vesta and dwarf planet Ceres in the quest to understand the dawn of the solar system. Some readers may be reminded of the prophetic sagacity of Tardigrade the Celeritous, who, with uncanny prescience (and, at the time, abstruseness), is believed to have said that the journey of 11 kilometers/second (25,000 miles/hour) begins with a single day of thrusting.

The spacecraft is outfitted with 3 ion thrusters but will never use more than 1 at a time. In October and November, during the initial checkout phase of the mission, all 3 thrusters were tested and confirmed to be healthy and ready for operation. Following the flight plan, thruster #3 was the first to propel the craft in its interplanetary cruise phase, which began on December 17.

In the 184 days from the beginning of interplanetary cruise until ion thruster #1 took over, thruster #3 operated for a total of 149 days, flawlessly changing Dawn's orbit around the Sun. Each week the thrust was turned off for a few hours when the spacecraft turned to point its main antenna to Earth, and a few days every month or so have been devoted to other, non-thrusting activities. (Readers are encouraged to review the logs posted since December to remind themselves of such activities. That might yield an unexpected reward, as it may now be revealed that the text of those logs contains a highly encrypted message with information of astonishing import. If you find it, please let this writer know, as he has absolutely no idea what it is!)

The effect of thruster #3's operation during this mission phase was to change the spacecraft's speed by about 0.99 kilometers/second (2200 miles/hour). Thanks to the exceptionally high efficiency of the ion propulsion system, Dawn's solar system xenon footprint in accomplishing this was less than 40 kg (87 pounds). (Note also that its carbon footprint was 0.)

Switching from one thruster to another is simple (to the extent that anything is simple for early 21st century humans controlling a spacecraft in deep space). The potential complication in this case was explained in the previous log. Our readers survey (conducted by Telepathic Business Services, Inc. when their employees had time between major poker competitions) shows that 3 readers do not fully recall the details and will not refer to that log, so the issue is summarized here. The 3 ion thrusters point in different directions on the spacecraft. To provide thrust in the correct direction in space, Dawn has to rotate to aim the designated thruster in that direction. The use of thruster #1 now requires the craft to assume an orientation quite different from any that had been experienced before, and engineers were not confident certain components would remain within their required temperature limits when the Sun shone on them.

Last month's test, in which the spacecraft spent a few hours pointing in the required direction, provided some of the data needed to establish when it would be safe to commit to the use of thruster #1 for long periods of time. The results agreed with previous analyses, which had shown that all the components would remain in their prescribed temperature ranges if thruster #1 were put to use this month. Probably.

Probably? That "probably" was not good enough. Ever-cautious mission controllers were not sufficiently confident to let the spacecraft remain in the new orientation for a week at a time, because there were a few components whose temperatures still could not be predicted well enough. The analyses were conclusive that the temperatures would be safe for more than 24 hours, as it takes a long time for that hardware to heat up. Therefore, the team devised a new approach.

A typical set of commands for 5 weeks of operation with thruster #1 was formulated. In addition, engineers prepared instructions for storage onboard to stop thruster #1, rotate to the thruster #3 orientation, resume thrusting, and perform all the other associated functions, the description of which is precluded by laws on profoundly incomprehensible prose. (While such laws are applicable only in the vicinity of supermassive stars, we obey them out of consideration for such regions of our distribution.) The instructions were structured so that only a single, brief message from Earth would be needed to trigger the switch back to thruster #3. On June 18, the spacecraft turned from pointing its antenna to Earth to aim thruster #1 in the correct direction and initiated thrusting.

A Deep Space Network antenna that was available was scheduled to listen in to the spacecraft on June 19. Dawn was programmed to use one of its small antennas, with a very broad radio beam, to transmit temperature measurements.

Dawn's terrestrial team members receiving the data found the results to be much as expected. As predicted, the temperatures had not yet stabilized, and all were within the desired ranges. When they had about two hours of measurements in hand, engineers were able to predict with high confidence what the final temperatures would be. This confirmed that continued operation was safe, so there was no need to switch back to thruster #3. (Providing the spacecraft with the capability to make that decision, while that might seem pretty neat, would have required more work than the neatness would have merited.)

As some may recall from long, long ago (to be specific, 8 paragraphs ago), several days of coasting are included in the flight plan occasionally. Activities for some of those times are planned long in advance. Other such periods are held in reserve in case mission controllers identify the need for some previously unplanned work that could not be accommodated in the normal schedule. June 16 - 18 was one such interval. The mission has been going so smoothly, however, that no special activities were required then. The team did take advantage of the extra time that the primary antenna was pointed to Earth to clean up some file buffers and perform other maintenance on some of the spacecraft's computers.

With the mission continuing so well, the Dawn team can devote much of its attention to preparing for future events. Although the Dawn project has no specific plans, readers may rest assured that the team members, as with their fellow residents of Earth, are completing personal plans to commemorate the centennial of the Tunguska event on June 29 (the event occurred on June 30 in Siberia's time zone).

The next item of interest occurs on June 30, when the spacecraft exceeds the outermost reaches of the orbit of Mars; the probe will be farther from the Sun than that planet ever travels. Earth reaches its greatest distance from the Sun on July 4, when it will be almost 1.7% farther than its average distance. (On January 2, it was about 1.7% closer than average.) Then even as Earth begins a slow fall toward the Sun (a trend that will continue until next January), Dawn will continue its climb outward. On July 10, the robotic explorer will be twice as far from Earth as Earth will be from the Sun. At that time it will be 304 million kilometers (189 million miles) from the planet it left on a lovely dawn in September 2007.

At these extraordinary distances, humankind (and even some of our other readers) does not have the technology to see the spacecraft. Indeed, Dawn is barely discernible in a pair of portraits taken when it was more than 300 times closer to Earth. Yet some who follow the mission might enjoy gazing in the direction of the probe as they contemplate its journey deeper into space and the ambitious and exciting mission that lies ahead. For those in the continental United States, the spacecraft will be between 3° and 5° northeast of the moon in the evening of July 6 as the moon is approaching the western horizon. (In other words, Dawn will appear to be 6 to 10 times the moon's diameter away, north and higher in the sky.) Although quite invisible to your eyes, in that direction your mind may be able to see with great clarity one of your planet's envoys to the cosmos. With a blue-green trail of xenon ions behind it and appointments with distant, uncharted, alien worlds ahead of it, Dawn will be silently and contentedly carrying out its mission to extend our reach into space and to help fulfill our passionate search for knowledge and our yearning for adventure.

Dawn is 286 million kilometers (178 million miles) from Earth, or more than 760 times as far as the moon and 1.88 times as far as the Sun. Radio signals, traveling at the universal limit of the speed of light, take 32 minutes to make the round trip.

Dr. Marc D. Rayman
10:00 pm PDT June 26, 2008

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE

Artist concept of NASA's Dawn spacecraft

Dear Pseudawnyms,

The Dawn mission continues smoothly, as the spacecraft reliably thrusts with its ion propulsion system, demonstrating all the patience of a -- well, of an ion-propelled spacecraft! In the 243 days since launch, the probe has thrust a total of almost 143 days. While only around 7% of the total thrusting it will do in its mission, this figure represents vastly more powered flight than any spacecraft that uses conventional chemical propulsion would be capable of. In all this time, the ion thruster has consumed less than 38 kilograms (83 pounds) of xenon propellant but yielded a change in the spacecraft's speed of 0.93 kilometers per second (2100 miles per hour).

In most months this year, Dawn's flight profile includes a few days of coasting so mission controllers can conduct special activities. The spacecraft was asked (and, of course, it politely complied) not to resume thrusting after its weekly communications session with faraway Earth on May 12. While some members of the team were conducting a 3-day workshop to prepare for the complex program of scientific measurements to be conducted at Vesta in 2011 and 2012, the spacecraft conducted other work.

To ensure that certain backup memory locations remain uncorrupted by space radiation (or by undesirable social practices on some planets far from the plane of the Milky Way galaxy), engineers occasionally will check the memory contents. If errors were found, they could be corrected so that if the spacecraft ever had to call upon backup memory, the data there would be intact. As expected, all the tests verified that the memory was in perfect condition.

Some of the time in this period was devoted to the mission's first periodic maintenance on components of the attitude control system. This system's name may be misleading, as it has displayed a most decorous style in working both with its fellow spacecraft systems and with its human colleagues. In this case, "attitude" denotes the probe's orientation in the weightless conditions of spaceflight.

The spacecraft carries 4 reaction wheels, gyroscope-like devices which, when electrically spun faster or slower, rotate (or stop the rotation of) the spacecraft. Only 3 wheels need to be operated at a time; as with most components, Dawn has backups so the mission may continue even if a unit experiences problems. Wheel #4 (known to the irreverent but creative flight team as "wheel #4") was powered off during the initial checkout phase of the mission last year, but now it is wheel #3's turn to be the backup, and the switch was made during this coast period.

For most of the mission, the attitude control system's gyroscopes are not powered, as they are not designed to operate for the duration of the 8-year flight. These devices, not to be confused with the reaction wheels, help achieve the accurate pointing needed by the camera and the visible and infrared spectrometer to uncover mysteries of asteroid Vesta and dwarf planet Ceres. The intricate mechanisms have to be operated occasionally, so they were activated and allowed to run for about 2 days.

All of the ion thrusting since the beginning of the long-term interplanetary cruise phase has used ion thruster #3. Now thrust in a specific direction in space is required to reach Dawn's celestial targets. The ion thrusters point in different directions on the spacecraft, so the orientation (if not the attitude) of the spacecraft during thrusting depends on which thruster is selected. To point thruster #1 on the bearing needed for thrust would cause the Sun to illuminate a part of the spacecraft that has not yet been exposed to direct light from that star. (Of course, many other stars have shone on that portion of the craft, and while many of them are brighter than the Sun, we may resort to the narrow perspective of our solar system readers and discount those stars because of their extraordinary remoteness.) Flight controllers have complex computer programs to predict the temperatures under such conditions, but as sophisticated as these tools are, their accuracy is not always sufficient. The typical duration of a set of thrust instructions is 5 weeks, so before committing the spacecraft to spending so long in this unfamiliar orientation, a half day was devoted to measuring the temperatures at two orientations representative of what would be required for thrusting with thruster #1. Engineers now are using those data to refine the predictions for what the temperatures would be when thrusting.

On May 14, having accomplished all its special activities, the spacecraft resumed ion thrusting. Since then, it has continued with its normal routine of only short suspensions of thrust each week for pointing its main antenna to Earth.

As Dawn continued devoting its attention to its flight through deep space, the operations team recognized some other noteworthy events elsewhere in the very same solar system. Among the other spacecraft conducting exciting and important investigations of the cosmos, Phoenix had a particularly thrilling time on May 25 with its descent through the Martian atmosphere and its wonderfully successful landing in the far northern plains of the fourth planet from the Sun. Curious as it may seem, while their spacecraft are 56 million kilometers (35 million miles) apart, the Dawn and Phoenix teams at JPL are only 2 floors apart in building 264. (We appreciate that you readers in a small, faint, lenticular galaxy in Sculptor have a particular fondness for this building's impressive designation). Now that Phoenix is beginning the scientific part of its mission, along with space enthusiasts everywhere we congratulate the Phoenix team, many of whom are our friends and colleagues, on this superb accomplishment.

On the same day, we remembered Dr. Ernst Stuhlinger, who died at age 94. He played an important role in the long development of ion propulsion, making valuable contributions as early as the 1950s. He followed Deep Space 1 (the first mission to use ion propulsion for interplanetary flight) and Dawn with great interest and was most gracious in his expressions of enthusiastic support for both missions. His many kind words about these ambitious and challenging projects meant a great deal to your correspondent, a lifelong space enthusiast, who knew of Dr. Stuhlinger's work even as a youngster studying the space activities of 20th century humans.

Quite unaware of those news items, the spacecraft patiently travels farther from both Earth and the Sun. During this part of its mission, it recedes from its former home much faster than it does from the Sun. Tomorrow, on May 28, it will be equidistant from the two. Dawn will be 244 million kilometers (152 million miles) from Earth and from the Sun. With the planet 152 million kilometers (94 million miles) from the star, the trio forms an aesthetically symmetrical triangle. If the distance from the Sun to Earth were 1.00 units, the other two sides of the triangle each would be 1.61 units. Geometers call such a shape an "isosceles triangle," whereas some young male residents of the constellation Triangulum call it a "hot babe."

To keep apprised of Dawn's current location, be sure to visit the cool new feature "Where is Dawn Now?" at http://dawn.jpl.nasa.gov/mission/live_shots.asp. The site includes depictions not only of the craft's trajectory and location but also of its attitude (that is, its orientation; visualizations of its behavioral manner and emotional state have not been implemented yet), allowing readers to achieve greater accuracy in their enactments of Dawn whenever they have access to the World Wide Web.

Dawn is 243 million kilometers (151 million miles) from Earth, or 630 times as far as the moon and 1.60 times as far as the Sun. Radio signals, traveling at the universal limit of the speed of light, take 27 minutes to make the round trip.

Dr. Marc D. Rayman
10:00 pm PDT May 27, 2008

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE

Artist concept of NASA's Dawn spacecraft

Dear Dawnocrats, Republidawns, and Indawnpendents,

Dawn continues its powered flight, having accumulated more than 100 days of ion thrusting since its launch nearly 7 months ago. All systems are healthy as the probe patiently and persistently propels itself through the solar system.

In addition to its weekly hiatus in thrusting to point its main antenna to Earth for about 6 hours, Dawn's flight plan includes occasional longer intervals to conduct special activities. On March 31, the spacecraft stopped its ion beam, turned to Earth, reported on its activities from the previous week, and indicated its readiness (even eagerness!) for whatever plans mission control had devised. This period, scheduled well before launch, was planned to last 10 days.

To begin, the team loaded into the spacecraft's main computer updated software that simplifies operation of the science instruments. Such "science blocks" had already been used in the mission, but with the experience gained from the tests of the instruments in the initial checkout phase, the team made some improvements. After thorough testing with instrument simulators, the modified science blocks had been deemed ready for installation on the spacecraft. They were used during the rest of the week, as each of Dawn's science instruments received special attention.

With some of the updated blocks, operators powered on the gamma ray and neutron detector (GRaND) (whose name belies its unassuming demeanor) and let it collect data for about a week. GRaND is designed to measure radiation from Vesta and Ceres to reveal the chemical elements that compose the outermost material of these protoplanets. As described during the first test of GRaND after launch, gamma rays and neutrons will reach the instrument not only from the targets it wants to investigate but from elsewhere as well. Initially these signals were used to verify GRaND's health. Now scientists want to collect more such data to begin developing an accurate record of the effects of this omnipresent radiation. One part of analyzing the signals from the asteroids will be removing the "noise" that GRaND detects from cosmic rays, so it is essential to know its characteristics.

While the science blocks streamline the process of sending instructions through the main spacecraft computer to the instruments, the instruments themselves have internal computers and software as well. Updated versions of the software for the science cameras were passed through the spacecraft computer and installed in the cameras' computers. The new software includes capabilities that had been planned before launch but were not needed for earlier tests, and it corrects minor bugs (yes, some bugs are hardy enough even to survive extended periods in deep space) discovered during those tests.

After the software was loaded into the primary camera, operators commanded the instrument through a "minicalibration" to verify that the installation was successful. Upon completion of the work with the primary camera, they conducted all the same steps with the backup camera. The two cameras are essentially identical, so they received the same software. They are recognized by the spacecraft computer as distinct devices though, and they are not operated simultaneously, so to route software to both of them required executing the loading procedure twice.

The team also conducted new calibration tests of the visible and infrared mapping spectrometer (VIR). The unit displayed excellent performance in the initial checkout phase, but as with most complex instruments, many tests are required in order to characterize its performance fully. For this calibration, the spacecraft pointed VIR to the star Canopus. From Earth, the only stars that appear brighter are the Sun and Sirius, but Canopus is a familiar sight to many observers besides those who are far enough south to see it from Earth. Canopus is one of the intrinsically brightest stars for hundreds of light years, shining brilliantly in the skies of many planets in this neighborhood of the Milky Way galaxy. When the measurements of Canopus were complete, Dawn rotated to aim VIR at Mars. At a distance of more than 55 million kilometers (34 million miles), that was the closest planet to the spacecraft. Too distant to be observed with any detail, the red planet provided a good infrared signal for testing the instrument.

Turning their attention away from the instruments, operators loaded the latest version of software to the backup main computer. Software version 7.0.3 was installed in the primary main computer on February 15, and the same update now resides in the primary and backup locations of the backup computer, ready to be used if the spacecraft detects a serious problem with the primary computer.

The last planned activity of this period was a test of how accurately ion thruster #2 can be pointed. (The naming convention for the thrusters is explained in text in a previous log. For an enjoyable explanation in another medium, see a performance of the new and popular Dawn pas de trois.) Such tests were conducted for the other 2 thrusters when they were checked out during the month after launch. This test was not run with #2 because the spacecraft was still too close to the hot Sun even in November when thruster #2 was put through all of its other tests. (The different positions of the thrusters on the spacecraft means they experience different temperatures when they are operated.) There was no urgency in making this measurement, so it was postponed to this convenient opportunity.

On April 8, the spacecraft oriented itself as required for the test. Executing the same steps it always does to start a thruster, this time the ion propulsion system's computer controller detected a potential problem and halted thruster operation. Because of the orientation of the spacecraft, the radio signal received on Earth was so weak that data could be returned only very very slowly. Mission control saw an indication that the onboard controller had stopped the thruster, so they radioed new instructions to end the test and turn to point the main antenna to Earth. Meanwhile, when an onboard system found that there was no thrust, it issued different instructions to accomplish the same ends: stop the rest of the test and aim the antenna at Earth. Either set of instructions would have worked, but the computer trying to process both sets led to a conflict, so it responded by entering "safe mode."

Safe mode is a standard response designed into the software to deal with uncertain, unexpected, or difficult conditions. Nonessential systems are powered off, and essential systems are reconfigured according to a plan stored in software. The details of that plan were modified in October and again in January to account for the spacecraft's growing distance from Earth and the Sun.

In safe mode, just as in the orientation for the test, the use of an auxiliary antenna greatly limits the amount of data that can be returned. Although controllers soon recognized the conflict that triggered safe mode, many steps in a carefully planned and methodical process were required to reconfigure the spacecraft to point the main antenna to Earth. To expedite this work, colleagues working on the Mars Odyssey and Mars Reconnaissance Orbiter projects agreed to exchange their scheduled use of one of the Deep Space Network's largest antennas, a 70-meter (230-foot) dish at Tidbinbilla, Australia, with Dawn's use of a 34-meter (112-foot) antenna at the same communications complex. The larger antenna allowed the Dawn team to send and receive data at greater speed; this significantly reduced the time it would have taken to return to normal operations. Such cooperative use of the shared resources of the Deep Space Network is one of the many ways missions work together to the benefit of all space exploration.

By April 11 the main antenna was pointing to Earth and all the data stored during the aborted thruster test had been returned and analyzed. Engineers recognized that there had not been a problem after all, and the thruster could have operated perfectly well. The ion propulsion control software sets and verifies many electrical parameters and checks many others to ensure the thruster is performing correctly. In this case, the software was conducting a check that was unnecessary, so there was no need for it to interrupt the thruster operation. The test was built into the software before the ion propulsion system received its exhaustive test flight on Deep Space 1. With the knowledge gained on that mission, this software check was determined to be unimportant, but given the overall complexity of the software, it had not been removed from the ion controller. The controller dutifully carried out its programming, not knowing that it was performing an unwanted function.

In all the thrusting conducted so far in the mission (and the far greater duration of thrusting on Deep Space 1), this unnecessary test had never tripped. Now engineers were able to calculate that the conditions required to indicate a (false) problem would arise later in the Dawn mission with the use of any of the thrusters, but the conditions would not occur for some time with thruster #3, which has been the one in use since December. Therefore, the "go" was given to resume thrusting, and on April 14 the spacecraft began its powered flight once again. (The entry into safe mode did not interfere with any special activities other than the pointing test of thruster #2, as that was the last planned event of this period.)

Now that the necessity of making a change in the ion controller software was identified, the fix itself was determined to be quite simple. In just a few days it was thoroughly tested in a simulator at JPL and was transmitted to the spacecraft during the next weekly communications session on April 21.

Dawn is 185 million kilometers (115 million miles) from Earth, or 480 times as far as the moon and 1.24 times as far as the Sun. Radio signals, traveling at the universal limit of the speed of light, take almost 21 minutes to make the round trip.

Dr. Marc D. Rayman
6:00 am PDT April 22, 2008

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE

Artist concept of NASA's Dawn spacecraft

Dear Heliodawns,

Dawn is as far from Earth as the Sun. (That seemed a better opening sentence than the next sentence. If you, loyal reader, disagree, please read the next one first.) The Dawn mission is continuing very smoothly, with the spacecraft spending almost all of the time since the last log thrusting with its ion propulsion system.

As the probe and Earth follow their independent orbits around the Sun, not only has their separation grown, but the relative velocity has as well. So, the rate at which the range from the spacecraft to its erstwhile planetary residence increases has itself increased since the previous report. Today the distance is climbing by nearly 1.6 million kilometers (almost 970 thousand miles), or more than 5 light seconds, per day.

Now, 6 months after launch, the separation between Earth and Dawn has widened to be equal to the distance between Earth and the Sun. Most readers, particularly those living elsewhere, recognize that the distance between these latter two solar system bodies, about 150 million kilometers (93 million miles) and known to astronomers as 1 astronomical unit, is arbitrary. Still, using the Earth-Sun distance as a reference may help put the spacecraft’s travel into context, and astronomical units are no more arbitrary than kilometers, miles, or the length scales in common use on over 85% of planets subscribing to these logs.

That Dawn is as far from Earth as the Sun does not reveal anything, of course, about its direction as viewed from Earth. The Sun and Dawn are 98 degrees apart; Dawn is nearly overhead when the Sun sets. Although the spacecraft is much much too far from Earth to be visible, even with the most powerful telescopes, readers who find enjoyment, if not inspiration for rich thoughts, in celestial sights may consider gazing in the direction of the emissary Earth dispatched to the cosmos. The craft is in Gemini, about 8 degrees east of Mars, an easily located ruby among the gems of the night sky. Your correspondent (reporting on location from Earth) plans to contemplate his view of the Sun during the day and the sky near Dawn in the evening.

The spacecraft’s reliable performance has allowed the operations team to devote time to more than ensuring the spacecraft stays healthy and on course. In addition to an occasional moment of waxing philosophical about another of humankind’s robotic marvels being so remote, the team has been preparing for some special activities during the first part of April. Readers not obeying rules of causality already know the outcome, but the rest may look forward to learning the story in the next log.

Dawn is 150 million kilometers (93 million miles) from Earth, or 390 times as far as the moon and as far as the Sun. Radio signals, traveling at the universal limit of the speed of light, take almost 17 minutes to make the round trip.

Dr. Marc D. Rayman
8:00 am PDT March 30, 2008

P.S. This log is short so it would qualify for entry in the highly competitive "Best Dawn Log Fewer than 500 Words Written by a Mortal Corporeal Entity" contest. Unfortunately, this postscript causes it to exceed the length limit. That’s particularly disappointing, as the first place prize is a small galaxy.

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE

Artist concept of NASA's Dawn spacecraft

Dear Phildawnthropists,

Treating intercalary days just as it does most other days in its interplanetary cruise, today Dawn continues patiently and ever-so-gently reshaping its orbit around the Sun with the delicate yet persistent push from its ion propulsion system. The beam of xenon applies a force less than 8 millionths of what the spacecraft would feel from gravity at the surface of Earth. The effect of such a bone-rattling 8 micro-g acceleration is very modest indeed, as discussed in a log written while Dawn was still on that now-remote planet.

All of the thrusting so far in the mission has changed the spacecraft’s speed by 470 meters per second (1100 miles per hour), less than 15% of which was from the tests during the initial checkout phase. This is sizable for a spacecraft, but it is only a small fraction of what will be needed on this journey to gain insight into the dawn of the solar system. During its 10 weeks of accumulated thrust time, the spacecraft has expended about 19 kilograms (43 pounds), or less than 5%, of its xenon propellant. Years of thrusting will be required to reach its elusive scientific targets, asteroid Vesta and dwarf planet Ceres.

Even as Dawn slowly modifies its orbit, the path it takes is already quite different from Earth’s. The Delta rocket, which flew with the spacecraft only for about an hour in September, gave the probe enough energy to break the bond of Earth’s gravity, so it travels independently through the solar system, unlike the moon and satellites humans have launched into Earth orbit. As Dawn and Earth go their separate ways, today they are moving apart even faster than described in the last log. During the time it takes Earth to rotate once (about 24 hours, for those readers not familiar with this planet’s idiosyncrasies), the distance between it and the spacecraft increases by more than 1.4 million kilometers (nearly 900 thousand miles).

The probe suspends ion thrusting each week to turn from the thrust orientation to bring Earth into the sights of its main antenna. The spacecraft transmits information it has accumulated on the operation of all subsystems and welcomes any new instructions from mission control.

During the communications session on February 15, engineers radioed new data to be used following a reboot of the main computer. These parameters will be applied by the thermal control system to manage the temperatures of some components in the reaction control system (the system of small conventional thrusters that helps the craft orient itself in the zero-gravity of spaceflight). As Dawn journeys farther from the Sun, the ship feels less of the warming rays, so it needs to rely more on its own heaters, and the new values stored in computer memory help accomplish that. In a delightful demonstration of flamboyant irreverence, based solely on this minor change, the software was renamed from 7.0.2 to 7.0.3.

Although the weekly routine is quite adequate to keep the spacecraft content on its interplanetary voyage, the flight plan included a special activity on February 21 and 22. The backup science camera was guided through a set of tests to demonstrate its functions and capabilities. The instrument received its initial checkout in December, showing it to be healthy, but this month’s tests were more demanding. The steps were nearly identical to those executed with the primary science camera, with the only differences being some of the objects that were observed. As the spacecraft has progressed in its orbit, a different region of the celestial sphere was too close to the Sun to be viewed safely by the camera. Among the targets in both sets of tests were the Carina Nebula and the star Vega. As expected, they created the same beautiful views with the backup camera as they did with the primary camera. The results prove that both devices function very well and that the new project in Carina designed to dramatically alter its appearance for observers throughout the Milky Way (believed by many to be an ostentatious attempt to outdo Earth's famed artist Christo) did not achieve its stated ambition. Following the successful completion of the camera tests, the spacecraft resumed thrusting.

Dawn is 104 million kilometers (65 million miles) from Earth, or more than 270 times as far as the moon and 70% as far as the Sun. Radio signals, traveling at the universal limit of the speed of light, take almost 12 minutes to make the round trip.

Dr. Marc D. Rayman
7:00 am PST February 29, 2008

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE

Artist concept of NASA's Dawn spacecraft

Dear Dawnnoisseurs,

Now in interplanetary cruise, the Dawn spacecraft is following a much more leisurely pace than the one it maintained during the initial checkout phase of the mission. While its daily schedule is not demanding, as it follows (and changes) its orbit around the Sun, it is separating from Earth at nearly 4 light seconds per day (more than 1.1 million kilometers, or 720 thousand miles, per day). Every 8 hours, the probe recedes from Earth by a distance equal to that between Earth and the moon.

The spacecraft has accumulated more than 1000 hours of thrusting with its ion propulsion system. Although far far longer than the overwhelming majority of spacecraft have operated their propulsion systems, this represents only a small fraction of the total thrusting required to complete its solar system journey. [Note to editors: This milestone may be of significance only to human readers. When translated for those who use different numbering systems or different time systems, it may not yield an interesting result. (For that matter, 1000 hours is not a special number when expressed in seconds, days, or millennia.)]

Most of Dawn's time is devoted to thrusting with its ion propulsion system, but each week the spacecraft stops for a communications session with controllers on distant Earth, during which it returns detailed data on the performance of its subsystems throughout the previous week. Reports of voltages and currents, temperatures and pressures, and myriad other parameters allow engineers to determine how well the ship has been doing and how to keep it sailing as smoothly as possible.

On January 14 shortly before 10:00 pm PST, a high energy subatomic particle, a "cosmic ray," traveled through one of the main panels of the spacecraft and then penetrated one of the electronics units. The energy it carried had been imparted to it through an unidentified cosmic process, and after the particle had traveled across vast distances, that energy was transferred to a small integrated circuit. Such an event is not all that uncommon on spacecraft, and Dawn is designed so that most space radiation does not interfere with its operation. The deposition of energy in this particular component however triggered the electronics to inform the software of a problem. To rectify the situation, other software correctly responded by resetting the computer in that unit.

In the last log, we saw that two master computers work together to oversee and control activities on the spacecraft. The computer that was reset in this case was neither of those; it was one of many auxiliary computers with more limited responsibilities. In addition to resetting the computer, software running in the main computer correctly reconfigured systems onboard to "safe mode." The spacecraft then awaited instructions from engineers on Earth (or, more accurately, in Dawn mission control on the top floor of JPL's whimsically named building 264).

A few hours later, when it was time for the weekly communications session, the Deep Space Network and mission controllers promptly recognized that the spacecraft was in safe mode. As with the safing in November, a small team gathered during the night to begin the diagnosis, and more team members joined after dawn. It did not take long to reach a conclusive explanation based on the error code stored by the software and other data downloaded from the spacecraft. The culprit was a cosmic ray.

By the time the detailed analysis of the safing was concluding, mission controllers were already commanding the spacecraft step-by-step out of safe mode, returning it to its normal flight configuration. Within a few days, Dawn was ready to resume work, and before the end of the week was thrusting with its ion propulsion system again. (The effect of having missed some thrusting that week is not significant for the mission.)

While Dawn will thrust during most of its interplanetary cruise, the flight plan includes some periods of coasting in addition to the normal weekly communications session. One such period was January 22 - 25. Most of this time was devoted to updating software in the main computer.

The main software resides in 4 locations (well, 4 locations on the spacecraft): primary and backup copies in the primary main computer and primary and backup copies in the backup main computer. Three copies of flight software 7.0 were installed on the spacecraft in November. As reported in the last log, the primary main computer was scheduled to receive its backup copy during this break in thrusting.

While it had been planned before launch to transmit 7.0 to the spacecraft in November, after the software was finalized, the need for one additional change was recognized. For technical reasons it was not necessary to change all the stored copies; rather, it was sufficient to modify (or "patch") only the version that was running. Making that change on December 12 advanced the software to 7.0.1.

As Dawn moves farther from its former home, a planet it is not scheduled ever to visit again, its capability to communicate with Earth diminishes. The large main antenna is strong enough that no changes are needed yet, but the smaller, auxiliary antennas do not permit the same level of performance that they did earlier in the mission. As explained last month and before launch, when Dawn enters safe mode, it uses 1 of these auxiliary antennas. Now that the distance to Earth has increased so much, the weaker signals require lower transmission and reception rates. Engineers decided several years ago to start the mission with safe mode programmed to use data rates that were too high to work throughout the mission but would allow simplified operations during the first months of the flight. Those months have now passed, so following that plan established before launch, the software was patched to use lower data rates whenever safe mode is called. The new values were put into in the primary and backup locations in the primary and backup main computers on January 23 and 24.

With these changes, Dawn is now using flight software version 7.0.2. If you want to update the software running on your spacecraft to this latest version, with the hottest new features, we have made special arrangements to provide a copy you can download for free. (Note: this special offer is not available to customers within 1 decaparsec of Dawn.)

Replacing or updating software on an operating spacecraft is complex, and there are many opportunities for problems to arise. To allow for time to understand and resolve any unexpected difficulties, more time was allocated than was expected to be needed. As it turned out, after the team's exhaustive preparations, the software uploads went perfectly, and there was plenty of time to spare. When the work was complete, the spacecraft simply waited until the scheduled time for the resumption of thrusting on January 25, and then it returned to powered flight.

Shortly after Dawn launched, we recalled the 50th anniversary of the launch of humankind's first satellite. As our spacecraft continues in journey through space, today we remember the 50th anniversary of another launch. The United States' first craft to reach Earth orbit, Explorer 1, departed from Cape Canaveral's Space Launch Complex 26A, almost exactly 500 meters (about 0.3 miles) southwest of complex 17B, from which Dawn began its climb to space. (We don't include a link here to any previous remarks about Dawn's launch site, as it was mentioned in more than 63% of the logs posted from April through September 2007. With so many past references, readers who flow forward in time are counted upon to remember or not to care about the launch location.)

Explorer 1's elliptical orbit around Earth carried it about 2550 kilometers (1585 miles) above the surface. On this 50th anniversary of the beginning of that mission, so important in the history of space exploration and space science (as well as the Cold War), Dawn is more than 26 thousand times farther from Earth, in its own orbit around the Sun. Despite the great difference in distance (as well as other comparisons in size, mass, capabilities, technological sophistication, scientific ambition, and more, all of which we spare readers from trying to absorb), the two projects have much in common. Both are part of humanity's efforts to help broaden our perspectives beyond our home planet, to apply both engineering and scientific knowledge as we seek to gain even more such knowledge, to undertake adventures that include great challenges but offer great rewards in which everyone can share. And although it may not feel this way now, with the first mission 50 years in the past and the second just starting, for most of humanity's future, both will be among the first tentative probes into the cosmic unknown.

Dawn is 67 million kilometers (42 million miles) from Earth or 175 times as far as the moon. Radio signals, traveling at the universal limit of the speed of light, take more than 7.5 minutes to make the round trip.

Dr. Marc D. Rayman
7:49 pm PST January 31, 2008

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE

Artist concept of NASA's Dawn spacecraft

Dear Aficidawnados,

Dawn is climbing away from the Sun on a blue-green pillar of xenon ions as it begins a new chapter in its mission. After the remarkably successful initial checkout phase, the project is now in the interplanetary cruise phase.

When last we visited Dawn, it had superbly demonstrated that it was ready to fly the way it will for most of the mission. Although there will be many special activities during its journey to Vesta and from there to Ceres (and be sure to visit this site again to be among the best informed on your planet of what Dawn is doing), the probe will spend most of its time doing what it is doing today: patiently reshaping its orbit around the Sun with its amazingly efficient ion propulsion system.

Without taking any more time than was needed for some high fives (and a few high sixes for the more mathematically avant-garde) following the flawless execution of the test of long-term thrusting, the team turned its attention to more checkout activities. Ion thruster #2 was the focus of tests on November 13 - 15, and the excellent results matched those of thrusters #1 and #3. (The identities and locations of the thrusters were revealed in a previous log before such information could be publicized by more sensational, vulgar sources.)

November 19 was the first in-flight use of the spacecraft’s main antenna. (In fact, that antenna was used in some of the thruster #2 tests, in which the spacecraft was oriented so the antenna cast a shadow on the thruster. This permitted operation at the highest throttle level without overheating while still relatively close to the Sun. We recommend even to official Dawn scorekeepers that that not count as the antenna’s first use.) Because of the celestial geometry earlier in the mission, pointing the main antenna to Earth would have exposed sensitive components elsewhere on the craft to too much solar heating. All communications prior to the use of the main antenna relied on 1 of the 3 smaller antennas that do not emit as tight a radio beam. As the distance to the spacecraft increases, the smaller antennas will allow only very slow communications, while the main antenna, with a diameter of 1.52 meters (5 feet), will permit the return of many pictures and other scientific data even from distant Vesta and Ceres.

Much of the rest of the initial checkout phase was dedicated to updating software on the spacecraft. Many units onboard, both in engineering subsystems and in science instruments, incorporate their own computers, but the command and data handling subsystem contains the master computers. One main computer runs operations aboard the ship, and another computer supports it (and has a few other responsibilities of its own). Each of these computers has an identical backup, able to take over should the primary unit experience problems. With a planned 8-year mission in the forbidding environment of deep space, Dawn may face challenges that require more than such backup hardware. So each main and each support computer holds both a primary and a backup copy of the software. If radiation or some other problem corrupts one version of the software, the system can detect that and resort to another.

Engineers recognized well before launch that new software would need to be loaded during the initial checkout phase. As extensive as ground testing was, the team anticipated that the need for some updates would be identified once Dawn was operating in space. In addition, during the last few months before launch, when ongoing testing ferreted out bugs, only those changes that were essential for the beginning of the mission were made. Modifying complicated software is -- well, complicated; and seemingly simple changes can have unintended consequences. To allow thorough testing of the spacecraft’s capability to complete the complex and critical steps after separating from its Delta rocket, as described on September 21, late prelaunch changes to the software were kept to a minimum, and an improved version was planned for November.

Following the popular trend of giving software a snazzy name, the project denoted the latest suite “flight software 7.0.” We fully expect this to inspire new toys, movies, fashions, and even lifestyles (particularly among readers in the Pleiades), and Dawn’s marketing department is standing by to work with you.

On November 20, the new software for the support computers was radioed from Earth and installed separately on the primary and backup units in the command and data handling system. The software for each computer requires 67 files occupying about 135 kilobytes with a total of 22,800 lines written in the programming language C and in assembly code. The backup copies of the 7.0 software were transmitted to both computers on December 6. Each of these activities required great care, verifying that the computer memory remained healthy throughout, that no bits were lost or altered in transmission or storage, and that if an unrelated problem arose on the spacecraft during the process, the computers would be able to handle it, never being left in a vulnerable state. Each step was tested and verified repeatedly with the indispensable Dawn spacecraft simulator at JPL (down the hall from mission control and around the corner from the very popular Dawn ice cream freezer and the less popular Dawn fruit bowl).

Loading software into the main computer was still more complex than doing so in a support computer. To start running the new software, the computer would have to be rebooted. While that is a familiar and straightforward procedure for most terrestrial readers in the early 21st century, it is considerably more complicated when the computer is in control of a spacecraft in flight.

On November 26 and 27, the main computer’s memory was checked, its health was verified, and the updated software was sent from mission control to the Deep Space Network stations in California, Spain, and Australia (the work took long enough that all 3 communications complexes were required), and then 17 million kilometers (11 million miles) to the main computer. The 2.6 megabytes of flight software 7.0 for that computer consists of 591 files totaling more than 410,000 lines of C and assembly code. After loading all the software, operators began preparing the spacecraft for rebooting, scheduled for November 28.

Whenever the main computer reboots, it commands the spacecraft into “safe mode.” Other conditions can trigger this mode as well, including separation from the rocket on September 27. The probe does not know whether safe mode was planned, as it would be with the installation of new software, or was called in the process of dealing with a problem when ground controllers were not available to intervene.

Most of the characteristics of safe mode remain as they were on launch day, but there are some differences now. Dawn no longer has to wait for xenon to stop spinning, and it does not have to deploy its solar arrays. It still points one face to the Sun, the only easily identifiable spatial reference throughout its flight in the solar system. For the first few weeks of the mission, the relative locations of the Sun, Earth, and spacecraft required Dawn to sweep its safe mode radio signal like a searchlight that would periodically illuminate Earth, as explained before launch. For the rest of the mission, from Dawn’s vantage point well outside Earth’s orbit around the Sun, the planet and star always will appear close enough together that the spacecraft can use the broad beam of an antenna that points at the Sun in safe mode, instead of an antenna at right angles to it. While extremely weak (as we will see in a log early next year), the faint radio whisper that would reach Earth would still be loud enough to be heard. In October, controllers modified safe mode so it would employ this other antenna.

After the reboot preparations were completed on November 27, most team members went home to get some rest for the activities scheduled for the subsequent 2 days. After they commanded the reboot and Dawn established itself in safe mode, the Deep Space Network would need to capture the radio signal, they would have to verify that the software was operating correctly, and then the long process of bringing it out of safe mode to normal operations would begin. Exquisitely detailed plans for each step had been formulated with great care, but when the team left for the day, they did not know that a single surprise lay in store.

Around 10:00 pm PST on November 27, the spacecraft’s main computer rebooted, just half a day before operators planned to command it, and Dawn entered safe mode. As soon as the Deep Space Network detected the corresponding change in the radio signal and the small night-shift team in mission control realized what had happened, a different plan, known dryly as “anomaly response,” was put into action. Some team members were called back in to JPL and spent the entire night investigating this unexpected event; some others were in occasional contact by telephone or Internet. As many team members as possible were not disturbed, so they would be fresh the next day to pick up after the anomaly team’s overnight work. (In the same vein, although your correspondent was among those who went to JPL, he opted not to contact you right away; rather, he chose to let you read about it now, under more leisurely circumstances.)

The team first used the trickle of data from the distant probe to verify that it was indeed safe. Then, proceeding with great diligence, given the unanticipated behavior of the computer, they downloaded certain diagnostic files. All indications were that Dawn was quite healthy, with no apparent signatures of a lingering problem. By the middle of the day on November 28, engineers had determined that the new software (automatically loaded when the computer rebooted) was doing well and the spacecraft was ready to resume its work. That day and the next had been planned already for the time-consuming transition from safe mode to normal configuration, so most of the team followed those plans while others continued analyzing why the reboot had occurred. On November 29, all steps were complete, just as they would have been had the reboot been commanded the previous morning.

Even now the investigation into the unplanned reboot continues with simulators. Meanwhile, the mission has progressed very smoothly. The backup main computer received its primary copy of 7.0 on December 7 and its backup copy on December 14. The backup copy of the primary main computer’s software will be loaded in January during a hiatus in thrusting.

While flight software 7.0 had been tested extensively before being sent to the spacecraft, ever-prudent mission controllers had planned to conduct one additional test, this time on the spacecraft. Because Dawn will spend most of its life thrusting with the ion propulsion system, engineers wanted to verify that the new software did not introduce any bugs that would interfere with this essential capability. Under the guidance of the main computer, all systems operated well during the “thrusting validation” on November 30.

In the subsequent 2 weeks, as they were finalizing plans for the beginning of interplanetary cruise, the team conducted another round of instrument tests. Following the excellent results of the first set of tests in October, this month the science camera and the visible and infrared mapping spectrometer were pointed at specific targets to allow more thorough characterizations of their functions and capabilities. Observations included Saturn (too distant to appear as more than a bright spot to Dawn’s camera, but still useful for tests), Arcturus, Vega (of special significance to your correspondent and his wife), and other stars and star fields. While the primary science camera was operated for the first time in October, the backup had its first in-flight exercises on December 10 and 12.

As the instrument and outreach teams find time, more views from the cameras and spectrometers will be posted at http://dawn.jpl.nasa.gov/multimedia/index.asp. (Certain ones may take longer, while 3-way negotiations drag on among the Dawn project, as-yet unnamed celebrities in the imaged star systems, and tabloids in those regions.)

Several lovely scenes have been captured. While the brief encounter with Mars is still 14 months away, arrival at Vesta is 2.5 years after that, and rendezvous with Ceres takes place in 2015, the excellent instrument tests whet our appetites for what will be revealed. Readers are particularly recommended to see the image of a star field in Cepheus as well as the Carina Nebula (known to some readers as NGC 3372 and to others as “home”), captured in a calibration image of the fine cluster of bright stars NGC 3532, a popular sight for observers in Earth’s southern hemisphere. Eta Carinae is a massive, unstable star in the immense star-forming nebula, and it has displayed a highly variable brightness since it was cataloged 330 years ago. For a time in the 19th century, it outshone all but one of the stars in Earth’s nighttime sky, despite being much much farther away than most. It has faded and brightened several times since then, sometimes being too faint for naked-eye observation.

Dawn’s initial checkout phase was remarkably productive and has served extremely well to certify the systems on the spacecraft and in mission control for interplanetary cruise. On December 14, in addition to loading the backup copy of 7.0 into the backup main computer, controllers radioed to the probe all the instructions and data it would need for the first 37 days of the next mission phase. The files were stored for use beginning on December 17.

At 12:01 pm PST on December 17, Dawn obediently began executing the instructions to reconfigure in preparation for long-term cruise. Three hours later, it initiated the prestart sequence for the ion propulsion system. While preparing for thrusting, the spacecraft also turned to aim ion thruster #3 in the required direction. This took the main antenna away from Earth-point, but the commands directed the craft to switch to one of the smaller antennas with broader coverage, allowing the team at JPL to monitor progress using signals received at the Deep Space Network complex in Spain.

After the spacecraft’s fine performance during initial checkout, engineers observing the beginning of thrusting expected no less. During initial checkout, the ion thrusters were started a total of 16 times and accumulated about 11 days 14 hours of thrust. (Some of the thrusting was for tests of the ion propulsion subsystem, and some was for tests of other subsystems or the entire Dawn system while thrusting.) With this experience, there was little reason to be concerned, but prudence dictated verification that Dawn got underway smoothly.

Telemetry confirmed that thrust began on schedule at 4:08 pm, as Dawn began propelling itself deeper into space, farther from Earth and the Sun. When the spacecraft turned its main antenna away from home, it set its sights elsewhere, on uncharted worlds, as it embarks on the next phase of its extraterrestrial expedition.

Dawn is 27 million kilometers (17 million miles) from Earth or 70 times as far as the moon. Radio signals, traveling at the universal limit of the speed of light, take 3 minutes to make the round trip.

Dr. Marc D. Rayman
7:00 pm PST December 17, 2007

› Learn more about the Dawn mission

TAGS: DAWN, VESTA, CERES, DWARF PLANET, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE