Tag Search - All Blogs

Tag Search - All Blogs


Temperature Structure Radiometer

In 1979 there was a Clear Air Turbulence (CAT) Flight Test Program at the NASA Jet Propulsion Laboratory that used a microwave radiometer to measure the temperature at various altitudes in order to map the inversion layers that can cause turbulence for aircraft.

In 1980 a new 55 GHz radiometer was developed by the Microwave Observational Systems Section (383) to passively measure the temperature of oxygen molecules in the air. The Temperature Structure Radiometer (TSR) was flown over the western United States on a NASA CV-990 aircraft based at Ames Research Center. It was mounted inside the cabin, with a view through a special microwave-transparent window. An HP 9825 desktop computer controlled the scan sequence, recorded raw data and converted the readings to an “altitude temperature profile” display. With the information provided by a CAT avoidance sensor, pilots would be able to navigate to a smoother altitude for greater safety and comfort. In this 1981 photo, Bruce Gary (senior scientist, Observational Systems Division, at right) and Jim Johnston (383 section manager) look at the new TSR.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL's Library and Archives Group.

TAGS: HISTORY, MISSIONS, SPACECRAFT, INSTRUMENTS

  • Julie Cooper
READ MORE

Artist's concept of the Dawn spacecraft at Ceres

Graphic showing Dawn's spiral descent from survey orbit to HAMO

Dear Mastodawns,

Deep in the main asteroid belt, between Mars and Jupiter, far from Earth, far from the sun, far now even from the giant protoplanet Vesta that it orbited for 14 months, Dawn flies with its sights set on dwarf planet Ceres. Using the uniquely efficient, whisper-like thrust of its remarkable ion propulsion system, the interplanetary adventurer is making good progress toward its rendezvous with the uncharted, alien world in about nine months.

Dawn’s ambitious mission of exploration will require it to carry out a complex plan at Ceres. In December, we had a preview of the “fapproach phase,” and in January, we saw how the high velocity beam of xenon ions will let the ship slip smoothly into Ceres’s gravitational embrace. We followed that with a description in February of the first of four orbital phases (with the delightfully irreverent name RC3), in which the probe will scrutinize the exotic landscape from an altitude of 8,400 miles (13,500 kilometers). We saw in April how the spacecraft will take advantage of the extraordinary maneuverability of ion propulsion to spiral from one observation orbit to another, each one lower than the one before, and each one affording a more detailed view of the exotic world of rock and ice. The second orbit, at an altitude of about 2,730 miles (4,400 kilometers), known to insiders (like you, faithful reader) as “survey orbit,” was the topic of our preview in May. This month, we will have an overview of the plan for the third and penultimate orbital phase, the “high altitude mapping orbit” (HAMO).

(The origins of the names of the phases are based on ancient ideas, and the reasons are, or should be, lost in the mists of time. Readers should avoid trying to infer anything at all meaningful in the designations. After some careful consideration, your correspondent chose to use the same names the Dawn team uses rather than create more helpful descriptors for the purposes of these logs. What is important is not what the different orbits are called but rather what amazing new discoveries each one enables.)

It will take Dawn almost six weeks to descend to HAMO, where it will be 910 miles (1,470 kilometers) high, or three times closer to the mysterious surface than in survey orbit. As we have seen before, a lower orbit, whether around Ceres, Earth, the sun, or the Milky Way galaxy, means greater orbital velocity to balance the stronger gravitational grip. In HAMO, the spacecraft will complete each loop around Ceres in 19 hours, only one quarter of the time it will take in survey orbit.

In formulating the HAMO plans, Dawn’s human colleagues (most of whom reside much, much closer to Earth than the spacecraft does) have taken advantage of their tremendous successes with HAMO1 and HAMO2 at Vesta. We will see below, however, there is one particularly interesting difference.

As in all observation phases at Ceres (and Vesta), Dawn’s orbital path will take it from pole to pole and back. It will fly over the sunlit side as it travels from north to south and then above the side in the deep darkness of night on the northward segment of each orbit. This polar orbit ensures a view of all latitudes. As Ceres pirouettes on its axis, it presents all longitudes to the orbiting observer. The mission planners have choreographed the celestial pas de deux so that in a dozen revolutions, Dawn’s camera can map nearly the entire surface.

Rather than mapping once, however, the spacecraft will map Ceres up to six times. One of Dawn’s many objectives is to develop a topographical map, revealing the detailed contours of the terrain, such as the depths of craters, the heights of mountains, and the slopes and variations of plains. To do so, it will follow the same strategy employed so successfully at Vesta, by taking pictures at different angles, much like stereo imaging. The spacecraft will make its first HAMO map by aiming its camera straight down, photographing the ground directly beneath it. Then it will map the surface again with the camera pointed in a slightly different direction, and it will repeat this for a total of six maps, or six mapping “cycles.” With views from up to six different perspectives, the landscape will pop from flat images into its full three dimensionality. (As with all the plans, engineers recognize that complex and challenging operations in the forbidding, unforgiving depths of space do not always go as intended. So they plan to collect more data than they need. If some of the images, or even entire maps, are not acquired, there should still be plenty of pictures to use in revealing the topography.)

In addition to acquiring the photos, Dawn will make other measurements in HAMO. During some of the cycles, the camera will use its color filters to glean more about the nature of the surface. The visible and infrared mapping spectrometer will collect spectra to help scientists determine the composition of the surface, its temperature, and other properties.

Exquisitely accurate radio tracking of the spacecraft in its orbit, as indicated by the Doppler shift (the change in frequency, or pitch, as the craft moves toward or away from Earth) and by the time it takes radio signals to make the round trip from Earth, allows navigators to determine the strength of the gravitational tugging. That can be translated into not only the mass of Ceres but also how the mass is distributed in its interior. In August, when we look ahead to the fourth and final science phase of the Ceres mission, the low altitude mapping orbit, we will explain this in greater detail.

Although still too high for anything but the weakest indication of radiation from Ceres, the gamma ray and neutron detector will measure the radiation environment in HAMO. This will yield a useful reference for the stronger signals it will detect when it is closer.

There is a noteworthy difference between how Dawn will operate in HAMO and how it operated in HAMO1 and HAMO2 at Vesta and even how it will operate in survey orbit at Ceres. In those other orbits, whenever the spacecraft flies above the hemisphere in sunlight, it keeps its sensors pointed at the surface, and whenever it is over the night side, it points its main antenna to Earth. At Vesta, where each HAMO revolution took just over 12 hours, this meant that about every six hours, it had to execute a turn. Were it to follow the same plan at Ceres with a 19-hour HAMO period, when it passed over the north pole, it would begin aiming its scientific instruments at the dwarf planet. When it reached the south pole 9.5 hours later, it would rotate to point its antenna to Earth. Another 9.5 hours after that, when it reached the north pole again, it would pivot to bring the alien terrain back into its sights.

If the robot had its full complement of functioning reaction wheels, that is what it would do in HAMO. Reaction wheels are similar to gyroscopes, and by electrically changing the speed at which they spin, the probe can turn or stabilize itself. The mission was designed to use three reaction wheels, so the ship was outfitted with four. Two are no longer operable. While such a loss could be devastating for some spacecraft, the Dawn flight team has devised highly innovative solutions to accomplish all of the original, ambitious objectives, regardless of the condition of any of the wheels, even the two that are (currently) still healthy. Key to Dawn’s success will be conserving hydrazine, the conventional rocket fuel that it can use to accomplish turns. Dawn’s controllers are taking care with every soupçon of the precious propellant, stretching the supply to allow the mission to complete its bold plans. When the hydrazine is exhausted, Dawn’s expedition will conclude.

Turning so often in HAMO, keeping up with the frequent transitions between flying over the illuminated surface and the surface in the darkness of night, would be unaffordable without reaction wheels, a profligate use of the irreplaceable hydrazine. Instead, it is significantly more efficient to turn less often, allowing the spacecraft sometimes to wait patiently for half an orbit as its instruments stare at the undetectably dark land beneath it and sometimes to maintain its antenna pointing at Earth, even when it is passing over features it otherwise could see. It will see them on other loops however. With this strategy, Ceres can be mapped extensively in HAMO without consuming an excessive amount of hydrazine.

In each mapping cycle, Dawn will make two and a half or three and a half revolutions peering at Ceres, storing images and other valuable data onboard. (The specific duration varies from one cycle to another.) Then, with its memory full, it will turn so it can beam some of its precious findings to distant Earth while it is on the night side of Ceres. That will not be long enough to completely empty the memory but will be sufficient to make room for more data, so after half an orbit, it will turn back to resume its observations. It will follow this pattern for one full cycle, with the dozen passages over the day side providing enough opportunities to complete one map. Then it will devote two and a half revolutions, or two full days, to transmitting the rest of its scientific treasures for the benefit of all those on Earth who ever look to the sky with wonder.

So over the course of 14 complete circuits around Ceres in 11 days, the spacecraft will turn only six or eight times. Ever the responsible conservationists, the team developed all the details of this plan to acquire as much data as possible with the minimum expenditure of hydrazine.

Axomama Crater on Ceres
This figure shows Dawn’s survey orbit (at 2,730 miles, or 4,400 kilometers) and the high altitude mapping orbit (at 910 miles, or 1,470 kilometers) at the same scale as the size of Ceres. Credit: NASA/JPL

It will take more than two months to carry out all the HAMO activities, with the spacecraft making more than 80 orbital loops. This continues the trend in which the explorer will spend more time in each successive orbital phase than in the ones before. It will complete its assignment in survey orbit in 22 days, during which it will circle Ceres seven times. As we will see in August, the final orbital phase will last even longer than HAMO and include many more revolutions.

Each phase of the mission at Ceres will reveal exciting new insights into a relict from the dawn of the solar system. That same solar system’s complex ballet happens to be playing out now in a way that affords terrestrial observers a nice view of Ceres, Vesta, Mars and the moon. (It also affords Cerean observers a nice view of Vesta, Mars, the moon, and Earth, but that will be described in more detail in the special Cerean local edition of this log.) We wrote in March about the alignment and provided a chart you can still use to locate Vesta and Ceres with a small telescope or even good binoculars. On July 5, Ceres and Vesta will appear to be separated by only one third the diameter of the full moon, even as these distant worlds are 0.57 AU (52 million miles, or 85 million kilometers) from each other. In Earth’s skies, Mars and the moon (both of which are closer to Earth) will not be far away, all of them in Virgo.

Although even the most powerful telescopes are quite insufficient to show it, when we turn our mind’s eye to the sky, with its greater visual acuity, we can discern one more object in this lovely arrangement of gleaming celestial jewels set against the backdrop of the incomparable blackness of the universe. A probe from Earth, a robotic ambassador to the cosmos, on a long and daring expedition, is in transit from Vesta to Ceres. Even as those terrestrial observers enjoy the view, Dawn is patiently making its way through the interplanetary void to a world that has been glimpsed only from afar for more than two centuries. Soon it will undertake a new phase of its extraordinary mission, promising exciting new knowledge and surprising new insights. Engaged in one of humankind’s grand adventures, we extend the best we have within ourselves to reach far, far beyond our humble home.

Dawn is 5.6 million miles (9.0 million kilometers) from Ceres. It is also 2.24 AU (208 million miles, or 335 million kilometers) from Earth, or 825 times as far as the moon and 2.20 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 37 minutes to make the round trip.

Dr. Marc D. Rayman
7:00 p.m. PDT June 30, 2014

TAGS: DAWN, CERES, VESTA, MISSION, SPACECRAFT, SOLAR SYSTEM, DWARF PLANETS

  • Marc Rayman
READ MORE

Magellan Mission to Venus

This artist's conception of the Magellan spacecraft was created in about 1983, when it was known as Venus Radar Mapper (VRM). This kind of artwork was usually based on reports and drawings provided to the artist by the project staff. By the time Magellan was launched in May 1989 aboard the space shuttle Atlantis, the configuration had changed. It was not an uncommon occurrence for the design of a spacecraft to evolve over a period of months or years, based on input from the various instrument teams and engineers working on the project. It also happened when projects encountered funding problems and were scaled down in order to meet a budget.

One 1984 VRM project document explained, "The details of the configuration of the VRM spacecraft are changing continually as the spacecraft design matures. This illustration [a line drawing that matches the configuration shown in this artwork] shows the general configuration of the VRM spacecraft .... However several details of this illustration are out of date (such as the FEM length, altimeter antenna design and placement, and the amount of STAR-48 support structure retained after VOl)." Other, less detailed drawings were quickly added to the report to show the recent updates.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL's Library and Archives Group.

TAGS: HISTORY, MAGELLAN, SPACECRAFT, MISSION, VENUS, SOLAR SYSTEM

  • Julie Cooper
READ MORE

Survey orbit

Artist's concept of Dawn orbiting Ceres" alt="Artist's concept of Dawn orbiting Ceres

Dear Dawnosaurs,

Silently streaking through the main asteroid belt, emitting a blue-green beam of xenon ions, Dawn continues its ambitious interplanetary expedition. On behalf of creatures on distant Earth who seek not only knowledge and insight but also bold adventure, the spacecraft is heading toward its appointment with Ceres. In about 10 months, it will enter orbit around the ancient survivor from the dawn of the solar system, providing humankind with its first detailed view of a dwarf planet.

This month we continue with the preview of how Dawn will explore Ceres. In December we focused on the "approach phase," and in January we described how the craft spirals gracefully into orbit with its extraordinary ion propulsion system. The plans for the first observational orbit (with a marvelously evocative name for a first examination of an uncharted world: RC3 — is that cool, or what?), at an altitude of 8,400 miles (13,500 kilometers), were presented in FebruaryLast month, we followed Dawn on its spiral descent from each orbital altitude to the next, with progressively lower orbits providing better views than the ones before. Now we can look ahead to the second orbital phase, survey orbit.

In survey orbit, Dawn will make seven revolutions at an altitude of about 2,730 miles (4,400 kilometers). At that distance, each orbit will take three days and three hours. Mission planners chose an orbit period close to what they used for survey orbit at Vesta, allowing them to take advantage of many of the patterns in the complex choreography they had already developed. Dawn performed it so beautifully that it provides an excellent basis for the Ceres encore. Of course, there are some adjustments, mostly in the interest of husbanding precious hydrazine propellant in the wake of the loss of two of the spacecraft's four reaction wheels. (Although such a loss could have dire consequences for some missions, the resourceful Dawn team has devised a plan that can achieve all of the original objectives regardless of the condition of the reaction wheels.)

We had a preview of survey orbit at Vesta four years ago, and we reviewed the wonderfully successful outcome in September 2011. When we develop the capability to travel backwards in time, we will insert a summary of what occurred in survey orbit at Ceres here: _______…… Well, nothing yet. So, let's continue with the preview.

As in all phases at Ceres (and Vesta), Dawn follows what space trajectory experts (and geeks) call a polar orbit. The ship's course will take it above the north pole, and then it will sail south over the side bathed in the light of the sun. After flying over the south pole, Dawn will head north. Although the surface beneath it will be dark, the spacecraft will be high enough that it will not enter the dwarf planet's shadow. The distant sun will constantly illuminate the large solar arrays.

The leisurely pace in survey orbit allows the explorer to gather a wealth of data during the more than 37 hours on the day side. It will train its science camera and visible and infrared mapping spectrometer (VIR) on the surface lit by the sun. The camera will collect hundreds of images using all seven of its color filters. It will reveal details three times finer than it observed in RC3 orbit and 70 times sharper than the best we have from the Hubble Space Telescope. VIR will acquire millions of spectra to help scientists determine the minerals present as well as the temperature and other properties of the surface. While the sensors are pointed at the surface, the main antenna cannot simultaneously be aimed at Earth, so the robot will store its pictures and spectra.

One Cerean day, the time it takes Ceres to rotate once on its axis, is a little over nine hours. (For comparison, Earth, as some of its residents and visitors know, takes 24 hours. Jupiter turns in just under 10 hours, Vesta in five hours and 21 minutes, and your correspondent's cat Regulus in about 0.5 seconds when chasing a laser spot.) So as Dawn travels from the north pole to the south pole, Ceres will spin underneath it four times. Dawn will be close enough that even the wide field of view of its camera won't capture the entire disc below, from horizon to horizon, but over the course of the seven orbits, the probe will see most of the surface. As in developing the plan for Vesta, engineers (like certain murine rodents and male humans) are keenly aware that as careful, as thorough, and as diligent as they are, their schemes don't always execute perfectly. In the unknown, forbidding depths of space with a complex campaign to carry out, glitches can occur and events can go awry. The plan is designed with the recognition that some observations will not be achieved, but those that are promise great rewards.

Most of the time, the spacecraft will gaze straight down at the alien terrain immediately beneath it. But on the first, second, and fourth passages over the day side of Ceres, it will spend some of the time looking at the limb against the blackness of space. Pictures with this perspective will not only be helpful for establishing the exact shape of the dwarf planet but they also will provide some very appealing views for eager sightseers on Earth.

In addition to using the camera and VIR, Dawn will measure space radiation with its gamma ray and neutron detector (GRaND). GRaND will still be too far from Ceres to sense the nuclear particles emanating from it, but recording the radiation environment will provide a valuable context for the sensitive measurements it will make at lower altitudes.

When Dawn's orbit takes it over the dark side, it will turn away from the dwarf planet it is studying and toward the planet it left in 2007 where its human colleagues still reside. With its 5-foot (1.52-meter) main antenna, it will spend most of the day and a half radioing its precious findings across uncounted millions of miles (kilometers) of interplanetary space. (Well, you won't have to count them, but we will.)

In addition to the instrument data it encodes, Dawn's radio signal will allow scientists and engineers to measure how massive Ceres is. By observing the Doppler shift (the change in frequency caused by the spacecraft's motion), they can determine how fast the ship moves in orbit. Timing how long the signals (traveling at the universal limit of the speed of light) take to make the round trip, navigators can calculate how far the probe is and hence where it is in its orbit. Combining these (and including other information as well) allows them to compute how strongly Ceres pulls on its orbital companion. The strength of its gravitational force reveals its heft.

By the end of survey orbit, Dawn will have given humankind a truly extraordinary view of a dwarf planet that has been cloaked in mystery despite more than 200 years of telescopic studies. As the exotic world of rock and ice begins to yield its secrets to the robotic ambassador from Earth, we will be transported there. We will behold new landscapes that will simultaneously quench our thirst for exploration and ignite our desire for even more. It is as humankind reaches ever farther into the universe that we demonstrate a part of what it means to be human, combining our burning need for greater understanding with our passion for adventure and our exceptional creativity, resourcefulness and tenacity. As we venture deeper into space, we discover much of what lies deep within ourselves.

Dawn is 7.2 million miles (12 million kilometers) from Ceres. It is also 1.87 AU (174 million miles, or 280 million kilometers) from Earth, or 695 times as far as the moon and 1.84 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 31 minutes to make the round trip.

Dr. Marc D. Rayman
11:00 p.m. PDT May 31, 2014

P.S. This is the 101st Dawn Journal. Only 99 more to go before cake and balloons again!

TAGS: DAWN, CERES, VESTA, SOLAR SYSTEM, SPACECRAFT, MISSIONS, DWARF PLANETS

  • Marc Rayman
READ MORE

Advanced Lunar Studies Field Test

The last of the Surveyor lunar landers, Surveyor 7, was launched on January 7, 1968, and operated on the surface of the moon for about six weeks. Later that year, additional geoscience studies were carried out in the Mojave Desert using a spare surface sampler arm. A four-wheel-drive camper truck simulated an automated rover and was used to study the procedures and equipment necessary for remote geoscience. The truck was equipped with various sampler instruments, four TV cameras mounted on the top of the vehicle and one portable TV camera. Inside the camper was a simulated Space Flight Operations Center, with TV monitors, controllers for the cameras and instruments, and recording equipment. The field test observer (sitting in the camper) would survey the geology of the test area and carry out sampling operations remotely. Ritchie Coryell (System Design and Integration Section), Roy Brereton (Advanced Studies Office) and Earle Howard (Lunar and Planetary Instruments Section) all worked on this field test program.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL's Library and Archives Group.

TAGS: HISTORY, SURVEYOR, TESTING, MISSIONS, SPACECRAFT, EARTH'S MOON, SOLAR SYSTEM

  • Julie Cooper
READ MORE

Artist's concept of the Dawn spacecraft

Illustration of Dawn's orbits from RC3 to survey orbit

Illustration of Dawn's orbits from HAMO to LAMO

Dear Compedawnt Readers,

Less than a year from its rendezvous with dwarf planet Ceres, Dawn is continuing to make excellent progress on its ambitious interplanetary adventure. The only vessel from Earth ever to take up residence in the main asteroid belt between Mars and Jupiter, the spacecraft grows more distant from Earth and from the sun as it gradually closes in on Ceres. Dawn devotes the majority of its time to thrusting with its remarkable ion propulsion system, reshaping its heliocentric path so that by the time it nears Ceres, the explorer and the alien world will be in essentially the same orbit around the sun.

In December, we saw what Dawn will do during the "approach phase"; to Ceres early in 2015, and in January, we reviewed the unique and graceful method of spiraling into orbit. We described in February the first orbit (with the incredibly cool name RC3) from which intensive scientific observations will be conducted, at an altitude of 8,400 miles (13,500 kilometers). But Dawn will take advantage of the extraordinary capability of ion propulsion to fly to three other orbital locations from which it will further scrutinize the mysterious world.

Let’s recall how the spacecraft will travel from one orbit to another. While some of these plans may sound like just neat ideas, they are much more than that; they have been proven with outstanding success. Dawn maneuvered extensively during its 14 months in orbit around Vesta. (One of the many discussions of that was in November 2011.) The seasoned space traveler and its veteran crew on distant Earth are looking forward to applying their expertise at Ceres.

As long-time readers of these logs know so well, the ion thrust is uniquely efficient but also extremely low. Ion propulsion provides acceleration with patience. Ultimately the patience pays off, enabling Dawn to accomplish feats far beyond what any other spacecraft has ever had the capability to do, including orbiting two extraterrestrial destinations. The gentle thrust, comparable to the weight of a single sheet of paper, means it takes many weeks to maneuver from one observational orbit to another. Of course, it is worthwhile to spend that much time, because each of the orbital phases is designed to provide an exciting trove of scientific data.

Those of you who have navigated around the solar system, as well as others who have contemplated the nature of orbits without having practical experience, recognize that the lower the orbital altitude, the faster the orbital motion. This important principle is a consequence of gravity’s strength increasing as the distance between the massive body and the orbiting object decreases. The speed has to be higher to balance the stronger gravitational pull. (For a reminder of some of the details, be sure to go here before you go out for your next orbital expedition.)

While Dawn slowly reduces its altitude under the faint pressure of its ion engine, it continues circling Ceres, orbiting in the behemoth’s gravitational grip. The effect of combining these motions is that the path from one altitude to another is a spiral. And as Dawn descends and zips around Ceres faster and faster, the spirals get tighter and tighter.

The first coils around Ceres will be long and slow. After completing its investigations in RC3, the probe will spiral down to”survey orbit,”; about 2,700 miles (4,400 kilometers) above the surface. During that month-long descent, it will make only about five revolutions. After three weeks surveying Ceres from that new vantage point, Dawn will follow a tighter spiral down to the (misleadingly named) high altitude mapping orbit (HAMO) at 910 miles (1,470 kilometers). In the six-week trip to HAMO, the craft will wind around almost 30 times. It will devote two months to performing extensive observations in HAMO. And finally as 2015 draws to a close, it will fly an even more tightly wound course to reach its low altitude mapping orbit (LAMO) at 230 miles (375 kilometers), where it will collect data until the end of the mission. The ship will loop around 160 times during the two months to go from HAMO to LAMO. (We will preview the plans for survey orbit, HAMO and LAMO in May, July and August of this year, and if all goes well, we will describe the results in 2015 and 2016.)

Designing the spiral trajectories is a complex and sophisticated process. It is not sufficient simply to activate the thrust and expect to arrive at the desired destination, any more than it is sufficient to press the accelerator in your car and expect to reach your goal. You have to steer carefully (and if you don’t, please don’t drive near me), and so does Dawn. As the ship revolves around Ceres, it must constantly change the pointing of the blue-green beam of high velocity xenon ions to stay on precisely the desired winding route to the targeted orbit. The mission control team at JPL will program the ship to orient its thruster in just the right direction at the right time to propel itself on the intended spiraling course.

Aiming a thruster in the direction needed to spiral around Ceres requires turning the entire spacecraft. Each thruster is mounted on its own gimbal with a limited range of motion. In normal operation, the gimbal is positioned so that the line of thrust goes through the center of the ship. When the gimbal is swiveled to another direction, the gentle force from the ion engine causes the ship to rotate slowly. This is similar to the use of an outboard motor on a boat. When it is aligned with the centerline of the boat, the craft travels straight ahead. When the motor is turned, it continues to propel the boat but also turns it. In essence, Dawn’s steering of its thrust is accomplished by pivoting the ion engine.

A crucial difference between the boat and our interplanetary ship is that with the former, the farther the motor is turned, the tighter the curving course. (Another difference is that the spacecraft wouldn’t float.) Dawn doesn’t have that liberty. For our craft, the gimballing of the thruster needs to be carefully coordinated with the orbital motion, as if the motorboat operator needed to compensate for a curving current. This has important implications at Ceres. Sophisticated as it is, Dawn knows its own location in orbit only by virtue of information mission controllers install onboard to predict where it will be at any time. That is based on their best computations of Ceres’ gravity, the planned operation of the ion propulsion system, and many other considerations, but it will never be perfectly accurate. Let’s take a look at two of the reasons.

Ceres, like Vesta, Earth, the moon, Mars, and other planets or planetary-type bodies, has a complex gravity field. The distribution of materials of different densities within the interior creates variations in the strength of the gravitational force, so Dawn will feel a slightly changing tug from Ceres as it travels in orbit. But there is a noteworthy difference between Ceres’ gravity field and the fields of those other worlds: Ceres’ field is unknown. We will have to measure it as we go. The subtle irregularities in gravity as Dawn descends will cause small deflections from the planned trajectory. Our ship will be traversing unknown, choppy waters.

Other phenomena will lead to slight discrepancies as well. The ion propulsion system will be responsible for changing the orbit, so even tiny deviations from the intended thrust eventually may build up to have a significant effect. This is no different from any realistic electrical or mechanical system, which is sure to have imperfections. If you planned a trip in which you would drive 60.0 miles (96.6 kilometers) at 60.0 mph (96.6 kilometers per hour), you could expect to arrive in exactly 60.0 minutes. (No surprises there, as it isn’t exactly rocket science.) But even if you maintained the speedometer as close to 60 as you could, it would not be accurate enough to indicate the true speed. If your actual speed averaged 60.4 mph (97.2 kilometers per hour), you would arrive 24 seconds early. Perhaps that difference wouldn’t matter to you (and if it did, you might consider replacing your car with a spaceship), but such minuscule errors, when compounded by Dawn’s repeated spirals around Ceres, would make a difference in achieving its carefully chosen orbit.

As a result of these and other effects, mission controllers will need to adjust the complex flight plan as Dawn travels from one observational orbit to another. So it will thrust for a few days and then stop to allow navigators to get a new fix on its position. When it points its main antenna to Earth, the Doppler shift of its radio signal will reveal its speed, and the time for radio signals (traveling, as all readers know so well, at the universal limit of the speed of light) to make the round trip will yield its distance. Combining those measurements with other data, mission controllers will update the plan for where to point the thruster at each instant during the next phase of the spiral, check it, double check it, and transmit it to the faraway robot, which will then put it into action. This intensive process will be repeated every few days as Dawn maneuvers to lower orbits.

The flight team succeeded brilliantly in performing this kind of work at Vesta, but they will encounter some differences at Ceres. Sunlight is even weaker in that remote part of the asteroid belt. The giant solar arrays will generate less electrical power for the ion propulsion system, so the whisper-like thrust will be even fainter. In addition, Ceres is more massive than Vesta, so its gravitational hold is stronger. Of course, the team has developed plans to account for these and other differences as they guide Dawn from one orbit to another.

The reward for these particularly challenging parts of the mission will be new perspectives on Ceres. The distant landscapes, barely even hinted at by observations for more than two centuries, will come into sharper and sharper focus as Dawn spirals closer. At each new orbital perch, the explorer will reveal exciting new details, allowing new discoveries and new insights. Everyone who is curious about the cosmos is welcome to join the journey as human ingenuity and curiosity take us far, far from home to an uncharted world.

Dawn is 9.2 million miles (15 million kilometers) from Ceres. It is also 1.61 AU (149 million miles, or 241 million kilometers) from Earth, or 620 times as far as the moon and 1.60 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 27 minutes to make the round trip.

Dr. Marc D. Rayman
4:00 p.m. PDT April 30, 2014

P.S. This is the 100th Dawn Journal, so this seems like a good time to end. This will be the last one.

P.P.S. Until next month.

TAGS: DAWN, CERES, VESTA, SOLAR SYSTEM, SPACECRAFT, MISSIONS, DWARF PLANETS

  • Marc Rayman
READ MORE

Artist's concept of the Dawn spacecraft

The Dawn spacecraft's trajectory

Finder chart showing the locations of Vesta and Ceres

Dear Correspondawnts,

Powering its way through deep space, Dawn draws ever closer to dwarf planet Ceres. To reach its destination, the interplanetary spaceship gently reshapes its path around the sun with its extraordinary ion propulsion system. In about a year, the spacecraft will gracefully slip into orbit so it can begin to unveil the nature of the mysterious world of rock and ice, an intriguing protoplanetary remnant from the dawn of the solar system.

Even as Dawn ascends the solar system hill, climbing farther and farther from the sun, penetrating deeper into the main asteroid belt between Mars and Jupiter, its distance to Earth is shrinking. This behavior may be perplexing for readers with a geocentric bias, but to understand it, we can take a broader perspective.

The sun is the conductor of the solar system symphony. Its gravity dictates the movements of everything that orbits it: Earth as well as the other planets, Vesta, Ceres, and myriad smaller objects, including asteroids and Dawn. (Actually, the gravity of every single body affects how all of the others move, but with more than 99 percent of the entire solar system's mass concentrated in the gargantuan sun, it dominates the gravitational landscape.)

Whether it is for a planet or Dawn orbiting the sun, a spacecraft or moon orbiting a planet, the sun or other stars orbiting the Milky Way (the Milky Way galaxy, that is, not your correspondent’s cat Milky Way), or the Milky Way galaxy orbiting the Virgo supercluster of galaxies (home to an appreciable fraction of our readership), any orbit is the perfect balance between the inward tug of gravity and the inexorable tendency of objects to travel in a straight line. If you attach a weight to a string and swing it around in a circle, the force you use to pull on the string mimics the gravitational force the sun exerts on the bodies that orbit it. The effort you expend in keeping the weight circling serves constantly to redirect its course, forcing it to curve; if you release the string, the weight’s natural motion would take it away in a straight line (we are ignoring here the effect of Earth’s gravity on the weight).

The force of gravity dwindles as the distance increases, so the sun pulls harder on a nearby body than on a farther one. Therefore, to remain in orbit, to balance the relentless gravitational lure, the closer object must travel at higher speed, resisting the stronger attraction. The same effect applies at Earth. Satellites that orbit very close (including, for example, the International Space Station, 250 miles, or 400 kilometers, above the surface) must streak around the planet at about 17,000 mph (7.6 kilometers per second) to avoid being drawn down. The moon, orbiting almost a thousand times farther above, needs only to travel at less than 2300 mph (about 1.0 kilometers per second) to balance Earth’s weaker hold at its remote location.

For that reason, Mercury zips around the sun faster than any of the other planets. Mars travels more slowly than Earth, and the still more distant residents of the asteroid belt, whether natural (all of them but one) or a product of human ingenuity (one: Dawn), proceed at an even more leisurely pace. As Earth makes its relatively rapid annual trip around the sun, the distance to the spacecraft that left it behind in 2007 alternately shrinks and grows.

We can visualize this with one of the popular models of clocks available in the Dawn gift shop on your planet, in which the hour hand is longer than the minute hand. Imagine the sun as being at the center of the clock. The tip of the short minute hand represents Earth, and the end of the hour hand represents Dawn. Some of the time (such as between noon and shortly after 12:30), the distance between the ends of the hands increases. Then the situation reverses as the faster minute hand begins moving closer and closer to the hour hand as the time approaches about 1:05.

Earth and Dawn are exhibiting the same repetitive behavior. Of course, their relative motion is more complicated than that of the clock hands, because Dawn’s ion thrusting is constantly changing its solar orbit (and so the distance and speed at which it loops around the sun), but the principle is the same. They have been drawing closer since August 2013. Earth, coming from behind, is now about to pass Dawn and move ahead. The stalwart probe will not even take note however, as its sights remain firmly set on an unexplored alien world.

On April 10, the separation will be 1.56 AU (1.56 times the average distance between Earth and the sun, which means 145 million miles, or 233 million kilometers), an almost inconceivably large distance (well in excess of half a million times farther than the International Space Station, which orbits Earth, not the sun) but less than it has been since September 2011. (The skeptical reader may verify this by reviewing the concluding paragraph of each log in the intervening months.) Enjoy the upcoming propinquity while you can! As the ship sails outward from the sun toward Ceres, it will never again be this close to its planet of origin. The next time Earth, taking an inside track, overtakes it, in July 2015 (by which time Dawn will be orbiting Ceres), they will only come within 1.94 AU (180 million miles, or 290 million kilometers) of each other.

By the way, Vesta, the endlessly fascinating protoplanet Dawn unveiled in 2011-2012, will be at its smallest separation from Earth of 1.23 AU (114 million miles, or 183 million km) on April 18. Ceres, still awaiting a visitor from Earth, despite having first been glimpsed from there in 1801, will attain its minimum distance on April 15, when it will be 1.64 AU (153 million miles, or 246 million km) away. It should not be a surprise that Dawn’s distance is intermediate; it is between them as it journeys from one to the other.

Not only is each one nearly at its shortest geocentric range, but from Earth’s point of view, they all appear to be near each other in the constellation Virgo. In fact, they also look close to Mars, so you can locate these exotic worlds (and even the undetectably small spacecraft) in the evening sky by using the salient red planet as a signpost. In July, the coincidental celestial alignment will make Vesta and Ceres appear to be separated by only one third the diameter of the full Moon, although these behemoths of the asteroid belt will be 0.57 AU (52 million miles, or 85 million kilometers) from each other.

We mentioned above that by constantly modifying its orbit under the persistent pressure of its ion engine, Dawn complicates the simple clock-like behavior of its motion relative to Earth. On Halloween 2012, we were treated to the startling fact that to rendezvous with Ceres, at a greater distance from the sun, Dawn had to come in toward the sun for a portion of its journey; quite a trick! In that memorable log (which is here, for those readers who didn't find every detail to be so memorable), we observed that it would not be until May 2014 that Dawn would be as far from the sun as it was on Nov. 1, 2012. Sure enough, having faithfully performed all of the complex and intricate choreography since then, it will fly to more than 2.57 AU from the solar system’s star in May, and it will continue heading outward.

With the sun behind it and without regard to where Earth or most other residents of the solar system are in their orbits, Dawn rises to ever greater heights on its extraordinary expedition. Distant though it is, the celestial ambassador is propelled by the burning passion for knowledge, the powerful yearning to reach beyond the horizon, and the noble spirit of adventure of the inhabitants of faraway Earth. The journey ahead presents many unknowns, promising both great challenges and great rewards. That, after all, is the reason for undertaking it, for such voyages enrich the lives of all who share in the grand quest to understand more about the cosmos and our humble place in it.

Dawn is 11 million miles (18 million kilometers) from Ceres. It is also 1.57 AU (146 million miles, or 235 million kilometers) from Earth, or 625 times as far as the moon and 1.57 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 26 minutes to make the round trip.

Dr. Marc D. Rayman
4:00 p.m. PDT March 31, 2014

TAGS: DAWN, CERES, VESTA, MISSION, SPACECRAFT

  • Marc Rayman
READ MORE

Artist's concept of the Dawn spacecraft at the protoplanet Ceres

Illustration of Dawn's approach phase and RC3 orbit

Dear Ardawnt Readers,

Continuing its daring mission to explore some of the last uncharted worlds in the inner solar system, Dawn remains on course and on schedule for its rendezvous with dwarf planet Ceres next year. Silently and patiently streaking through the main asteroid belt between Mars and Jupiter, the ardent adventurer is gradually reshaping its orbit around the Sun with its uniquely efficient ion propulsion system. Vesta, the giant protoplanet it unveiled during its spectacular expedition there in 2011-2012, grows ever more distant.

In December, and January, we saw Dawn's plans for the "approach phase" to Ceres and how it will slip gracefully into orbit under the gentle control of its ion engine. Entering orbit, gratifying and historic though it will be, is only a means to an end. The reason for orbiting its destinations is to have all the time needed to use its suite of sophisticated sensors to scrutinize these alien worlds.

As at Vesta, Dawn will take advantage of the extraordinary capability of its ion propulsion system to maneuver extensively in orbit at Ceres. During the course of its long mission there, it will fly to four successively lower orbital altitudes, each chosen to optimize certain investigations. (The probe occupied six different orbits at Vesta, where two of them followed the lowest altitude. As the spacecraft will not leave Ceres, there is no value in ascending from its fourth and lowest orbit.) All of the plans for exploring Ceres have been developed to discover as much as possible about this mysterious dwarf planet while husbanding the precious hydrazine propellant, ensuring that Dawn will complete its ambitious mission there regardless of the health of its reaction wheels.

All of its orbits at Ceres will be circular and polar, meaning the spacecraft will pass over the north pole and the south pole, so all latitudes will come within view. Thanks to Ceres's own rotation, all longitudes will be presented to the orbiting observer. To visualize this, think of (or even look at) a common globe of Earth. A ring encircling it represents Dawn's orbital path. If the ring is only over the equator, the spacecraft cannot attain good views of the high northern and southern latitudes. If, instead, the ring goes over both poles, then the combined motion of the globe spinning on its axis and the craft moving along the ring provides an opportunity for complete coverage.

Dawn will orbit in the same direction it did at Vesta, traveling from north to south over the side illuminated by the distant Sun. After flying over the south pole, it will head north, the surface directly beneath it in the dark of night. When it travels over the north pole, the terrain below will come into sunlight and the ship will sail south again.

Dawn's first orbital phase is distinguished not only by providing the first opportunity to conduct intensive observations of Ceres but also by having the least appealing name of any of the Ceres phases. It is known as RC3, or the third "rotation characterization" of the Ceres mission. (RC1 and RC2 will occur during the approach phase, as described in December.)

During RC3 in April 2015, Dawn will have its first opportunity for a global characterization of its new residence in the asteroid belt. It will take pictures and record visible and infrared spectra of the surface, which will help scientists determine its composition. In addition to learning about the appearance and makeup of Ceres, these observations will allow scientists to establish exactly where Ceres's pole points. The axis Earth rotates around, for example, happens to point very near a star that has been correspondingly named Polaris, or the North Star. [Note to editors of local editions: You may change the preceding sentence to describe wherever the axis of your planet points.] We know only roughly where Ceres's pole is from our telescopic studies, but Dawn's measurements in RC3 will yield a much more accurate result. Also, as the spacecraft circles in Ceres's gravitational hold, navigators will measure the strength of the gravitational pull and hence its overall mass.

RC3 will be at an orbital altitude of about 8,400 miles (13,500 kilometers). From there, the dwarf planet will appear eight times larger than the moon as viewed from Earth, or about the size of a soccer ball seen from 10 feet (3.1 meters). At that distance, Dawn will be able to capture the entire disk of Ceres in its pictures. The explorer's camera, designed for mapping unfamiliar extraterrestrial landscapes from orbit, will see details more than 20 times finer than we have now from the Hubble Space Telescope.

Although all instruments will be operated in RC3, the gamma-ray and neutron detector (GRaND) will not be able to detect the faint nuclear emissions from Ceres when it is this far away. Rather, it will measure cosmic radiation. In August we will learn more about how GRaND will measure Ceres's atomic composition when it is closer.

It will take about 15 days to complete a single orbital revolution at this altitude. Meanwhile, Ceres turns on its axis in just over nine hours (more than two and a half times faster than Earth). Dawn's leisurely pace compared to the spinning world beneath it presents a very convenient way to map it. It is almost as if the probe hovers in place, progressing only through a short arc of its orbit as Ceres pirouettes helpfully before it.

When Dawn is on the lit side of Ceres over a latitude of about 43 degrees north, it will point its scientific instruments at the unfamiliar, exotic surface. As Ceres completes one full rotation, the robot will fill its data buffers with as much as they can hold, storing images and spectra. By then, most of the northern hemisphere will have presented itself, and Dawn will have traveled to about 34 degrees north latitude. The spacecraft will then aim its main antenna to Earth and beam its prized findings back for all those who long to know more about the mysteries of the solar system. When Dawn is between 3 degrees north and 6 degrees south latitude, it will perform the same routine, acquiring more photos and spectra as Ceres turns to reveal its equatorial regions. To gain a thorough view of the southern latitudes, it will follow the same strategy as it orbits from 34 degrees south to 43 degrees south.

When Dawn goes over to the dark side, it will still have important measurements to make (as long as Darth Vader does not interfere). While the surface immediately beneath it will be in darkness, part of the limb will be illuminated, displaying a lovely crescent against the blackness of space. Both in the southern hemisphere and in the northern, the spacecraft will collect more pictures and spectra from this unique perspective. Dawn's orbital dance has been carefully choreographed to ensure the sensitive instruments are not pointed too close to the Sun.

Although it is not the primary objective of the measurements, team members are working to determine whether observations from the vantage point of the night side of RC3 might shed more light on the recent fascinating detection of water vapor around Ceres by the Herschel Space Observatory. Whether the water is lofted into space by ice sublimating on the surface or by geysers or cryovolcanoes (“cold volcanoes,” which may be active on this small, frigid world of rock and ice far from the sun) is not yet known. Scientists do not even know whether any water vapor will still be there when Dawn is. Even if it is not, it may be that signs of water will be evident on the surface from other measurements. We will discuss this intriguing possibility more in the December 2014 log.

Dawn’s controllers will take advantage of the flexibility afforded by ion propulsion to guide the spacecraft into whatever part of the RC3 orbit turns out to be most efficient, based on details of the trajectory as it closes in on Ceres. So, for example, if it spirals down to RC3 over the unlit side, its observations of the day hemisphere will first be in the north, then the equator, then the south. But if it arrives in RC3 over the low northern latitudes on the side lit by the sun, it will begin its observations over the equator and then continue in the south. After it flies north over the other side and then returns to the half of Ceres that is in daylight, it will be ready to conclude RC3 by collecting its northern hemisphere data. The flight team has formulated the plan so that the activities can be executed in whatever order is most natural. The schedule will be finalized during the approach phase, and readers may rest assured that the answer will be presented in these logs.

If all goes according to plan, which is never assured when undertaking challenging tasks in a forbidding, distant, alien environment that has never even been visited by a flyby spacecraft for an initial reconnaissance, Dawn will collect in excess of 1,000 pictures and several million spectra in RC3. After that rich bounty is securely on Earth, it will resume ion thrusting to lower its altitude to the next orbit. We will discuss the spiral descent in April and that second observation phase in May.

Dawn’s first inspection of Ceres in RC3 promises both to provide tremendous advancements in our knowledge and whet our appetites for its subsequent examinations. The most massive resident of the main asteroid belt was also the first one to be discovered. Yet for the more than two centuries since then, our glimpses from afar have shown little more than a fuzzy round dot. That distant orb, shining among the stars, has intrigued us for so long. When finally its invitation for an ambassador from Earth is answered next year, the secrets it has held since the dawn of the solar system will begin to be revealed. The rewards for the long and challenging journey will be new insights, new understanding, and new fuel for the fires that burn within everyone who feels the passion to explore.

Dawn is 14 million miles (22 million kilometers) from Ceres. It is also 1.76 AU (163 million miles, or 263 million kilometers) from Earth, or 725 times as far as the moon and 1.77 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 29 minutes to make the round trip.

Dr. Marc D. Rayman
3:00 p.m. PST February 28, 2014

TAGS: DAWN, CERES, VESTA, SPACECRAFT, MISSION, DWARF PLANETS, SOLAR SYSTEM

  • Marc Rayman
READ MORE

Artist's concept of the Dawn spacecraft at the dwarf planet Ceres

illustration of Dawn's orbit

Dear Rendawnvous,

Dawn is continuing its trek through the main asteroid belt between Mars and Jupiter. Leaving behind a blue-green wake of xenon from its ion propulsion system, its sights are set on dwarf planet Ceres ahead. The journey has been long, but the veteran space traveler (and its support team on distant Earth) is making good progress for its rendezvous early next year.

Last month, we had a preview of many of the activities the probe will execute during the three months that culminate in settling into the first observational orbit at Ceres in April 2015. At that orbit, about 8,400 miles (13,500 kilometers) above the alien landscapes of rock and ice, Dawn will begin its intensive investigations. Nevertheless, even during the "approach phase," it will often observe Ceres with its camera and one of its spectrometers to gain a better fix on its trajectory and to perform some preliminary characterizations of the mysterious world prior to initiating its in-depth studies. The discussion in December did not cover the principal activity, however, which is one very familiar not only to the spacecraft but also to readers of these logs. The majority of the time in the approach phase will be devoted to continuing the ion-powered flight. We described this before Vesta, but for those few readers who don't have perfect recall (we know who you are), let's take another look at how this remarkable technology is used to deliver the adventurer to the desired orbit around Ceres.

Thrusting is not necessary for a spacecraft to remain in orbit, just as the moon remains in orbit around Earth and Earth and other planets remain in orbit around the sun without the benefit of propulsion. All but a very few spacecraft spend most of their time in space coasting, following the same orbit over and over unless redirected by a gravitational encounter with another body. In contrast, with its extraordinarily efficient ion propulsion system, Dawn's near-continuous thrusting gradually changes its orbit. Thrusting since December 2007 has propelled Dawn from the orbit in which the Delta rocket deposited it after launch to orbits of still greater distance from the sun. The flight profile was carefully designed to send the craft by Mars in February 2009, so our celestial explorer could appropriate some of the planet's orbital energy for the journey to the more distant asteroid belt, of which it is now a permanent resident. In exchange for Mars raising Dawn's heliocentric orbit, Dawn lowered Mars's orbit, ensuring the solar system's energy account remained balanced.

While spacecraft have flown past a few asteroids in the main belt (although none as large as the gargantuan Vesta or Ceres, the two most massive objects in the belt), no prior mission has ever attempted to orbit one, much less two. For that matter, this is the first mission ever undertaken to orbit any two extraterrestrial destinations. Dawn's exclusive assignment would be quite impossible without its uniquely capable ion propulsion system. But with its light touch on the accelerator, taking nearly four years to travel from Earth past Mars to Vesta, and more than two and a half years from Vesta to Ceres, how will it enter orbit around Ceres? As we review this topic in preparation for Ceres, bear in mind that this is more than just a cool concept or neat notion. This is real. The remarkable adventurer actually accomplished the extraordinary feats at Vesta of getting into and out of orbit using the delicate thrust of its ion engines.

Whether conventional spacecraft propulsion or ion propulsion is employed, entering orbit requires accompanying the destination on its own orbit around the sun. This intriguing challenge was addressed in part in February 2007. In February 2013, we considered another aspect of what is involved in climbing the solar system hill, with the sun at the bottom, Earth partway up, and the asteroid belt even higher. We saw that Dawn needs to ascend that hill, but it is not sufficient simply to reach the elevation of each target nor even to travel at the same speed as each target; the explorer also needs to travel in the same direction. Probes that leave Earth to orbit other solar system bodies traverse outward from (or inward toward) the sun, but then need to turn in order to move along with the body they will orbit, and that is difficult.

Those of you who have traveled around the solar system before are familiar with the routine of dropping into orbit. The spacecraft approaches its destination at very high velocity and fires its powerful engine for some minutes or perhaps even about an hour, by the end of which it is traveling slowly enough that the planet's gravity can hold it in orbit and carry it around the sun. These exciting events may range from around 1,300 to 3,400 mph (0.6 to 1.5 kilometers per second). With ten thousand times less thrust than a typical propulsion system on an interplanetary spacecraft, Dawn could never accomplish such a rapid maneuver. As it turns out, however, it doesn't have to.

Dawn's method of getting into orbit is quite different, and the key is expressed in an attribute of ion propulsion that has been referred to 63 times (trust or verify; it's your choice) before in these logs: it is gentle. (This example shows just how gentle the acceleration is.) With the gradual trajectory modifications inherent in ion propulsion, sharp changes in direction and speed are replaced by smooth, gentle curves. The thrust profiles for Dawn's long interplanetary flights are devoted to the gradual reshaping of its orbit around the sun so that by the time it is in the vicinity of its target, its orbit is nearly the same as that of the target. Rather than hurtling toward Vesta or Ceres, Dawn approaches with grace and elegance. Only a small trajectory adjustment is needed to let its new partner's gravity capture it, so even that gentle ion thrust will be quite sufficient to let the craft slip into orbit. With only a nudge, it transitions from its large, slow spiral away from the sun to an inward spiral centered around its new gravitational master.

To get into orbit, a spacecraft has to match speed, direction and location with its target. A mission with conventional propulsion first gets to the location and then, using the planet's gravity and its own fuel-guzzling propulsion system, very rapidly achieves the required speed and direction. By spiraling outward from the sun, first to the orbit of Vesta and now to Ceres, Dawn works on its speed, direction and location all at the same time, so they all gradually reach the needed values at just the right time.

To illustrate this facet of the difference between how the different systems are applied to arrive in orbit, let's imagine you want to drive your car next to another traveling west at 60 mph (100 kilometers per hour). The analogy with the conventional technology would be similar to speeding north toward an intersection where you know the other car will be. You arrive there at the same time and then execute a screeching, whiplash-inducing left turn at the last moment using the brakes, steering wheel, accelerator and adrenaline. When you drive an ion propelled car (with 10 times higher fuel efficiency), you take an entirely different path from the start, one more like a long, curving entrance ramp to a highway. As you enter the ramp, you slowly (perhaps even gently) build speed. You approach the highway gradually, and by the time you have reached the far end of the ramp, your car is traveling at the same speed and in the same direction as the other car. Of course, to ensure you are there when the other car is, the timing is very different from the first method, but the sophisticated techniques of orbital navigation are up to the task.

In March or April 2015, as the probe follows its approach trajectory to Ceres, their paths will be so similar they will be racing around the sun at nearly the same speed (38,500 mph, or 17.2 kilometers per second) and in the same direction. But what matters is their relative velocity. When at a range of 30,000 miles (48,000 kilometers), the spacecraft will be closing in on its destination at less than 85 mph (37 meters per second). The combination of distance and velocity will allow Ceres to take Dawn in its grasp. The spacecraft will not even notice the difference, but it will be in orbit around its second and final celestial target, even as it continues ion thrusting to spiral to its first planned orbital altitude two and a half weeks later.

Unlike missions that use conventional chemical propulsion, there is no sudden change on the spacecraft and no nail-biting on Earth. If you were in space watching the action, you probably would be hungry, cold and hypoxic, but you would not notice anything unusual about the scene as Ceres smoothly and tenderly takes Dawn into an invisible gravitational embrace.

If instead of being in deep space, you had been in Dawn mission control watching the action when the spacecraft entered orbit around Vesta in July 2011 you would have been in the dark and all alone (until JPL Security arrived to escort you away). Your correspondent was out dancing, and other members of the team were engaged in activities similarly unrelated to controlling a probe hundreds of times farther away than the moon. There was no need to have radio contact with the reliable spaceship. It had already been thrusting for 70 percent of its time in space, so it was performing a very familiar function. It should be no different at Ceres (although the dance program may not be exactly the same). When Dawn enters orbit, no one is tense or anxious; rather, all the drama is in the promise of the spectacular discoveries in exploring uncharted worlds, the rewards of new knowledge, and the thrill of knowing that humankind is reaching far, far from home in a grand effort to know the cosmos.

Dawn is 16 million miles (26 million kilometers) from Ceres. It is also 2.05 AU (191 million miles, or 307 million kilometers) from Earth, or 855 times as far as the moon and 2.08 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 34 minutes to make the round trip.

Dr. Marc D. Rayman
2:00 p.m. PST January 31, 2014

TAGS: DAWN, CERES, VESTA, MISSION, SPACECRAFT, SOLAR SYSTEM, DWARF PLANETS

  • Marc Rayman
READ MORE

NASA Dawn spacecraft between its targets, Vesta and Ceres

Dear Clairvoydawnts,

Now more than halfway through its journey from protoplanet Vesta to dwarf planet Ceres, Dawn is continuing to use its advanced ion propulsion system to reshape its orbit around the sun. Now that the ship is closer to the uncharted shores ahead than the lands it unveiled astern, we will begin looking at the plans for exploring another alien world. In seven logs from now through August, we will discuss how the veteran adventurer will accomplish its exciting mission at Ceres. By the time it arrives early in 2015 at the largest object between Mars and Jupiter, readers will be ready to share not only in the drama of discovery but also in the thrill of an ambitious undertaking far, far from Earth.

Mission planners separate this deep-space expedition into phases. Following the "launch phase" was the 80-day "checkout phase". The "interplanetary cruise phase" is the longest. It began on December 17, 2007, and continued to the "Vesta phase," which extended from May 3, 2011, to Sept. 4, 2012. We are back in the interplanetary cruise phase again and will be until the "Ceres phase" begins in 2015. (Other phases may occur simultaneously with those phases, such as the "oh man, this is so cool phase," the "we should devise a clever name for this phase phase," and the "lunch phase.") Because the tasks at Vesta and Ceres are so complex and diverse, they are further divided into sub-phases. The phases at Ceres will be very similar to those at Vesta, even though the two bodies are entirely different.

In this log, we will describe the Ceres "approach phase." The objectives of approach are to get the explorer into orbit and to attain a preliminary look at the mysterious orb, both to satisfy our eagerness for a glimpse of a new and exotic world and to obtain data that will be helpful in refining details of the subsequent in-depth investigations. The phase will start in January 2015 when Dawn is about 400,000 miles (640,000 kilometers) from Ceres. It will conclude in April when the spacecraft has completed the ion thrusting necessary to maneuver into the first orbit from which it will conduct intensive observations, at an altitude of about 8,400 miles (13,500 kilometers). For a reason to be revealed below, that orbit is known by the catchy cognomen RC3.

(Previews for the Vesta approach phase were presented in March 2010 and May 2011, and the accounts of its actual execution are in logs from June, July, and August 2011. Future space historians should note that the differing phase boundaries at Vesta are no more than a matter of semantics. At Vesta, RC3 was described as being part of the approach phase. For Ceres, RC3 is its own distinct phase. The reasons for the difference in terminology are not only unimportant, they aren't even interesting.)

The tremendous maneuverability provided by Dawn's uniquely capable ion propulsion system means that the exact dates for events in the approach phase likely will change between now and then. So for those of you in 2015 following a link back to this log to see what the approach plan has been, we offer both the reminder that the estimated dates here might shift by a week or so and a welcome as you visit us here in the past. We look forward to meeting you (or even being you) when we arrive in the future.

Most of the approach phase will be devoted to ion thrusting, making the final adjustments to Dawn's orbit around the sun so that Ceres's gravity will gently take hold of the emissary from distant Earth. Next month we will explain more about the unusual nature of the gradual entry into orbit, which will occur on about March 25, 2015.

Starting in early February 2015, Dawn will suspend thrusting occasionally to point its camera at Ceres. The first time will be on Feb. 2, when they are 260,000 miles (420,000 kilometers) apart. To the camera's eye, designed principally for mapping from a close orbit and not for long-range observations, Ceres will appear quite small, only about 24 pixels across. But these pictures of a fuzzy little patch will be invaluable for our celestial navigators. Such "optical navigation" images will show the location of Ceres with respect to background stars, thereby helping to pin down where it and the approaching robot are relative to each other. This provides a powerful enhancement to the navigation, which generally relies on radio signals exchanged between Dawn and Earth. Each of the 10 times Dawn observes Ceres during the approach phase will help navigators refine the probe's course, so they can update the ion thrust profile to pilot the ship smoothly to its intended orbit.

Whenever the spacecraft stops to acquire images with the camera, it also will train the visible and infrared mapping spectrometer on Ceres. These early measurements will be helpful for finalizing the instrument parameters to be used for the extensive observations at closer range in subsequent mission phases.

Dawn obtained images more often during the Vesta approach phase than it will on approach to Ceres, and the reason is simple. It has lost two of its four reaction wheels, devices used to help turn or stabilize the craft in the zero-gravity, frictionless conditions of spaceflight. (In full disclosure, the units aren't actually lost. We know precisely where they are. But given that they stopped functioning, they might as well be elsewhere in the universe; they don't do Dawn any good.) Dawn's hominin colleagues at JPL, along with excellent support from Orbital Sciences Corporation, have applied their remarkable creativity, tenacity, and technical acumen to devise a plan that should allow all the original objectives of exploring Ceres to be met regardless of the health of the wheels. One of the many methods that contributed to this surprising resilience was a substantial reduction in the number of turns during all remaining phases of the mission, thus conserving the precious hydrazine propellant used by the small jets of the reaction control system.

When Dawn next peers at Ceres, nine days after the first time, it will be around 180,000 miles (290,000 kilometers) away, and the pictures will be marginally better than the sharpest views ever captured by the Hubble Space Telescope. By the third optical navigation session, on Feb. 21, Ceres will show noticeably more detail.

At the end of February, Dawn will take images and spectra throughout a complete Ceres rotation of just over nine hours, or one Cerean day. During that period, while about 100,000 miles (160,000 kilometers) distant, Dawn's position will not change significantly, so it will be almost as if the spacecraft hovers in place as the dwarf planet pirouettes beneath its watchful eye. Dawn will see most of the surface with a resolution twice as good as what has been achieved with Hubble. (At that point in the curving approach trajectory, the probe will be south of Ceres's equator, so it will not be able to see the high northern latitudes.) This first "rotation characterization," or RC1, not only provides the first (near-complete) look at the surface, but it may also suggest to insightful readers what will occur during the RC3 orbit phase.

There will be six more imaging sessions before the end of the approach phase, with Ceres growing larger in the camera's view each time. When the second complete rotation characterization, RC2, is conducted on March 16, the resolution will be four times better than Hubble's pictures. The last photos, to be collected on March 24, will reveal features seven times smaller than could be discerned with the powerful space observatory.

The approach imaging sessions will be used to accomplish even more than navigating, providing initial characterizations of the mysterious world, and whetting our appetites for more. Six of the opportunities also will include searches for moons of Ceres. Astronomers have not found moons of this dwarf planet in previous attempts, but Dawn's unique vantage point would allow it to discover smaller ones than would have been detectable in previous attempts.

When the approach phase ends, Dawn will be circling its new home, held in orbit by the massive body's gravitational grip and ready to begin more detailed studies. By then, however, the pictures and other data it will have returned will already have taught Earthlings a great deal about that enigmatic place. Ceres has been observed from Earth for more than two centuries, having first been spotted on January 1, 1801, but it has never appeared as much more than an indistinct blob amidst the stars. Soon a probe dispatched by the insatiably curious creatures on that faraway planet will take up residence there to uncover some of the secrets it has held since the dawn of the solar system. We don't have long to wait!

Dawn is 20 million miles (32 million kilometers) from Vesta and 19 million miles (31 million kilometers) from Ceres. It is also 2.42 AU (225 million miles, or 362 million kilometers) from Earth, or 1,015 times as far as the moon and 2.46 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 40 minutes to make the round trip.

Dr. Marc Rayman
3:00 p.m. PST December 31, 2013

› Read more entries from Marc Rayman's Dawn Journal

TAGS: DAWN, CERES, VESTA, MISSION, SPACECRAFT, SOLAR SYSTEM, DWARF PLANETS

  • Marc Rayman
READ MORE