Blogs

Blogs


Ikapati Crater

A deep-space robotic emissary from Earth is continuing to carry out its extraordinary mission at a distant dwarf planet.

Orbiting high above Ceres, the sophisticated Dawn spacecraft is hard at work unveiling the secrets of the exotic alien world that has been its home for almost two years.

Dawn’s primary objective in this sixth orbital phase at Ceres (known as extended mission orbit 3, XMO3 or "this sixth orbital phase at Ceres") is to record cosmic rays. Doing so will allow scientists to remove that "noise" from the nuclear radiation measurements performed during the eight months Dawn operated in a low, tight orbit around Ceres. The result will be a cleaner signal, revealing even more about the atomic constituents down to about a yard (meter) underground. As we will see below, in addition to this ongoing investigation, soon the adventurer will begin pursuing a new objective in its exploration of Ceres.

With its uniquely capable ion propulsion system, Dawn has flown to orbits with widely varying characteristics. In contrast to the previous five observation orbits (and all the observation orbits at Vesta), XMO3 is elliptical. Over the course of almost eight days, the spacecraft sails from a height of about 4,670 miles (7,520 kilometers) up to almost 5,810 miles (9,350 kilometers) and back down. Dutifully following principles discovered by Johannes Kepler at the beginning of the 17th century and explained by Isaac Newton at the end of that century, Dawn’s speed over this range of altitudes varies from 210 mph (330 kilometers per hour) when it is closest to Ceres to 170 mph (270 kilometers per hour) when it is farthest. Yesterday afternoon, the craft was at its highest for the current orbit. During the day today, the ship will descend from 5,790 miles (9,310 kilometers) to 5,550 miles (8,930 kilometers). As it does so, Ceres’ gravity will gradually accelerate it from 170 mph (273 kilometers per hour) to 177 mph (285 kilometers per hour). (Usually we round the orbital velocity to the nearest multiple of 10. In this case, however, to show the change during one day, the values presented are more precise.)

As we saw last month, the angle of XMO3 to the sun presents an opportunity to gain a new perspective on Ceres, with sunlight coming from a different angle. (We include the same figure here, because we will refer to it more below.) Last week, Dawn took advantage of that opportunity, seeing the alien landscapes in a new light as it took pictures for the first time since October.

Figure illustrates orbits at Ceres
This illustrates (and simplifies) the relative size and alignment of Dawn’s six science orbits at Ceres. We are looking down on Ceres’ north pole. The spacecraft follows polar orbits, and seen edge-on here, each orbit looks like a line. (Orbits 1, 2 and 6 extend off the figure to the lower right, on the night side. Like 3, 4 and 5, they are centered on Ceres.) The orbits are numbered chronologically. The first five orbits were circular. Orbit 6, which is XMO3, is elliptical, and the dotted section represents the range from the minimum to the maximum altitude. With the sun far to the left, the left side of Ceres is in daylight. Each time the spacecraft travels over the illuminated hemisphere in the different orbital planes, the landscape beneath it is lit from a different angle. Ceres rotates counterclockwise from this perspective (just as Earth does when viewed from the north). So higher numbers correspond to orbits that pass over ground closer to sunrise, earlier in the Cerean day. (Compare this diagram with this figure, which shows only the relative sizes of the first four orbits, with each one viewed face-on rather than edge-on.) Click on this image for a larger view. Image credit: NASA/JPL

Dawn takes more than a week to revolve around Ceres, but Ceres turns on its axis in just nine hours. Because Dawn moves through only a small segment of its orbit in one Cerean day, it is almost as if the spacecraft hovers in place as the dwarf planet pirouettes beneath it. During one such period on Jan. 27, Dawn’s high perch moved only from 11°N to 12°S latitude as Ceres presented her full range of longitudes to the explorer’s watchful eye. This made it very convenient to take pictures and visible spectra as the scenery helpfully paraded by. (The spacecraft was high enough to see much farther north and south than the latitudes immediately beneath it.) Dawn will make similar observations again twice in February.

As Dawn was expertly executing the elegant, complex spiral ascent from XMO2 to XMO3 in November, the flight team considered it to be the final choreography in the venerable probe’s multi-act grand interplanetary performance. By then, Dawn had already far exceeded all of its original objectives at Vesta and Ceres, and the last of the new scientific goals could be met in XMO3, the end of the encore. The primary consideration was to keep Dawn high enough to measure cosmic rays, meaning it needed to stay above about 4,500 miles (7,200 kilometers). There was no justification or motivation to go anywhere else. Well, that’s the way it was in November anyway. This is January. And now it’s (almost) time for a previously unanticipated new act, XMO4.

Always looking for ways to squeeze as much out of the mission as possible, the team has now devised a new and challenging investigation. It will consume the next five months (and much of the next five Dawn Journals). We begin this month with an overview, but follow along each month as we present the full story, including a detailed explanation of the underlying science, the observations themselves and the remarkable orbital maneuvering entirely unlike anything Dawn has done before. (You can also follow along with your correspondent’s uncharacteristically brief and more frequent mission status updates.)

Map of Ceres
This map of Ceres has all 114 feature names approved so far by the International Astronomical Union (IAU). (We described the naming convention here.) As more features are named, this official list and map are kept up to date. We saw an earlier version of this map before Dawn had flown to its lowest orbit and obtained its sharpest pictures. The dwarf planet is 1.1 million square miles (2.8 million square kilometers). That’s about 36 percent of the land area of the contiguous United States, or the combined land areas of France, Germany, Italy, Norway, Spain, Sweden and the United Kingdom. The scales for horizontal distance in this figure apply at the equator. Rectangular maps like this distort distances at other latitudes. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

From the XMO3 vantage point, with sunlight coming from the side, Ceres is gibbous and looks closer to a half moon than full. The new objective is to peer at Ceres when the sun is directly behind Dawn. This would be the same as looking at a full moon. (In the figure above, it would be like photographing Ceres from somewhere on the dashed line that points to the distant sun.)

While Dawn obtained pictures from near the line to the sun in its first Ceres orbit, there is a special importance to being even closer to that line. Let’s see why that alignment is valuable.

Most materials reflect light differently at different angles. You can investigate this yourself (and it’s probably easier to do at home than it is in orbit around a remote dwarf planet). To make it simpler, take some object that is relatively uniform (but with a matte finish, not a mirror-like finish) and vary the angles at which light hits it and from which you look at it. You may see that it appears dimmer or brighter as the angles change. It turns out that this effect may be used to help infer the nature of the reflecting material. (For the purposes of this exercise, if you can hold the angle of the object relative to your gaze fixed, and vary only the angle of the illumination, that’s best. But don’t worry about the details. Conducting this experiment represents only a small part of your final grade.)

Now when scientists carefully measure the reflected light under controlled conditions, they find that the intensity changes quite gradually over a wide range of angles. In other words, the apparent brightness of an object does not vary dramatically as the geometry changes. However, when the source of the illumination gets very close to being directly behind the observer, the reflection may become quite a bit stronger. (If you test this, of course, you have to ensure your shadow doesn’t interfere with the observation. Vampires don’t worry about this, and we’ll explain below why Dawn needn’t either.)

If you (or a helpful scientist friend of yours) measure how bright a partial moon is and then use that information to calculate how bright the full moon will be, you will wind up with an answer that’s too small. The full moon is significantly brighter than would be expected based on how lunar soil reflects light at other angles. (Of course, you will have to account for the fact that there is more illuminated area on a full moon, but this curious optical behavior is different. Here we are describing how the brightness of any given patch of ground changes.)

A full moon occurs when the moon and sun are in opposite directions from Earth’s perspective. That alignment is known as opposition. That is, an astronomical body (like the moon or a planet) is in opposition when the observer (you) is right in between it and the source of illumination (the sun), so all three are on a straight line. And because the brightness takes such a steep and unexpected jump there, this phenomenon is known as the opposition surge.

Yalode Crater
Dawn observed this scene inside Yalode Crater on Oct. 13, 2015, from its third mapping orbit at an altitude of 915 miles (1,470 kilometers). At 162 miles (260 kilometers) in diameter, Yalode is the second largest crater on Ceres. (Scientists expected to see much larger craters than Ceres displays.) The two largest craters within Yalode are visible in this picture. Lono Crater, at top right, is 12 miles (20 kilometers) in diameter. (Lono is a Hawaiian god of agriculture, rain and other roles.) Below Lono is the 11-mile (17-kilometer) Besua Crater. (Besua is one of at least half a dozen Egyptian grain gods.) Note several chains of craters as well as fractures on the left and lower right. We saw a much more fractured area of Yalode, now named Nar Sulcus, here. (Nar is from a modern pomegranate feast in part of Azerbaijan. A sulcus is a set of parallel furrows or ridges.) You can locate this scene in the eastern part of Yalode on the map above near 45°S, 300°E. The photo below shows a more detailed view. You can see all of Yalode starting at 2:32 in the animation introduced here. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The observed magnitude of the opposition surge can reveal some of the nature of the illuminated object on much, much finer scales than are visible in photos. Knowing the degree to which the reflection strengthens at very small angles allows scientists to ascertain (or, at least, constrain) the texture of materials on planetary surfaces even at the microscopic level. If they are fortunate enough to have measurements of the reflectivity at different angles for a region on an airless solar system body (atmospheres complicate it too much), they compare them with laboratory measurements on candidate materials to determine which ones give the best match for the properties.

Dawn has already measured the light reflected over a wide range of angles, as is clear from the figure above showing the orbits. But the strongest discrimination among different textures relies on measuring the opposition surge. That is Dawn’s next objective, a bonus in the bonus extended mission.

You can see from the diagram that measuring the opposition surge will require a very large change in the plane of Dawn’s orbit. Shifting the plane of a spacecraft’s orbit can be energetically very, very expensive. (We will discuss this more next month.) Fortunately, the combination of the unique capabilities provided by the ion propulsion system and the ever-creative team makes it affordable.

Ceres
Dawn had this view on June 7, 2016, from its fourth mapping orbit. Taken at an altitude of 240 miles (385 kilometers), this picture shows greater detail in a smaller area than the picture above. Part of Lono Crater is at the bottom. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Powered by an insatiable appetite for new knowledge, Dawn will begin ion thrusting on Feb. 23. After very complex maneuvers, it will be rewarded at the end of April with a view of a full Ceres from an altitude of around 12,400 miles (20,000 kilometers), about the height of GPS satellites above Earth. (That will be about 50 percent higher than the first science orbit, which is labeled as line 1 in the figure.) There are many daunting challenges in reaching XMO4 and measuring the opposition surge. Even though it is a recently added bonus, and the success of the extended mission does not depend on it, mission planners have already designed a backup opportunity in case the first attempt does not yield the desired data. The second window is late in June, allowing the spacecraft time to transmit its findings to Earth before the extended mission concludes at the end of that month.

Occator Crater
Occator Crater is shown in this mosaic of photos Dawn took at its lowest altitude of 240 miles (385 kilometers). The central bright area, Cerealia Facula, is the prime target in the planned opposition surge measurements. Dawn’s infrared spectra show that this reflective material is principally sodium carbonate, a kind of salt. We described more about this mosaic here. For other views of Occator and its mesmerizing reflective regions, follow the links in the paragraph below. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

For technical reasons, the measurements need to be made from a high altitude, and throughout the complex maneuvering to get there, Dawn will remain high enough to monitor cosmic rays. Ceres will appear to be around five times the width of the full moon we see from Earth. It will be about 500 pixels in diameter in Dawn’s camera, and more than 180,000 pixels will show light reflected from the ground. Of greatest scientific interest in the photographs will be just a handful of pixels that show the famous bright material in Occator Crater, known as Cerealia Facula and clearly visible in the picture above. Scientists will observe how those pixels surge in brightness over a narrow range of angles as Dawn’s XMO4 orbital motion takes it into opposition, exactly between Occator and the sun. Of course, the pictures also will provide information on how the widespread dark material covering most of the ground everywhere else on Ceres changes in brightness (or, if you prefer, in dimness). But the big reward here would be insight into the details of Cerealia Facula. Comparing the opposition surges with laboratory measurements may reveal characteristics that cannot be discerned any other way save direct sampling, which is far beyond Dawn’s capability (and authority). For example, scientists may be able to estimate the size of the salt crystals that make up the bright material, and that would help establish their geological history, including whether they formed underground or on the surface. We will discuss this more in March.

Most of the data on opposition surges on solar system objects use terrestrial observations, with astronomers waiting until Earth and the target happen to move into the necessary alignment with the sun. In those cases, the surge is averaged over the entire body, because the target is usually too far away to discern any details. Therefore, it is very difficult to learn about specific features when observing from near Earth. Few spacecraft have actively maneuvered to acquire such data because, as we alluded to above and will see next month, it is too difficult, especially at a massive body like Ceres. The recognition that Dawn might be able to complete this challenging measurement for a region of particular interest represents an important possibility for the mission to discover more about this intriguing dwarf planet’s geology.

Meeting the scientific goal will require a careful and quantitative analysis of the pixels, but the images of a fully illuminated Ceres will be visually appealing as well. Nevertheless, you are cautioned to avoid developing a mistaken notion about the view. (For that matter, you are cautioned to avoid developing mistaken notions about anything.) You might think (and some readers wondered about this in a different phase of the mission) that with Dawn being between the sun and Ceres (and not being a vampire), the spacecraft’s shadow might be visible in the pictures. It would look really cool if it were (although it also would interfere with the measurement of the opposition surge by introducing another factor into how the brightness changes). There will be no shadow. The spacecraft will simply be too high. Imagine you’re standing in Occator Crater, either wearing your spacesuit while engaged in a thrilling exploration of a mysterious and captivating extraterrestrial site or perhaps instead while you’re indoors enjoying some of the colony’s specially salted Cerean savory snacks, famous throughout the solar system. In any case, the distant sun you see would be a little more than one-third the size that it looks from Earth, comparable to a soccer ball at 213 feet (65 meters). Dawn would be 12,400 miles (20,000 kilometers) overhead. Although it’s one of the largest interplanetary spacecraft ever to take flight, with a wingspan of 65 feet (20 meters), it would be much too small for you to see at all without a telescope and would block an undetectably small amount of sunlight. It would appear smaller than a soccer ball seen from 135 miles (220 kilometers). Therefore, no shadow will be cast, the measurement will not be compromised by the spacecraft blocking some of the light reaching the ground and the pictures will not display any evidence of the photographer.

Ceres
Dawn took this picture on Oct. 21, 2016, in its fifth observation orbit, at an altitude of 920 miles (1,480 kilometers). The two largest craters here display very different kinds of topography on their floors. The larger, Jarimba, is 43 miles (69 kilometers) across. (Jarimba is a god of fruit and flowers among the Aboriginal Aranda of central Australia.) Above Jarimba is part of Kondos Crater, which is 27 miles (44 kilometers) in diameter. (Kondos is a pre-Christian Finnish god of sowing and young wheat.) This scene is centered near 21°S, 27°E on the map above. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Even as the team was formulating plans for this ambitious new campaign, they successfully dealt with a glitch on the spacecraft this month. When a routine communications session with the Deep Space Network began on Jan. 17, controllers discovered that Dawn had previously entered its safe mode, a standard response the craft uses when it encounters conditions its programming and logic cannot accommodate. The main computer issues instructions to reconfigure systems, broadcasts a special radio signal through one of the antennas and then patiently awaits help from humans on a faraway planet (or anyone else who happens to lend assistance). The team soon determined what had occurred. Since it left Earth, Dawn has performed calculations five times per second about its location and speed in the solar system, whether in orbit around the sun, Vesta or Ceres. (Perhaps you do the same on your deep-space voyages.) However, it ran into difficulty in those calculations on Jan. 14 for the first time in more than nine years of interplanetary travel. To ensure the problematic calculations did not cause the ship to take any unsafe actions, it put itself into safe mode. Engineers have confirmed that the problem was in software, not hardware and not even a cosmic ray strike, which has occasionally triggered safe mode, most recently in September 2014.

Mission controllers guided the spacecraft out of safe mode within two days and finished returning all systems to their standard configurations shortly thereafter. Dawn was shipshape the subsequent week and resumed its scientific duties. When it activated safe mode, the computer correctly powered off the gamma ray and neutron detector, which had been measuring the cosmic rays, as we described above. The time that the instrument was off will be inconsequential, however, because there is more than enough time in the extended mission to acquire all the desired measurements.

The extended mission has already proven to be extremely productive, yielding a great deal of new data on this ancient world. But there is still more to look forward to as the veteran explorer prepares for a new and adventurous phase of its extraordinary extraterrestrial expedition.

Dawn is 5,650 miles (9,100 kilometers) from Ceres. It is also 2.87 AU (266 million miles, or 429 million kilometers) from Earth, or 1,135 times as far as the moon and 2.91 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 48 minutes to make the round trip.

TAGS: CERES, DAWN, DWARF PLANET

  • Marc Rayman
READ MORE

Illustration of the Dawn spacecraft flying towards Ceres.

Dawn is concluding a remarkable year of exploring dwarf planet Ceres. At the beginning of 2016, the spacecraft was still a newcomer to its lowest altitude orbit (the fourth since arriving at Ceres in March 2015), and the flight team was looking forward to about three months of exciting work there to uncover more of the alien world’s mysteries.

This animation shows many views of Occator Crater and its distinctive, captivating bright features. Dawn team members at the German Aerospace Center (DLR) combined photographs and other data collected by Dawn to make this video. (Unlike the visuals, the sounds are entirely speculative.) We have discussed the Occator findings shown here before. For details, see our last description, and follow the links from there to earlier Dawn Journals. Original video and caption. Video/image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

As it turned out, Dawn spent more than eight months conducting an exceptionally rewarding campaign of photography and other investigations, providing a richly detailed, comprehensive look at the extraterrestrial landscapes and garnering an extraordinary bounty of data. In September, the craft took advantage of its advanced ion propulsion system to fly to a new orbit from which it performed still more unique observations in October. Last month, the ship took flight again, and now it is concluding 2016 in its sixth science orbit.

Dawn is in an elliptical orbit, sailing from about 4,670 miles (7,520 kilometers) up to up to almost 5,810 miles (9,350 kilometers) and back down. It takes nearly eight days to complete each orbital loop. Flying this high above Ceres allows Dawn to record cosmic rays to enhance the nuclear spectra it acquired at low altitude, improving the measurements of atomic constituents down to about a yard (meter) underground.

This animation shows Vesta (Dawn's first destination) and Ceres. Based on measurements of hydrogen, the colors encode the water content of the material within about a yard (meter) of the surface. We have seen before how the spacecraft’s neutron spectrometer can make such a measurement. Here, as before, scientists have good reason to assume the hydrogen is in water molecules. Some of the water is in the form of ice and some is bound up in hydrated minerals. Even if it not exactly soggy, Ceres is much, much wetter than Vesta. In some regions on Vesta, there is no evidence of water at all (represented by red), and even the greatest concentration (the deepest blue) is only 0.04 percent. On Ceres, water is abundant, varying from 1.8 to 3.2 percent, or 45 to 80 times more prevalent than the highest concentration on Vesta. (The interior of Ceres harbors even more water than that.) Note that on Ceres, there is very little difference at different longitudes. The variability is much stronger with latitude: at greater distances from the equator, water is more plentiful. This fits with the temperatures being lower near the poles, allowing ice to be closer to the surface for very, very long times without sublimating away. (Below, we will discuss the presence of ice on the ground.) Vesta and Ceres are shown to scale in this animation. They are the two largest objects in the main asteroid belt. Vesta’s equatorial diameter is 351 miles (565 kilometers). Ceres is 599 miles (963 kilometers) across at the equator. (Their rotation rates are not shown to scale. Vesta turns once in 5.3 hours, whereas Ceres takes 9.1 hours.) Video/image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The spacecraft has been collecting cosmic ray data continuously since reaching this orbit (known to the Dawn team, imaginative readers of last month’s Dawn Journal and now you as extended mission orbit 3, or XMO3). These measurements will continue until the end of the extended mission in June. But there is more in store for the indefatigable adventurer than monitoring space radiation.

Based on studies of Dawn’s extensive inspections of Ceres so far, scientists want to see certain sites at new angles and under different illumination conditions. Next month, Dawn will begin a new campaign of photography and visible spectroscopy. All of Dawn’s five previous science orbits had different orientations from the sun. And now XMO3 will provide another unique perspective on the dwarf planet's terrain. The figure below shows what the orientation will be when the explorer turns its gaze once again on Ceres for the first set of new observations on Jan. 27, 2017.

Dawn XMO2 Image 10

This illustrates (and simplifies) the relative size and alignment of Dawn’s six science orbits at Ceres. We are looking down on Ceres’ north pole. The spacecraft follows polar orbits, and seen edge-on here, each orbit looks like a line. (Orbits 1, 2 and 6 extend off the figure to the lower right, on the night side. Like 3, 4 and 5, they are centered on Ceres.) The orbits are numbered chronologically. The first five orbits were circular. Orbit 6, which is XMO3, is elliptical, and the dotted section represents the range from the minimum to the maximum altitude. With the sun far to the left, the left side of Ceres is in daylight. Each time the spacecraft travels over the illuminated hemisphere in the different orbital planes, the landscape beneath it is lit from a different angle. Ceres rotates counterclockwise from this perspective (just as Earth does when viewed from the north). So higher numbers correspond to orbits that pass over ground closer to sunrise, earlier in the Cerean day. (Compare this diagram with this figure, which shows only the relative sizes of the first four orbits, with each one viewed face-on rather than edge-on.) Click on this image for a larger view. Image credit: NASA/JPL

We mentioned in the figure caption that the alignments are simplified. One of the simplifications is that some of the orbits covered a range of angles. There is a well-understood and fully predictable natural tendency for the angle to increase. In some phases of the mission, the flight team allows that, and in others they do not, depending on what is needed for the best scientific return. At the lowest altitude (orbit 4 in the diagram, and sometimes known as LAMO, XMO1 or "the lowest orbit"), navigators held the orbit at a fixed orientation. Had they not done so, it would have changed quite dramatically over the course of the eight months Dawn was there. For XMO3, the team has decided not to keep the angle constant. Therefore, later observations will provide still different views. We will return to this topic in a few months.

We have described before how places that remain shadowed throughout the Cerean year can trap water molecules. Dawn’s pictures have revealed well over 600 craters high in the northern hemisphere that are permanently in darkness, covering more than 800 square miles (more than 2,000 square kilometers). (It has not been possible to make as thorough a census of the southern hemisphere, because it has been fall and winter there during most of Dawn’s studies, so some areas were not lit well enough. Now that spring has come, new photography will tell us more.)

Ceres Persistent Shadow

This animation shows the lighting during a full Cerean day at high northern latitude. The 11-mile-diameter (18-kilometer-diameter) unnamed crater is at 82°N and 78°E, only 40 miles (65 kilometers) from the north pole. Because the sun is overhead near the equator, it never rises much above the horizon as seen from this location, so shadows are long, and deep sites never receive direct sunshine. More than half of this crater, about 53 square miles (137 square kilometers), is never illuminated. This is the largest permanently shadowed area identified on Ceres. Below, we can glimpse the interior of a nearby crater. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn peered into craters to see what was hidden on the dark floors. Long exposures could reveal hints of the scenery using the faint light reflected from crater walls. In 10 of the craters, scientists found bright deposits. In one of those craters, the reflective material extends beyond the permanent shadow and so is occasionally illuminated, albeit still with the sun very low on the horizon. And sure enough, right there, Dawn’s infrared mapping spectrometer found the characteristic fingerprint of ice. These shadowed crater floors accumulate water that happens to land there, preserving it in a deep freeze that may be colder than -260°F (-163°C). Readers are invited to formulate their own business plans for how best to utilize that precious resource.

Dawn XMO2 Image 10

These photographs show an unnamed crater not far from the one in the animation above. Located at 86°N and 80°E, this crater is 4.1 miles (6.6 kilometers) in diameter. On the left is a conventional view, in which most of the crater is cloaked in darkness. The enlarged picture on the right shows that same dark region, but now with some of the detail of the interior made visible using light reflected from the sunlit walls of the crater. It reveals a relatively bright (or, more to the point, a more reflective) region 1.1 miles (1.7 kilometers) across. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Jan. 1 is the anniversary of the discovery of Ceres. When Giuseppe Piazzi spotted the faint smudge of light in his telescope that night in 1801, he did not know that it would be known as a planet for almost two generations. (After all, he was an astronomer and mathematician, not a clairvoyant.) And he could never have imagined that more than two centuries later (by which time Ceres was known as a dwarf planet, reflecting progress in scientific knowledge), humankind would undertake an ambitious expedition to explore it, dispatching a sophisticated ship to take up residence at that distant and mysterious place. What Piazzi discovered was a lovely jewel set against the deep blackness of space and surrounded by myriad other gleaming stellar jewels. What Dawn has discovered is a unique and fascinating world of complex geology, composed of rock and ice and salt, with exotic and beautiful scenery. And as Dawn continues to build upon Piazzi’s legacy, unveiling Ceres’ secrets, everyone who has ever looked in wonder at the night sky, everyone who has ever hungered for new understanding, everyone who has ever felt the lure of a thrilling adventure far from home and everyone who has ever yearned to know the cosmos will share in the rewards.

Dawn is 5,640 miles (9,070 kilometers) from Ceres. It is also 2.43 AU (226 million miles, or 364 million kilometers) from Earth, or 915 times as far as the moon and 2.48 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 41 minutes to make the round trip.

Dr. Marc D. Rayman
4:00 p.m. PST December 29, 2016

TAGS: DAWN

  • Marc Rayman
READ MORE

JPL’s First Digital Computer

In January 1953, JPL was in the market for its first digital computer.

After investigating the possibilities, a site visit was made to Consolidated Engineering Corporation (CEC) in Pasadena and the CEC Model 30-203 digital computer, shown in this photo, was eventually selected. The prototype at CEC was given the project number 36-101. JPL and the National Bureau of Standards were the first two customers to order the computer – the one ordered by JPL was 36-102, and the one for NBS was 36-103.

JPL's computer was finally delivered and operational in July 1954. It cost approximately $135,000 (more than $1 million in 2016 dollars). That did not include the operator's console, paper tape input and output, punch card unit, or other related equipment. It featured magnetic drum storage of about 4000 words (a "word" being a number or command) and a word length of 10 decimal digits. It contained more than 1,500 vacuum tubes.

For more information about the history of JPL, contact the JPL Archives for assistance. [Archival and other sources: Section 371 photo albums, Combined Bimonthly Summary No. 33, Datatron Chronology.)

TAGS: JPL'S FIRST DIGITAL COMPUTER, MODEL 30-203, PASADENA, CONSOLIDATED ENGINEERING CORPORTATION (CEC), MAGNETIC DRUM STORAGE

  • Julie Cooper
READ MORE

Occator Crater

Blue rope lights adorn Dawn mission control at JPL, but not because the flight team is in the holiday spirit (although they are in the holiday spirit).

The felicitous display is more than decorative. The illumination indicates that the interplanetary spacecraft is thrusting with one of its ion engines, which emit a lovely, soft bluish glow in the forbidding depths of space. Dawn is completing another elegant spiral around dwarf planet Ceres, maneuvering to its sixth science orbit.

Dawn’s ion propulsion system has allowed the probe to accomplish a mission unlike any other, orbiting two distant extraterrestrial destinations. Even more than that, Dawn has taken advantage of the exceptional efficiency of its ion engines to fly to orbits at different altitudes and orientations while at Vesta and at Ceres, gaining the best perspectives for its photography and other scientific investigations.

Dawn has thrust for a total of 5.7 years during its deep-space adventure. All that powered flight has imparted a change in the ship’s velocity of 25,000 mph (40,000 kilometers per hour). As we have seen, this is not the spacecraft’s actual speed, but it is a convenient measure of the effect of its propulsive work. Reaching Earth orbit requires only about 17,000 mph (less than 28,000 kilometers per hour). In fact, Dawn’s gentle ion engines have delivered almost 98 percent of the change in speed that its powerful Delta 7925H-9.5 rocket provided. With nine external rocket engines and a core consisting of a first stage, a second stage and a third stage, the Delta boosted Dawn by 25,640 mph (41,260 kilometers per hour) from Cape Canaveral out of Earth orbit and onto its interplanetary trajectory, after which the remarkable ion engines took over. No other spacecraft has accomplished such a large velocity change under its own power. (The previous record holder, Deep Space 1, achieved 9,600 mph, or 15,000 kilometers per hour.)

Early this year, we were highly confident Dawn would conclude its operational lifetime in its fourth orbit at Ceres (and remain there long after). But unexpectedly healthy and with an extension from NASA, Dawn is continuing its ambitious mission. After completing all of its tasks in its fifth scientific phase at Ceres, Dawn is pursuing new objectives by flying to another orbit for still more discoveries. Although we never anticipated adding a row to the table of Dawn’s orbits, last presented in December 2015, we now have an updated version.

Ceres
orbit
Dawn code
name
Dates
(mo.day.yr)
Altitude
in miles
(km)
Resolution
in ft (m)
per pixel
Orbit
period
Equivalent
distance of a soccer ball
1 RC3   04.23.15 – 05.09.15 8,400
(13,600)
4,200
(1,300)
15
days
10 ft
(3.2 m)
2 Survey   06.06.15 –06.30.15 2,700
(4,400)
1,400
(410)
3.1
days
3.4 ft
(1.0 m)
3 HAMO   08.17.15 – 10.23.15 915
(1,470)
450
(140)
19
hours
14 in
(34 cm)
4 LAMO/
XMO1
  12.16.15 – 09.02.16 240
(385)
120
(35)
5.4
hours
3.5 in
(9.0 cm)
5 XMO2   10.16.16 – 11.04.16 920
(1,480)
450
(140)
19
hours
14 in
(35 cm)

As with the obscure Dawn code names for other orbits, this fifth orbit’s name requires some explanation. The extended mission is devoted to undertaking activities not envisioned in the prime mission. That began with two extra months in the fourth mapping orbit performing many new observations, but because it was then the extended mission, that orbit was designated extended mission orbit 1, or XMO1. (It should have been EMO1, of course, but the team’s spellchecker was offline on July 1, the day the extended mission started.) Therefore, the next orbit was XMO2. Dawn left XMO2 on Nov. 4, and we leave it to readers’ imaginations to devise a name for the orbit the spacecraft is now maneuvering to.

Surprisingly, Dawn is flying higher to enhance part of the scientific investigation that motivated going to the lowest orbit. We have explained before that Dawn’s objective in powering its way down to the fourth mapping orbit was to make the most accurate measurements possible of gravity and of nuclear radiation emitted by the dwarf planet.

For more than eight months, the explorer orbited closer to the alien world than the International Space Station is to Earth, and the gamma ray spectra and neutron spectra it acquired are outstanding, significantly exceeding all expectations. But ever-creative scientists have recognized that even with that tremendous wealth of data, Dawn can do still better. Let’s look at this more carefully and consider an example to resolve the paradox of how going higher can yield an improvement.

Ceres
Dawn had this view of Ceres’ limb on Oct. 16 at an altitude of 920 miles (1,480 kilometers). The probe took this picture about 12 minutes after the picture above of Occator Crater. By this time, Dawn’s orbital motion had taken the center of Occator out of the view, but most of the shadowy eastern part is still visible at upper left. A Cerean day lasts about nine hours, so in the time between these two pictures, Ceres rotated as much as Earth would rotate in about 32 minutes. As a result, the change in the sun angle is quite noticeable. You can compare some craters in the two pictures to see how the lighting has changed. This is particularly evident not only in Occator but also in the crater near the center of the large crater visible here (on the lower right of the first picture) as well as the craters below and to the left of it. At the bottom right of this picture is part of the 45-mile (72-kilometer) Kaikara Crater. (Kaikara is a harvest goddess in the kingdom of Bunyoro in Uganda.) You can locate this scene on this map, with Kaikara at 43°N, 222°E and Occator at 20°N, 239°E. Full image (rotated differently and with different picture adjustments) and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The gamma ray and neutron detector (GRaND) reveals some of Ceres’ atomic constituents down to about a yard (meter) underground. The principal limitation in analyzing these spectra is "noise." In fact, noise limits the achievable accuracy of many scientific measurements. It isn’t necessarily the kind of noise that you hear from loud machinery (nor from the mouth of your unhelpful parent, inattentive progeny or boring and verbose coworker), but all natural systems have something similar. Physical processes other than the ones of interest make unwanted contributions to the measurements. The part of a measurement scientists want is called the "signal." The part of a measurement scientists don’t want is called the "noise." The quality of a measurement may be characterized by comparing the strength of the signal to the strength of the noise. (This metric is called the "signal to noise ratio" by people who like to use jargon like "signal to noise ratio.")

We have discussed that cosmic rays, radiation that pervades space, strike atomic nuclei on Ceres, creating the signals that GRaND measures. Remaining at low altitude would have allowed Dawn to enhance its measurement of the Cerean nuclear signal. But scientists determined that an even better way to improve the spectra than to increase the signal is to decrease the noise. GRaND’s noise is a result of cosmic rays impinging directly on the instrument itself and on nearby parts of the spacecraft. With a more thorough measurement of the noise from cosmic rays, scientists will be able to mathematically remove that component of the low altitude measurements, leaving a clearer signal.

For an illustration of all this, suppose you want to hear the words of a song. The words are the signal and the instruments are the noise. (This is a scientific discussion, not a musical one.) It could be that the instruments are so loud and distracting that you can’t make the words out easily.

You might try turning up the volume, because that increases the signal, but it increases the noise as well. If the performance is live, you might even try to position yourself closer to the singer, perhaps making the signal stronger without increasing the noise too much. (Other alternatives are simply to Google the song or ask the singer for a copy of the lyrics, but those methods would ruin this example.)

If you’re doing this in the 21st century (or later), there’s another trick you can employ, taking advantage of computer processing. Suppose you had a recording of the singing with the instruments and then obtained separate recordings of the instruments. You could subtract the musical sounds that constitute the noise, removing the contributions from both guitars, the drums, the harp, both ukuleles, the kazoo and all the theremins. And when you eliminate the noise of the instruments, what remains is the signal of the words, making them much more intelligible.

To obtain a better measure of the noise, Dawn needs to go to higher altitude, where GRaND will no longer detect Ceres. It will make detailed measurements of cosmic ray noise, which scientists then will subtract from their measurements at low altitude, where GRaND observed Ceres signal plus cosmic ray noise. The powerful capability to raise its orbit so much affords Dawn the valuable opportunity to gain greater insight into the atomic composition. Of course, it’s not quite that simple, but essentially this method will help Dawn hear Ceres’ nuclear song more clearly.

Ceres
Dawn took this photo on Oct. 17 at an altitude of 920 miles (1,480 kilometers). Above and to the right of center, part of the wall of a crater has collapsed, allowing material to flow into the larger crater. The area covered by the flow is less densely cratered than the surrounding terrain, because it is younger. We have seen how scientists use the number and size of craters to date geological features (no results are available yet in this area). The larger crater is Ghanan, one of the names of a Mayan maize god, although the devastating flow may not have been good for the maize harvest when the collapse occurred. Ghanan Crater, with an average diameter of 42 miles (68 kilometers), is on this map at 77°N, 31°E. Full image (with different picture adjustments) and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

To travel from one orbit to another, the sophisticated explorer has followed complex spiral routes. We have discussed the nature of these trajectories quite a bit, including how the operations team designs and flies them. But now they are using a slightly different method.

Those of you at Ceres who monitor the ship’s progress probably wouldn’t notice a difference in the type of trajectory. And the rest of you on Earth and elsewhere who keep track through our mission status updates also would not detect anything unusual in the ascent profile (to the extent that a spacecraft using ion propulsion to spiral around a dwarf planet is usual). But celestial navigators are now enjoying their use of a method they whimsically call local maximal energy spiral feedback control.

The details of the new technique are not as important for our discussion here as one of the consequences: Dawn’s next orbit will not be nearly as circular as any of its other orbits at Ceres (or at Vesta). Following the conclusion of this spiral ascent on Dec. 5, navigators will refine their computations of the orbit, and we will describe the details near the end of the month. We will see that as the spacecraft follows its elliptical loops around Ceres, each taking about a week, the altitude will vary smoothly, dipping below 4,700 miles (7,600 kilometers) and going above 5,700 miles (9,200 kilometers). Such a profile meets the mission’s needs, because as long as the craft stays higher than about 4,500 miles (7,200 kilometers), it can make the planned recordings of the cacophonous cosmic rays. We will present other plans for this next phase of the mission as well, including photography, in an upcoming Dawn Journal.

As Dawn continues its work at Ceres, the dwarf planet continues its stately 4.6-year-long orbit around the sun, carrying Earth’s robotic ambassador with it. Ceres follows an elliptical path around the sun (see, for example, this discussion, including the table). In fact, all orbits, including Earth’s, are ellipses. Ceres’ orbit is more elliptical than Earth’s but not as much as some of the other planets. The shape of Ceres’ orbit is between that of Saturn (which is more circular) and Mars (which is more elliptical). (Of course, Ceres’ orbit is larger than Mars’ and smaller than Saturn’s, but here we are describing how much each orbit deviates from a perfect circle.)

When Ceres tenderly took Dawn into its gravitational embrace in March 2015, they were 2.87 AU (267 million miles, or 429 million kilometers) from the sun. In January 2016, we mentioned that Ceres had reached its aphelion, or greatest distance from the sun, at 2.98 AU (277 million miles, or 445 million kilometers). Today at 2.85 AU (265 million miles, or 427 million kilometers), Ceres is closer to the sun than at any time since Dawn arrived, and the heliocentric distance will gradually decrease further throughout the extended mission. (If the number of numbers is overwhelming here, you might reread this paragraph while paying attention to only one set of units, whether you choose AU, miles or kilometers. Ignore the other two scales so you can focus on the relative distances.)

Ceres
Dawn’s location in the solar system is shown on Nov. 7, 2016. On that day, the spacecraft and Ceres were at the same distance from the sun as when Dawn arrived last year. Now as Ceres advances counterclockwise in its elliptical orbit, they will move somewhat closer to the sun. We have plotted Dawn’s progress on this figure before, most recently in September. Image credit: NASA/JPL

Another consequence of orbiting the sun is the progression of seasons. Right on schedule, as we boldly predicted in August 2015, Nov. 13 was the equinox on Ceres, marking the beginning of northern hemisphere autumn and southern hemisphere spring. Although it is celebrated on Ceres with less zeal than on Earth, it is fundamentally the same: the sun was directly over the equator that day, and now it is moving farther south. It takes Ceres so long to orbit the sun that this season will last until Dec. 22, 2017.

A celebration that might occur on Ceres (and which you, loyal Dawnophile, are welcome to attend) would honor Dawn itself. Although the spacecraft completed its ninth terrestrial year of spaceflight in September, on Dec. 12, it will have been two Cerean years since Dawn left Earth for its interplanetary journey. Be sure to attend in order to learn how a dawnniversary is commemorated in that part of the solar system.

Although a year on Ceres lasts much longer than on Earth, 2016 is an unusually long year on our home planet. Not only was a leap day included, but a leap second will be added at the very end of the year to keep celestial navigators’ clocks in sync with nature. The Dawn team already has accounted for the extra second in the intricate plans formulated for the spacecraft. And at that second, on Dec. 31 at 23:59:60, we will be able to look back on 366 days and one second, an especially full and gratifying year in this remarkable deep-space expedition. But we needn’t wait. Even now, as mission control is bathed in a lovely glow, the members of the team as well as space enthusiasts everywhere are aglow with the thrill of new knowledge, the excitement of a daring, noble adventure and the anticipation of more to come.

Dawn is 3,150 miles (5,070 kilometers) from Ceres. It is also 2.08 AU (194 million miles, or 312 million kilometers) from Earth, or 770 times as far as the moon and 2.11 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 35 minutes to make the round trip.

Dr. Marc D. Rayman
4:00 p.m. PST November 28, 2016

TAGS: DAWN, CERES, ION ENGINE, DWARF PLANET

  • Marc Rayman
READ MORE

Midwestern United States

Sigh. Sometimes life feels heavy.

Even as the holidays approach and we’re all supposed to be in a holiday spirit, supposed to be joyous. Sometimes we’re just not there.

But, as always, NASA gives me the opportunity to look at Earth from the highest perspective. From above, the world appears remote and untouched. There’s nothing but the timeless, immaculate and infinite beauty of our planet.

Sigh.

Together, you and I get to take this opportunity to share thankfulness for our Earth and everything pristine and beautiful about it.

A creek at Rocky Mountain National Park, Colorado.
I took this photo of a creek at Rocky Mountain National Park, Colorado.

Thank you for reading. I really mean it.

Laura

TAGS: EARTH, HOLIDAYS

READ MORE

View of the International Space Station orbiting Earth

Slow down and relax. Earth is beautiful.

Earth, from the vantage point of space: Serene, breathtaking, magnificent. No matter how crazy busy your day is, no matter the level of stress, or chaos, or distraction, take a moment today—right now, in fact—to step back and feast on the great wonder of our home planet, Earth.

Soufrière Hills volcano on the Caribbean island of Montserrat.
Soufrière Hills volcano on the Caribbean island of Montserrat.
I like to think about being in nature when I get caught up in the overwhelming day-to-day news cycles. For me, getting out in nature always calms my nerves. It gets me centered and grounded; it reminds me that I have the strength to face life’s challenges.  

The Bering Strait
The Bering Strait, which links the Arctic Ocean with the Bering Sea and separates the continents of Asia and North America at their closest point.
Right now I’m getting ready for a hike in nature. To notice things I normally pass by. To see vistas of faraway mountains and fields of small white flowers in the late fall sunshine.

Rocky Mountain National Park, Colorado.
Rocky Mountain National Park, Colorado.
In those outdoor spaces, you get an experience of timelessness, a reminder of something bigger and longer-lasting than the rapidly shifting beats of the daily grind.

Kangerlussuaq, Greenland.
Kangerlussuaq, Greenland.
So stop and give yourself a break, large or small. Even if it’s just to gaze quietly for a moment at a few of my favorite Earth pix that I gathered here to share with you.

Namaste,
Laura

TAGS: EARTH, OUTDOORS, RELAX

READ MORE

32nd anniversary of the first rocket motor test

On October 31, 1968 JPL celebrated the 32nd anniversary of the first rocket motor tests in the Arroyo Seco.

The five men in this photo were present at the series of tests that happened in 1936 and 1937, and they came back to JPL for the celebration. From left to right are: William C. Rockefeller, William A. Bollay, Edward S. Forman, Frank J. Malina, and Apollo M.O. Smith. The historical marker found in the JPL Mall was commemorated at this event, and they posed next to a replica of the rocket motor test stand. The photo below shows a print of a 1936 test stand drawing by Frank Malina. He was the Chief Engineer of what would later become JPL, and was Acting Director from 1944 to 1946.

The Bering Strait
A print of a 1936 test stand drawing by Frank Malina.

For more information about the history of JPL, contact the JPL Archives for assistance. [Archival and other sources: various History Collection documents, photo albums, Lab-Oratory.)

TAGS: ROCKET MOTOR TEST, 32ND ANNIVERSARY, ARROYO SECO

  • Julie Cooper
READ MORE

Dawn photographed this scene in Yalode Crater on June 15, 2016

Dawn has just completed another outstandingly successful observation campaign at Ceres.

Far, far from Earth, the spacecraft has been making measurements at the alien world that were not even imagined until a few months ago. Once again, the experienced explorer has performed its complex assignments with distinction.

When Dawn arrived at Ceres in March 2015, becoming the first spacecraft to reach a dwarf planet, it was looking ahead to a very ambitious year of discovery from four different orbital altitudes. The great benefit of being able to enter orbit rather than fly by is that Dawn can scrutinize its subject over an extended period to develop a detailed, intimate portrait. Taking advantage of the ship’s ability to maneuver with its advanced ion propulsion system, mission planners had carefully selected the four orbits to enable a wide range of measurements.

By February of this year, Dawn had exceeded every one of its original mission objectives and was still going strong, accomplishing many new goals. Nevertheless, no one (at least, no one who was well informed) expected that the probe would complete its new assignments and yet still have the capability to maneuver to a fifth orbit and then undertake even more new observations. But that is exactly what occurred.

After more than eight months orbiting only 240 miles (385 kilometers) above the strange terrain of rock, ice and salt, Dawn ignited one of its ion engines on Sept. 2. By Oct. 6, when it had completed its graceful ascent, Dawn had made 93 spiral loops, reaching an orbit 920 miles (1,480 kilometers) high. From there, revolving once every 18.9 hours, the spacecraft has executed its new program of investigations.

With observations of Ceres from about the same altitude as a year ago in Dawn’s third mapping orbit, scientists will scour the expansive terrain, looking for changes. The most likely change is the presence of new, small craters. Everything in the solar system (including your planetary residence) is subject to strikes from rocks that orbit the sun. Ceres lives in the main asteroid belt between Mars and Jupiter, a particularly rough neighborhood, and being the largest resident there (by far) doesn’t give it any special protection or immunity. In fact, being the largest resident also makes Ceres the largest target.

Ceres
Dawn had this view on June 6, 2016, from an altitude of 240 miles (385 kilometers). The bright material at upper left is on the northwest rim of Kerwan Crater. Geologists have cataloged well over 130 locations on Ceres that are covered with reflective material. (The most famous deposits are in Occator Crater.) The brightness is because briny ice that had been on the surface sublimated, leaving behind salts, which reflect more sunlight than other minerals on the dwarf planet. Extending 174 miles (280 kilometers) across, Kerwan is the largest crater on Ceres. It is centered at 11°S, 124°E on the map shown last month. (Kerwan is a spirit of sprouting maize among the Hopi of Arizona in the US.) Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

In addition to remapping Ceres with all of the camera’s color filters, the flight team has given Dawn other tasks. Controlling a sophisticated interplanetary spacecraft conducting complex operations so very far from Earth is never easy (but it’s always incredibly cool). There have been many challenges throughout this ambitious mission, quite unlike any ever undertaken. One of the significant ones was observing specific targets of interest from low altitude. We have explained that orbiting so close to the ground, the spacecraft’s motion was quite difficult to predict with sufficient accuracy far enough in advance to guide the craft so that the instruments’ narrow fields of view would hit specific features. Dawn was designed to map uncharted worlds, not to conduct targeted observations.

The difficulty was compounded by the loss in 2010 and 2012 of two of the four reaction wheels, used for controlling the probe’s orientation. An important side effect of the nudges from the small hydrazine-fueled jets of the reaction control system (even in combination with the two operable reaction wheels in hybrid control mode) was tiny distortions in the spacecraft’s orbital trajectory. The cumulative effect of many jet firings over days and weeks was enough to make it quite challenging to ensure the sensors could spot the targets as Dawn sped around the rapidly rotating orb beneath it.

This is not as difficult at higher altitude both because Dawn does not need to use its jets as often and because the instruments take in a wider area. As a result, the explorer has been better able to catch sight of preselected geological features, and it has acquired valuable new data.

Ceres
Dawn observed this area of craters, hills and canyons inside Urvara Crater on June 2, 2016, from an altitude of 240 miles (385 kilometers). The third largest crater on Ceres, it is 106 miles (170 kilometers) wide. We have seen Urvara several times before, and the crater on the right of this picture is visible in the northwestern part of Urvara shown here and here. Urvara is on the new map at 46°S, 249°E. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn also has studied selected sites at several times of the Cerean day. Mission planners may determine, for example, that if Dawn points not straight down on a particular orbit at a particular time but rather partially to the side, a certain crater could be spotted soon after Ceres’ nine-hour daily rotation has brought it into sunlight. In other words, it would be early in the morning at the crater when Dawn sees it, providing a nice dawn view. On another orbital revolution, Dawn might point in a different direction to see the same location longer after it has come into sunlight (that is, longer after sunrise), so from that same crater’s point of view, it is later in the day (albeit on a different day).

The spacecraft has done more than look at some special locations at different times of the Cerean day, corresponding to different lighting conditions. In taking pictures for a new map of Ceres this month, everywhere Dawn looked, the illumination was different from the photographs for the maps it compiled in its previous orbits. The orbit now is oriented at a different angle from the sun.

When the interplanetary adventurer was at Vesta, we described the orientation of the orbits in words. Thanks to changes in the Dawn Journal site since then, now we can present a picture showing that the scenery beneath Dawn has been illuminated from a different angle at each orbital altitude. And now in the fifth orbit, by seeing the sights from the same height as in the third mapping orbit but with different lighting, we gain a new perspective on the alien terrain.

Ceres
This illustrates (and simplifies) the relative size and alignment of Dawn’s five science orbits at Ceres. We are looking down on Ceres’ north pole. The spacecraft follows polar orbits, and seen edge-on here, each circular orbit looks like a line. (Orbits 1 and 2 extend off the figure to the right, on the night side. Like 3, 4 and 5, they are centered on Ceres.) The orbits are numbered chronologically. With the sun far to the left, the left side of Ceres is in daylight. Each time the spacecraft travels over the illuminated hemisphere in the different orbital planes, the landscape beneath it is lit from a different angle. Ceres rotates counterclockwise from this perspective (just as Earth does when viewed from the north). So higher numbers correspond to orbits that pass over ground closer to sunrise, earlier in the Cerean day. (Compare this diagram with this figure, which shows only the relative sizes of the orbits, with each one viewed face-on rather than edge-on.) Click on this image for a larger view. Image credit: NASA/JPL

In addition to all of its other work this month, the sophisticated robot has continued some specialized measurements it began at lower altitude. Being higher up does not cause as much of a reduction in the sharpness of some pictures as you might think. Held in a looser gravitational grip, Dawn’s orbital velocity is lower at higher altitude. As a result, observations that require a long exposure are not affected as much by the spacecraft’s movement. That’s helpful for some of the spectra and photographs. For example, Dawn has used its camera to peer into craters near the north and south poles that are in shadow continuously, every Cerean day of the Cerean year. These special locations might trap water molecules that escape from elsewhere on Ceres where it is too warm for them. With the benefits of a wider view from a higher altitude and a more predictable orbital path, Dawn’s coverage this month of these intriguing areas, faintly illuminated by sunlight reflected from crater walls, has been more complete than at lower altitude.

This fifth Ceres campaign was intricate and intensive, but it stayed right on the tight schedule. Dawn began collecting data as planned on Oct. 16 and finished transmitting its findings to Earth on Oct. 29. And it was exceedingly productive, yielding almost 3,000 photographs plus a great many infrared spectra and visible spectra containing a wealth of new information about Ceres.

This week controllers are going to check out the backup camera, as they do twice a year to confirm that it is still healthy and ready to take over should the primary camera develop a problem. Nevertheless, the primary camera remains fully functional. The team also is planning to switch to the backup set of reaction control system thrusters. Dawn has flown for so many years without a full complement of reaction wheels that these hydrazine thrusters have been used far more than anticipated when the ship was designed. They are healthy, but ever-cautious engineers do not want to overuse them.

Achita Crater
Dawn took this photo of Achita Crater on June 3, 2016, from an altitude of 240 miles (385 kilometers). Departing from what may seem to be the theme above of displaying interesting landscapes in the northwestern parts of the largest craters on Ceres, this scene includes most of the 25-mile (40-kilometer) Achita. Although many craters have a mountain peak in the center, this one has an extended ridge. (We have seen other craters on Ceres with central ridges, including Haulani and Urvara here and here.) Also note the bright material at the bottom of the southwest wall and a smaller deposit on the northeast rim. Achita Crater is at 26°N, 66°E on this map. (Achita is a god of agriculture in northern Nigeria.) Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn’s work in this fifth orbit is part of a comprehensive plan for exploring Ceres as thoroughly as possible. Surprising though it may be, we will see next month that scientists have determined that there is even more to learn about Ceres by flying to a higher altitude. So now that Dawn has accomplished all of its objectives for this phase of the mission, it is about to begin another month of maneuvering. On Nov. 4, the spaceship will once again power on ion engine #2 and start another spiral to a sixth orbital observing post.

As Earth and Ceres (accompanied by Dawn) follow their independent orbits around the sun, the distance between them is constantly changing. On Oct. 22, they were at their smallest separation in the 3.5 years from June 2014 to Dec. 2017. On that date, Dawn was a mere 1.900 AU (176.6 million miles, or 284.2 million kilometers) from its first solar system residence. Dawn never loses track of the rest of its team, still stationed on that faraway planet. But after many years of interplanetary travels and more than a year at Vesta, the denizen of deep space is now a devoted companion of Ceres, and that is where it focuses its attention. And it has more work to do as it seeks still greater insights into the nature of its mysterious and exotic home.

Dawn is 920 miles (1,480 kilometers) from Ceres. It is also 1.91 AU (178 million miles, or 286 million kilometers) from Earth, or 705 times as far as the moon and 1.93 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 32 minutes to make the round trip.

Dr. Marc D. Rayman
2:30 p.m. PDT October 31, 2016

P.S. Now that this Dawn Journal is complete, your correspondent can turn his attention to getting into costume for Halloween. This year, he will be disguised as someone who knew all along that Dawn would engage in a productive and innovative extended mission at Ceres. Just imagine what a great time the trick-or-treaters are going to have when they visit his home!

TAGS: DAWN, CERES, OBSERVATIONS

  • Marc Rayman
READ MORE

Flying low over Greenland's coastline in NASA's modified G-III aircraft

Science unveils the sheer beauty of Planet Earth

You might expect that being a science writer primarily focused on climate change and climate science could put me in a bad mood. You can see this if you read the comments on many of my blogs, on our NASA Climate Change Facebook page and on my TEDx video. Many commenters think I should express more alarm about our changing climate.

Yes, climate change is happening, it’s real and it’s serious. I know it and my climate scientist friends know it. But I’m just not the kind of person who can spend my days in fear, despair and anger. I just can’t. Fundamentally, it’s not who I am.

What works in my life is finding something positive and then taking action in that positive direction, which explains how I found myself traveling to Kangerlussuaq, Greenland, to support NASA’s Oceans Melting Greenland team in the field. See, NASA is the exploration leader — on this planet and beyond. And believe me, Greenland is out there. It’s so remote, so unknown, so unpopulated, that even after thousands of years of human exploration of our planet and hundreds of years of scientific exploration we still know very little about the ocean surrounding Greenland’s coastline and the water inside its long, ice-carved fjords. Greenland is unusual, a unique environment unto itself. The ice sheet is so vast, it makes its own weather patterns.

Greenland probe drop sites
Oceans Melting Greenland has completed its first survey of the oceans surrounding Greenland using air-deployed temperature and salinity probes. Of the 250 planned measurement locations, 213 probes (blue dots) were dropped, collecting data around the entire island. Credit: Josh Willis/JPL.

So, of course, with NASA’s prominent role in Earth remote sensing and climate change and our capacity to explore the unknown, we’d be the first ones to fly right up into those exceptionally remote fjords to measure the ocean water there. As scientists, decoding the natural world is our way of taking meaningful positive action. It’s our way of caring. We care about the warm water that reaches up Greenland’s icy coastline and melts the ice sheet into the water. We care, so we go there and witness. We go there and we observe. We go there and we measure. And all the while, we feel like we’ve made an effort, we’ve done good work.

And so I flew with Team OMG on a modified NASA G-III aircraft into uncontrolled airspace to places where no other aircraft had flown before, up into those narrow and steep ice-covered fjords, winding in and out, up and down, over and through to observe and measure, like scientists do.

As I was working, I also got to see the brilliant white ice carve its way through steep brown valleys into open ocean water. I saw the glorious expanse of white upon deep blue going on and on and on below us as we flew just 5,000 feet above the winding coastline. It was extraordinary. And this might seem odd to you, but I felt joyous. Yes, I did. Joyous.

For there is something undeniable about the sheer beauty of this planet, and any time you get to experience it is a moment to feel exuberant and alive.

Check out this video of Team OMG celebrating its accomplishments. 

Thanks for reading this blog.

Laura

TAGS: EARTH, CLIMATE CHANGE

READ MORE

NASA’s G-III about to take off

Swoosh! It’s not a sound so much as a feeling.

You feel it in your ears and through your whole body. And everyone on the plane — two NASA G-III pilots, two flight engineers and the rest of the Oceans Melting Greenland (OMG) crew—feels it at exactly the same time. It has become our inside joke.

The swoosh happens every time the flight engineers drop an Aircraft eXpendable Conductivity Temperature Depth (AXCTD) probe through a hole in the bottom of the plane. The AXCTD comes in a 3-foot-long gray metal tube—with a parachute. After it hits the water, the probe measures ocean temperature and salinity from the sea surface down to about 1,000 meters. The tiny difference between cabin and outside pressure pushes the probe out and makes ears pop at the same time.

This is the second week of our three- to four-week mission that will be repeated every September/October for the next five years. We’re finally starting to iron out all the minor details in our protocol. With so many moving parts, the protocol is important, and the intricate timing helps us make sure no one forgets any details and we get the most accurate record of when and where we drop each one.

Lee and Vaughn 2
The two images above show Flight Engineers Phil Vaughn and Terry Lee ready to drop an AXCTD through a hole in the bottom of the plane.
All of us wear headsets so we can communicate with each other. Here’s an abbreviated version of how it all goes down:

    1. 1. Project Manager Steve Dinardo announces “Data recorder ready.”
    2. 2. Pilots Bill Ehrenstrom and Scott Reagan call out the cloud and ice conditions and the number of minutes to the drop site. Then they determine the altitude for the approach.
    3. Josh Willis
      Lead scientist Josh Willis prepares to mark the probe drop on his GARMIN GPS.
      3. Flight Engineers Terry Lee and Phil Vaughn announce “Tube positioned and ready.”
    4. 4. At 50 seconds from the drop site, the plane slows down and cruises at about 5,000 feet.
    5. 5. At 20 seconds, Lee and Vaughn open the cap of the tube—you know, the one with that hole through the bottom of the plane—and everyone’s ears pop (the first time). Protocol states that they announce “Tube open!” but since our ears just popped, we often hear “Well, of course the tube’s open” or “As you already know—tube’s open.”
    6. 6. At 10 seconds, the pilots count down to 1 and say “drop.” The engineers reply “Sonde’s away” and we all feel that swoosh. There it is. Our ears pop for the second time as the AXCTD is “swooshed” down the tube and out through the hole in the bottom of the plane. (And yes, we all still look at each other with our sly smiles because it’s so much fun to say, “hole in the bottom of the plane.”)
    7. 7. It is the swoosh, more than anything said during the lengthy protocol script playing through my headset, that tells me—OMG lead scientist Josh Willis—to mark the drop on my GARMIN, a GPS we use to record the location of each drop.
    8. 8. After each drop, our aircraft banks steeply and we all silently celebrate the fact that we don’t get motion sickness. We continue circling during the six or so minutes it takes for the science probe to parachute down 5,000 feet to the sea surface and make its way through the water column, sending back data to us in real-time on the plane.

A view of Greenland's southwest coastline
A view of Greenland’s southwest coastline out the window of NASA’s modified G-III aircraft.
We circle until Dinardo says we’re done recording data, then it’s off to the next drop site.

During our many, often challenging hours on the plane together, we share these little inside jokes and laugh—not caring if anyone in the outside world thinks it’s funny. Seems like we are bonding. I couldn’t be happier.

TAGS: FLIGHT ENGINEERS, AIRCRAFT, OCEANS MELTING GREENLAND, G-III PILOTS

READ MORE