Tag Search - All Blogs

Tag Search - All Blogs


M/V Cape Race at Kullorsuaq, Greenland

This morning when I told someone I’d interviewed NASA oceanographer Josh Willis for this blog, they replied, “Isn’t Josh Willis a climatologist?”

“Aha!” I said. “That’s a problem. Not knowing that Earth’s ocean is responsible for controlling the climate is major. Oceanographers are climatologists.”

I mean, look, the ocean covers 71 percent of the planet’s surface, and 71 percent is like, duh, a lot. The ocean, in fact, is so important that a better name for our planet would have been “Ocean” rather than “Earth” — even though our species spends most of its time on boring old land. #sorrynotsorry, geologists.

And you might not realize this because it’s so familiar, but water is crazy. It has this unusual property, called “high heat capacity,” that gives it the ability to hold a stable temperature. It resists heating and cooling. Water will absorb a lot of energy before it changes temperature even a little bit.

And this property of water, this high heat capacity, is what makes life on our planet possible. It’s also what controls and moderates our climate, which is why our ocean, more than our atmosphere, is responsible for creating a stable climate on Earth.

So this is the reason oceanographers are climatologists. It’s also part of the reason Willis chose to name his new science project Oceans Melting Greenland (OMG). He hopes that people everywhere will recognize the role Earth’s ocean plays in controlling the climate and to say to the world, “Hey! The ocean is eating away at the ice sheet! The ocean is playing a huge role in melting the glaciers; it's melting Greenland!”

Remember I just told you water absorbs a lot of energy before it heats up? Well, humans have added so much energy to the Earth system by burning fossil fuels that we have heated the ocean. And now that we’ve warmed it up, you guessed it: The water is in no hurry to change back, so we’re going to be stuck with this warmer water for a very long time. And, says Willis, “Since Greenland is one of the last two remaining ice sheets on the planet, its fate is intertwined with how much destruction we’re going to have with climate change.” If you just said “OMG,” you would be right.

But if you think scientists know everything there is to know about the ocean, you would be very wrong. Willis and his team want to find out more about the complicated geometry (the shape and depth of the seafloor) around Greenland to understand the interaction between the water and ice so that we can find out how fast the glaciers are melting.

graphic showing M/V Cape Race route

M/V Cape Race ship track for phase 1 of 2015 OMG survey. Credit: Ian Fenty

This summer OMG used a ship, M/V Cape Race, to sail right up the narrow fjords on the continental shelf surrounding Greenland to the places where the 4- to 5-degree Atlantic Ocean water meets the bottoms of the frozen zero degree glaciers. The Cape Race used a multibeam echo sounder to map undersea canyons where the warm seawater comes in contact with and melts the glaciers. Willis followed the ship’s path via smartphone, sitting up in his PJs at two o’clock in the morning and uttering a variety of exclamations, including “OMG, turn left, left!”

Next year, the Cape Race will continue to make its way around Greenland, mapping the depth of the seafloor near the fjords, while Willis joins his team in the field flying on NASA’s G-III plane.

“OMG is a big picture project,” he told me. ”We want to see what’s happening in the ocean on the large scale and what’s happening to the ice sheet on the largest scales.”

In the spring, the NASA aircraft, with Willis aboard, will measure how much Greenland glaciers are thinning using the Glacier and Ice Surface Topography Interferometer (GLISTIN-A) instrument. They plan to deploy temperature and salinity probes in the summer. “In most of these places, there’s been no temperature and salinity data collected,” Willis said pausing, “ever.” Over the next five years, they will continue to monitor the ice sheet, asking, “When the water is this warm, how much ice melts?”

Willis knows “OMG” is a campy name for a NASA mission that makes light of a serious subject. “It’s easier to accept something as a reality when you can laugh at it, and accepting reality is a step towards making a change,” he said, explaining that if he was bummed out about climate change all the time, he would be stuck. “Humor makes it tolerable.”

Hopefully, when you find out about Oceans Melting Greenland, you’ll respond in the only way that’s appropriate: “OMG!”

Find out more about Oceans Melting Greenland here, here and here.

View an infographic about the mission.

Thank you for reading, sharing and commenting.

Laura

› Visit Earth Right Now to comment on this post

TAGS: EARTH, ICE, GREENLAND, OCEAN, CLIMATE CHANGE

READ MORE

1997 vs. 2015 side by side comparisons of Pacific Ocean sea surface height

“The water is soooo warm!”

That sentence keeps popping out of Angelenos' mouths. It’s practically impossible to stick a toe into the California Pacific Ocean without making some sort of immediate involuntary exclamation regarding the water temperature. And the water has been unbelievably warm lately. The surf zone is full of swimmers frolicking in the waves. And even my cold-water averse puppy is now joyously prancing on his skinny little legs through the surf.

But along with the in-and-out, back-and-forth of the waves, my own moments of beach-ly delight also have an up-and-down quality. See, every time I stroll across the sand, I notice trash. Some pieces of trash are large items that people have obviously left on purpose, too neglectful to carry them away. Other pieces are small bits of plastic: a torn shred of wrapper, a crumb of rubber band that accidentally got away. I can’t help myself from noticing it. And I can’t help myself from picking it up, every piece I see, walking it over to a trash can, and throwing it in. When I see a piece of beach trash, nothing in me will allow me to walk past it. I can’t not pick it up.

A few days ago, as the sun was setting and most of the people had gone, I saw a seagull with a water bottle in its mouth. It reminded me of my puppy, who loves to chew a water bottle. He’ll grab it and run gleefully in circles until he drops and gets busy on the cap. If I don’t take it off him, he will start to swallow the chewed pieces. The gull was doing the same thing, playing with the bottle near the edge of the water, pecking instead of chewing, but otherwise in the same bouncy mood. I chased him down, took the water bottle off him and recycled it.

So I left the beach with mixed feelings. I’m just one person on one beach for one day. What about the rest of the beaches? What about the other days? Who will pick up the plastic there?

I come to this blog with similar mixed feelings. The warm waves feel wonderful, but I know it’s warm because of El Niño, the global climate event that starts on the eastern side of the Pacific Ocean all the way from California down to Peru. El Niño is complicated. *Will it bring much-needed rain to the parched southwestern region of the United States and relieve us from this ongoing drought? Will it be too much rain all at one time? Will it cause flooding and landslides?

Even now, the warmer waters on our side of the Pacific are causing many species that thrive in cooler waters to struggle while warmer water species are temporarily moving in. Sure, it’s interesting to SCUBA dive and see tropical fish, but the sea lions who depend on cooler waters are hating it big time.

Up-and-down, back-and-forth, in-and-out.

I figured you wouldn’t want to read yet another depressing piece about how much we’re trashing our planet. So, in searching for something less dismal, I went to talk with Bill Patzert and Josh Willis, unarguably the world’s leading experts on El Niño, to see what they had to say about our current El Niño conditions (other than the fact that they’re making a swim more pleasant and bringing lots of pink clouds to our Southern California sunsets).

As I walked in, the two NASA oceanographers were in the middle of a discussion about the impact of El Niño rains on the amount of ocean trash. “Oh perfect,” I thought. “So I’m going with a trash-themed blog. Game on, Oscar the Grouch, game on.”

When I told them about my inability to walk past trash at the beach, Patzert said, “Our beaches have been exceptionally clean for over a decade now because we haven’t had a strong El Niño. As soon as those rains come, any trash hibernating in our storm sewers or on our streets will get flushed into the L.A. River and onto SoCal beaches.”

Woohoo, trash!! Too bad Oscar isn’t a sea monster. He’d be elated.

Find out more about El Niño and the NASA instruments that study the phenomenon from space here.

Thank you for your comments.

Laura

› Visit Earth Right Now to comment on this post


*Some scientific info about El Niño: Most of the time, under normal ocean conditions, trade winds blow from the east side of the Pacific to the west side. These winds push surface water towards the Western Pacific near Asia and Australia where the warm water piles up. This Western Pacific Warm Pool contains some of the warmest ocean waters on the planet. Every decade or so, the trade winds soften and all that warm water that normally stays on the western side of the Pacific, sloshes back towards the east and we get a phenomenon known as El Niño. Since the Pacific Ocean takes up about half of planet Earth, it has the potential to affect global weather patterns. A strong El Niño can bring warm moist conditions to the West Coasts of the Americas, while leaving Australia and Southeast Asia unusually dry. So far, the 2015-2016 El Niño is shaping up to be an exceptionally strong one.

TAGS: EL NINO, CLIMATE CHANGE, WEATHER, OCEAN, EARTH

READ MORE

The image shows temperatures off the coast of California in September of 1997 (El Nino)

Not all oceanographers spend their time out on the seas. As a project scientist for the Physical Oceanography Distributed Active Archive Center here at JPL , I study the world's ocean from my computer, using data from a series of NASA satellites that orbit Earth. These data measure everything from how the ocean changes during an El Nino to how such climatic changes affect local regions like California's coast.

This kind of precise data was impossible 100 years ago. In fact, scientific and technological advances over the last century have revolutionized the field of oceanography. Today, we gather data both from instruments in the ocean and from satellites in space. These satellite data measure changes in sea surface topography (the ocean surface has changes in elevation, just like the land), ocean surface winds, sea surface temperature and water pressure at the bottom of the ocean. The satellites view the ocean from 700 to 1,300 kilometers (440 to 800 miles) above Earth. Current advanced technologies allow scientists to combine data from different satellites to view ocean conditions in near-real time, only 6 to 12 hours from when the satellite acquires the data. This information can then be sent to researchers and decision makers for use in improving forecasts for hurricanes to the regional and local impacts of ocean phenomena like El Nino and La Nina.

Examples of satellite data can be seen in these images. The view on the left shows temperatures off the coast of California in September of 1997 (El Nino). On the right, sea surface temperatures from September of 2008 (normal conditions). Notice the warmer temperatures (seen in red) resulting from the 1997-1998 El Nino event. Such temperature changes have direct impacts on local climate and fisheries. These data are leading to a new understanding of how hurricanes get their energy from the ocean. These satellite data also help forecast regional ocean temperatures, which affect local weather.

As technology improves, along with the availability of these data in real time, new opportunities will continue to expand to better understand our planet and its impacts on our lives.

TAGS: EARTH, OCEAN, EL NINIO, TEMPERATURES

  • Jorge Vazquez
READ MORE