Closeup of part of Cerealia Facula on Ceres

Dawn is going out on a high! Or maybe a low. Rapidly nearing the end of a unique decade-long interplanetary expedition, Dawn is taking phenomenal pictures of dwarf planet Ceres as it swoops closer to the ground than ever before. While the pictures are too new for compelling scientific conclusions to be reached, a clear consensus has already emerged: Wow!!!

Every 27 hours, the bold adventurer plunges from 2,500 miles (4,000 kilometers) down to just 22 miles (35 kilometers) above the alien world, accelerating to 1,050 mph (1,690 kph), and then shoots back up to do it all over again. (Try that, bungee jumpers!)

When Dawn dives low, it takes spectacular pictures, and you can see some of them here and more in the image gallery. But that's not all it does. The spacecraft also collects a trove of data on the nuclear radiation emanating from Ceres (which can reveal some of the atomic elements that are present), the gravity field (which can reveal the distribution of mass underground) and the infrared and visible light (which can reveal the minerals on the ground). Dawn has made all these kinds of measurements before, not only during more than three years at Ceres, the largest object in the main asteroid belt, but also during its 2011-2012 studies of Vesta, the second largest. But prior to this month, Dawn had never been this close and so never had such breathtaking sights and never been able to gather such high-resolution information.

We described the nature of this orbit in the three previous Dawn Journals. It is known as extended mission orbit 7 (XMO7) because Dawn's computer program for generating really cool and dramatic names was offline when it was time to come up with the name. Ever resourceful, the team activated the backup software that generates accurate but uninspiring names.

That kind of resourcefulness has served Dawn very well. Despite critical hardware failures that could have been disastrous for the mission, the flight team has accomplished success after success. The difficulty of flying so low -- only three times your altitude when you travel in a commercial jet -- and actually collecting useful data there seemed unachievable as recently as late last year. And now Dawn is doing it regularly.

Dawn had this exquisitely close-up view of a section of the north wall of Occator Crater from an altitude of only 21 miles (33 kilometers) on June 16. This area is a little east of where the crater to the north intersects Occator Crater, near the 1:00 position. (See this view, for example.) Notice the many rocks that slid part of the way down the wall, leaving a trail behind, and then were stopped by friction. The view here is about two miles (three kilometers) across. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Before XMO7, the spacecraft's lowest orbit around Ceres was 240 miles (385 kilometers), about the same height as the International Space Station is above Earth. Dawn spent eight months in 2015-2016 at that altitude, providing an exquisite view of the dwarf planet. It subsequently flew higher to pursue other scientific objectives.

Now Dawn is observing Ceres from as low as about 22 miles (35 kilometers). That tremendous reduction in altitude, a factor of 11, is the largest of the entire mission. At no other time at Vesta or Ceres did Dawn move in that much closer from its previous best vantage point. For those of you who enjoy the numbers, the table here has the distances for each of Dawn's observations of Ceres before the comprehensive mapping began, and this table shows the altitudes of the four mapping orbits of the prime mission, the last being the lowest. In those tables, we compared Dawn's view of Ceres to a view of a soccer ball. The low point of XMO7 would be like looking at a soccer ball from only one-third of an inch (eight millimeters) away. This is truly in-your-face exploration.

And the jump in resolution is amazing. With the fantastic new details, it seems we are seeing a whole new Ceres. A picture is worth a thousand words, but these pictures also merit a few exclamation points!!!

Dawn was 22 miles (36 kilometers) high on June 17 when it photographed this network of fractures in the southeastern floor of Occator Crater. The scene is about 2.1 miles (3.5 kilometers) across. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn completed ion thrusting to XMO7 on June 6 and began its new observations of Ceres on schedule on June 9. Everywhere the spacecraft looked, it had fascinating new views. But the team had one special site in mind, and you might too. (Maybe it's even the same site.)

One of the bonus objectives was to try to get photos of Cerealia Facula, the mesmerizingly bright center of Occator Crater. We have explained why targeting a specific location is so hard. One of the attractive features of XMO7 was that it allowed two specially targeted attempts, thus increasing the chances that at least one would work. The team worked very hard to devise methods to take full advantage of that, while always quite well aware that it might not work.

Before we proceed, let's recall some terminology and introduce a new term. The high point in Dawn's orbit, 2,500 miles (4,000 kilometers), is known as apodemeter, analogous to the more common term apogee, which applies for orbits around Earth. (Demeter is the Greek counterpart of the Roman goddess Ceres.) The low point, 22 miles (35 kilometers), is peridemeter. Each 27.2-hour orbital revolution has one apodemeter and one peridemeter.

In April we discussed that Dawn travels much faster near peridemeter than near apodemeter, just as a swing moves faster at its low point than at its high point. As a fun fact, which does not bear on any of the following discussion, Dawn spends less than two hours over the dayside of Ceres (including peridemeter) and more than 25 hours over the nightside (including apodemeter). That may be surprising, but if you contemplate the illustrations of the elliptical XMO7 below and in March and think about the constantly changing velocity, it may make sense. (Or you may decide that it doesn't matter, accept it and move on.)

The solid ellipse is Dawn's orbit around Ceres, XMO7, ranging from 22 miles (35 kilometers) to 2,500 miles (4,000 kilometers). The spacecraft orbits counterclockwise from this perspective, going around once every 27. As shown in March, the orbit itself gradually rotates, so the lowest altitude shifts south. Dawn maneuvered to XMO7 early in June. The dashed circle shows the previous lowest altitude, LAMO/XMO1Image credit: NASA/JPL-Caltech

Even as they were excited by the fabulous new pictures and other data, the flight team began the carefully planned campaign to photograph Cerealia Facula when Dawn would be at peridemeter late in the day on June 22 and shortly after midnight on June 24. Navigators measured the orbital parameters very accurately and monitored how they changed. Each time the craft fires its small jets to control its orientation in the zero-gravity of spaceflight (necessary because of the failed reaction wheels), it nudges itself in orbit. The team compared the resulting distortion of the orbital motion with their predictions of this complicating effect in order to improve subsequent predictions. 

Mission planners had windows in the schedule for using the ion propulsion system to adjust the orbit. They instructed Dawn to fire its ion engine for 2 hours and 7 minutes on June 20 as the ship sailed upward. Fifteen hours later, on June 21, after it had crested in its orbit and was descending, it performed a second burn for 1 hour and 11 minutes.

The purpose of this pair of maneuvers was to bring Dawn's flight path at peridemeter right over Cerealia Facula. But the experienced explorers in mission control recognized that even with all their careful planning and Dawn's faithful execution of its assignments, there was a good chance the probe would not fly directly above that unique site as it sped northward. Therefore, they had also worked out plans to quickly determine how far east or west it would be at peridemeter and radio a (nearly) last minute adjustment in the angle it would point its sensors. 

After the second segment of ion maneuvering, Dawn's orbit took it down to peridemeter again on June 21 for another intensive period of close-up observations. Even before it had time to finish radioing those findings to Earth the next day, the team began preparing for the next dive down. On June 22, they made their final calculations of the orbital path and predicted that Dawn would fly a little west of Cerealia Facula that night and a little east of it the next time around. That afternoon, they transmitted instructions to Dawn to aim its camera and spectrometers just a little to the right the first time and just a little to the left the second time. (Sophisticated and capable though Dawn is, the instructions controllers sent were a little more specific and quantitative than the descriptions here.)

The team would have considered their extensive efforts successful if the spacecraft had photographed part of Cerealia Facula once. (Dawn flies so close to the ground that it would be impossible to photograph all of Cerealia Facula on any one orbit; its camera's view is simply not wide enough.) As it turned out, Dawn managed to get pictures of Cerealia Facula on three consecutive orbits, each time seeing different parts, yielding far better coverage of this exotic landscape than we had even hoped for.

Flying to this incredibly low orbit, getting such a wealth of data and even managing to photograph a good portion of Cerealia Facula truly tested the very limits of the mission's capabilities. Dawn has surpassed all expectations, accomplishing feats not even considered when it was designed.

Dawn had this view on June 13 when its orbit took it 24 miles (39 kilometers) over Vinalia Faculae, the diffuse bright salt deposits east of Cerealia Facula in Occator Crater. The exposure was optimized to show details of the bright material (and chosen to minimize smear from the spacecraft's high speed so close to the ground), revealing a complex distribution. The rugged dark terrain appears similar to some terrestrial lava flows, but on cold Ceres, what flowed was mostly a muddy mixture of ice and rock. The picture is 2.3 miles (3.7 kilometers) wide. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

In order to prepare for the long shot of attempting to capture Cerealia Facula, Dawn rotated to point its main antenna to Earth relatively often, sometimes after each peridemeter or after two or three. That allowed the flight team to work more closely with the spacecraft. Then it would turn again to bring its sensors to bear on Ceres shortly before soaring through the next peridemeter. But all that turning costs Dawn hydrazine, the resource that limits its operational life to only another few months. (We outlined this situation last month and will delve into it more fully next month.) Now Dawn will observe Ceres on five consecutive orbits, filling its memory with data, and then spend almost two full days, including one peridemeter, transmitting that valuable information back to Earth. While its antenna is trained on Earth, the spacecraft cannot simultaneously direct its sensors at Ceres. That actually yields especially good gravity measurements, which use the Doppler shift of the radio signal, because the signal is much stronger with the main antenna than with one of the auxiliary antennas. Pictures and spectra, however, cannot be acquired on that one peridemeter in every six during which Dawn sends its results to Earth. The flight team determined that the benefit of turning less often and thus reducing hydrazine consumption yields the best scientific return. (This savings was already accounted for when we described the end of the mission as likely being between August and October.)

We saw in March that the latitude at which Dawn reaches peridemeter shifts south with every revolution. That is, the low point of each orbit is about 2° south of the one before. As a result, each time the spacecraft flies over Occator Crater now, it is higher than the previous time. Occator is at 20°N. Now the peridemeter is close to the equator, and soon Dawn's best views of Ceres will be in the region of Urvara Crater.

Dawn observed this landscape on June 10 from an altitude of 24 miles (38 kilometers). Note all the boulders in the crater on the lower left. The crater's average diameter is about 0.9 miles (1.4 kilometers). This scene is around 75 miles (120 kilometers) north of Occator Crater. We described above that Dawn's peridemeter gradually moves south. This early in XMO7, the low altitude occurred well north of Occator Crater, because the team had designed the orbit so the best Occator observations would be later in June. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Firing ion engine #2 on June 21 accomplished more than the orbital adjustment that allowed the ship to spot Cerealia Facula at three consecutive peridemeters. It also completed the planned use of the ion propulsion system for the entire mission. 

Dawn's ion engines have enabled this interplanetary spaceship to accomplish a journey unique in humankind's exploration of the solar system. After departing Earth with the help of a conventional rocket, Dawn used those engines to fly past Mars in 2009, to travel to Vesta and enter orbit in 2011, to maneuver extensively in orbit to optimize its observations there, to break out of orbit in 2012, to travel to Ceres and slip into orbit in 2015, and to perform even more maneuvering there than at Vesta. No other spacecraft has ever orbited two extraterrestrial destinations, and Dawn's mission to do so would have been impossible without ion propulsion.

We summarize the mission's ion thrusting on every Dawnniversary of launch, but since no further use is planned, we can give some final numbers here. Dawn thrust for a total of 2,141 days (5.9 years), or 55 percent of the time it has been in space (and 0.000000043 percent of the time since the Big Bang). The thrusting has achieved the equivalent of accelerating the probe by 25,700 mph (41,400 kilometers per hour). As we have often explained (see here for one of the more extensive discussions), because of the principles of motion for orbital flight, whether around the Sun or any other gravitating body, Dawn is not actually traveling this much faster than when it launched. But the effective change in speed remains a useful measure of the effect of any spacecraft's propulsive work. Dawn has far exceeded the velocity change achieved by any other spacecraft under its own power. (For a comparison with probes that enter orbit around Mars, refer to this earlier Dawn Journal.) 

The engines have done their job admirably, and now we have no further use for them. As a reminder, they are not needed for Dawn to stay in orbit around Ceres, just as the Moon doesn't need propulsion to stay in orbit around Earth and Earth doesn't need propulsion to say in orbit around the Sun. Next month we will discuss what will happen to Dawn's orbit after the mission ends.

Dawn took this picture on June 9, the first time it took high resolution photos from its new orbit, XMO7. The spacecraft was 30 miles (48 kilometers) over this field of boulders inside Occator Crater's eastern rim. This scene is 2.9 miles (4.6 kilometers) wide. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

When the ion engine was programmed to stop thrusting on June 21, some Dawn team members gathered in mission control to mark the occasion. Dawn was busy and was not communicating with Earth at the time. Even if it had been, a radio signal confirming the end of thrust would have taken almost 25 minutes to reach our planet. But the team decided to neglect the limitation of the speed of light and mark the moment (1:15:03 pm PDT) that the blue glow on the distant ship's engine would extinguish for the last time. And at that same moment, the blue lights in mission control were turned off for the last time as well.

It's natural to feel some sadness or loss now that the engines will not fire again. After all, ion propulsion is cool, especially for those of us who first heard of it in science fiction. It is even cooler for those who appreciate its tremendous capability and how valuable that is for deep-space missions. We can feel wistful, of course, but the last use of the ion engines was a direct result of their great success. After a truly stupendous interplanetary mission, we have Dawn right where we want it: in an orbit optimized for getting the last, best data at the endlessly fascinating dwarf planet it has unveiled. We can be grateful the ion engines allowed Dawn to explore two of the last uncharted worlds in the inner solar system and that they captivated our imagination as the distant spacecraft traveled through the solar system on a blue-green beam of xenon ions. Not too long ago, ion propulsion was mostly in the domain of science fiction. NASA's Deep Space 1 put it firmly into the realm of science fact. Building on DS1, Dawn has rocketed far beyond, accomplishing a space trek that would have been impossible without ion propulsion. Its mission was to boldly go where -- well, you know. And it has! Dawn's engines will never emit their cool blue glow again, but their legacy will not fade.

Dawn is 100 miles (160 kilometers) from Ceres (and headed for peridemeter). It is also 3.06 AU (284 million miles, or 457 million kilometers) from Earth, or 1,125 times as far as the Moon and 3.01 times as far as the Sun today. Radio signals, traveling at the universal limit of the speed of light, take 51 minutes to make the round trip.

Dr. Marc D. Rayman
7:00 pm PDT June 30, 2018


  • Marc Rayman

Propelled by the perfect combination of xenon ions, hydrazine rocket propellant and adrenaline, Dawn is on the verge of its most ambitious exploits yet. Having flawlessly completed its latest assignment to study Ceres, the veteran explorer is now aiming for a new low. Earlier today Dawn ignited ion engine #2 to start maneuvering to its lowest altitude above the dwarf planet. Soon the spaceship will be skimming closer to the alien landscapes of rock, ice and salt than ever before, promising exciting new insights into the nature of a distant and mysterious world.

Almost once a day in its next orbit, Dawn will dive from 2,500 miles (4,000 kilometers) down to only 22 miles (35 kilometers), speeding above the ground at 1,050 mph (1,690 kph), and then shoot back up again. (Warning: Do not try this at home! Dawn is a trained professional.)

Before we (and Dawn) get to this new and final orbit, let's review the outstanding accomplishments this month. Dawn used its ion engine in April and May to descend to an orbit creatively known as extended mission orbit 6 (XMO6). (We showed the flight path last month and tracked the progress in mission status updates.) Ion thrusting concluded on schedule on May 14 when Dawn was in the targeted elliptical orbit, which ranged from 280 miles (450 kilometers) to 2,900 miles (4,700 kilometers).

Each of the 10 loops around Ceres took one and a half days, and Dawn successfully performed all of its planned observations. Every time Dawn flew northward over the sunlit hemisphere, the spacecraft used its cameras and other sensors to collect new data. During some orbits, as it flew southward over the hemisphere opposite the Sun, it turned to point its main antenna at faraway Earth and then radioed its findings to NASA's Deep Space Network. On other orbits, Dawn patiently continued looking down at Ceres. Of course, with the ground there hidden in the deep black of night on a moonless world, there was nothing to see, but by not turning, the spacecraft could conserve precious hydrazine for later in the mission. (Dawn used this strategy in most of the other phases at Ceres as well, starting with the third mapping orbit of the prime mission in 2015.) We will discuss more about hydrazine below.

This image of Nar Sulcus in Yalode Crater was obtained by NASA's Dawn spacecraft on May 19, 2018 from an altitude of about 875 miles (1410 kilometers).
Dawn was 875 miles (1,410 kilometers) high on May 19 when it peered into Yalode Crater and took this picture of the otherworldly canyons Nar Sulcus. The last time we saw this strange terrain was here. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

As we saw in March's preview, Dawn's primary goal in XMO6 was to take advantage of it being summer in the southern hemisphere by making extensive observations in the far south. We also explained that XMO6 provided an opportunity for collecting new data (including higher resolution color pictures), providing new perspectives closer to the equator and in the northern hemisphere as well. Dawn spotted sites we have discussed before, including Ernutet Crater with deposits of organic materials, the smooth landscape around Ikapati Crater showing a history of flowing material, the volcano Ahuna Mons and other locations pictured above and below. Prior to three years ago, these places were all quite unknown (at least to Earthlings). In the intervening time, Dawn has studied many of them in exquisite detail, and at each one has discovered new questions to ask. XMO6 may provide new answers (and probably still newer questions.)

In addition to its normal photography and spectroscopy, the spacecraft took long exposure pictures to investigate areas that are in shadow throughout the Cerean year. We described before how water can be trapped in such locations, but when we last touched on this topic in December 2016 (along with a cool animation), we also mentioned that the seasons had precluded a good study in the southern hemisphere. XMO6 has helped rectify that, illustrating one benefit of being able to stay in orbit rather than catching whatever is to be seen during a fast flyby.

Dawn had one more assignment in XMO6. After the primary scientific observations were complete on the first, third, and tenth orbits, the spacecraft turned from pointing at the ground beneath it to the horizon. (The amount of hydrazine needed for a turn depends on the direction. In each case, mission controllers selected the most hydrazine-efficient direction.) As it turned, Dawn continued taking pictures. This showed terrain at new angles, contributing to the collection of stereo pictures taken in the third and fourth mapping orbits. But in this case, the scientific benefit, while real, was secondary. The primary objective was to get some cool new views of the limb of Ceres, including the one above. Loyal readers (and some others as well) may know that your correspondent finds such perspectives especially appealing, as described here (with other fine examples here, there and elsewhere). He decided the pure coolness of these XMO6 pictures would be reason enough to instruct Dawn to take them.

By the time Dawn completed XMO6, it had collected 1,800 new photos of Ceres in addition to a wealth of infrared spectra and visible spectra. As soon as its bounty was safely on Earth, the itinerant adventurer was ready for its next great challenge.

And now the blue lights are on again in mission control at JPL, as they were at the end of last month. The illumination is not designed to alter the circadian rhythm of the flight team but rather to provide a visual connection with the distant spacecraft as its ion engine emits a steady bluish glow. Dawn is now spiraling down, tightening its elliptical loops, getting lower and lower and lower. We described the previous descent last month, and you can see the current trajectory in the figure below.

The blue curve is Dawn's counterclockwise flight path from XMO6 (the outer green ellipse) to XMO7 (the inner one). Dawn is scheduled to thrust from May 31 to June 6 to accomplish this orbital maneuver. XMO7 will range in altitude from 22 miles (35 kilometers) to 2,500 miles (4,000 kilometers). Note that when the spacecraft loops around Ceres in XMO7, it will not return to its orbital starting point. Last month we described (and illustrated with another figure) why it will not follow a closed ellipse. Image credit: NASA/JPL-Caltech

Dawn will spend the rest of its operational life in the target orbit, XMO7, and most future Dawn Journals will be devoted to it. How long will that be? That's a good question (in contrast, perhaps, to all the absurd questions posed in previous Dawn Journals), but the answer is not easy.

We have discussed many times (here is a summary) that Dawn's lifetime is limited by its hydrazine, a conventional rocket propellant expelled from reaction control system thrusters to control its orientation in space. When that dwindling supply is exhausted, the robot will no longer be able to point its solar arrays at the Sun, its antenna at Earth, its sensors at Ceres or its ion engines in the direction needed to travel elsewhere. The mission will end, and the ship will become an inert celestial monument to the power of human ingenuity, creativity and curiosity, a lasting reminder orbiting one of the solar system worlds it unveiled that our passion for bold adventures and our noble aspirations to extend our reach into the universe can take us very, very far beyond the confines of our humble planetary home.

The rate at which Dawn consumes hydrazine depends very strongly on the nature of the orbit. The lower the height, the faster it uses hydrazine, because it must rotate more quickly to keep its sensors pointed at the ground. In addition, it has to fight harder to resist Ceres’ relentless gravitational tug on the very large solar arrays, creating an unwanted torque on the ship. In XMO7, Dawn will dip to less than one-tenth of its lowest altitude so far. The hydrazine is going to go fast. But that's okay. The hydrazine is there to be used in service of accomplishing the mission, and Dawn is going to use it very well indeed as it pursues fabulous new goals.

The flight team made a special effort in XMO6 to observe Juling Crater, shown above and to the left of the larger Kupalo Crater which is near the center of this photograph taken on May 25 from an altitude of 855 miles (1,380 kilometers). Juling has been the target of many prior observations as well. It is particularly interesting because it is the site of the only changes yet identified on Ceres during Dawn's investigations there. Juling is at 36°S. The picture is oriented with north at the top, showing that the northern wall, where ice accumulated in 2016, is in shade. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn engineers have sophisticated mathematical models to predict just how quickly the hydrazine will be spent, and those models have done an excellent job throughout the mission. Nevertheless, as in all realistic and complex systems, there remains some degree of uncertainty. (As a courtesy to most readers, we will not delve into the recondite details.) We can predict only approximately how fast Dawn will expend hydrazine as it carries out its intricate assignments in the coming months. Glitches, which are inevitable on such a complex mission, can both consume hydrazine and compel the flight team to change the schedule and the plans, introducing further uncertainty.

As it turns out, there are two more aspects of this problem. Not only are we limited in our ability to predict how much hydrazine each activity will require but our measurement of how much hydrazine Dawn has remaining is imperfect too. We know that when it left Earth, riding atop a Delta rocket, the 12-gallon (45-liter) hydrazine tank was filled with 99.8 pounds (45.3 kilograms) of the propellant. In the subsequent 11.5 years, every time it has fired a thruster, the spacecraft has dutifully recorded the duration (in milliseconds) and reported that to mission control at JPL. It has also sent telemetry on the temperature and pressure in the hydrazine tank. With that information, engineers can calculate how much hydrazine is expended in each pulse of a thruster and, more to the point, how much is left in the tank. It is now down to about 1.8 gallons (7 liters). But no physical measurement is perfectly accurate. As only one example, the sensors that read the temperature and pressure have been subjected to violent shaking during the rocket's fiery ascent as well as almost a dozen years in space. Their readings now may be off a little bit one way or the other. The determination of how much hydrazine is still onboard thus has some uncertainty.

So, it is not possible to predict exactly how much hydrazine Dawn will need nor exactly how much it has. There is still another source of uncertainty. There is a complex network of tubing, valves and a filter between the tank and each of the 12 thrusters located around the spacecraft. Once the pressure in the lines is too low for a thruster to operate, the remaining hydrazine cannot be expelled. Of course, engineers can calculate how much of the hydrazine will be trapped in the system (known as the unusable hydrazine). That turns out to be 1.7 pints (0.8 liters), but, as with these other problems, they cannot know the answer with absolute precision, so it could be a little more or a little less.

Taken together, all these reasons prevent controllers from being able to pin down the day and time that Dawn will deplete the usable hydrazine. Experienced interplanetary explorers, like the Dawn flight team at JPL, are accustomed to dealing with such uncertainty.

Dawn photographed this scene in Urvara Crater on May 20 from an altitude of 920 miles (1,480 kilometers). We last saw part of this large crater here. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The team will continue to guide Dawn in squeezing as much out of its time at Ceres as possible, acquiring new data until the spacecraft is unable to comply because it has expended the last puff of hydrazine. Right now, that is deemed most likely to be in September of this year (with a smaller chance it will be in August or maybe even October). Once Dawn has settled in to XMO7, and engineers have operational experience in the new orbit, they will update their estimate, and they will continue to refine it as the mission progresses.

And when the last of the hydrazine is used up, the spacecraft will actuate valves and try to fire thrusters to control its orientation, but hydrazine will no longer flow, so the torque it wants to exert will not be achieved. The spacecraft will be impotent, its attempts to point correctly futile. The struggle will be brief, as it will soon run out of electrical power, and the central computer will cease operating. We will address the details of its final moments in a future Dawn Journal.

This color mosaic of part of the rugged terrain in Dantu Crater was constructed with pictures Dawn took on May 23 from an altitude of around 305 miles (490 kilometers). Dantu is 78 miles (126 kilometers) wide, and we last presented a view of a segment of it in October. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

For now, we needn't anticipate the end with despair. Dawn has already succeeded beyond our wildest expectations. The prime mission accomplished far more than planned at Vesta and at Ceres even though it confronted completely unanticipated and daunting obstacles, like the failures of two reaction wheels. The first extended mission (in XMO1 through XMO5) yielded many additional impressive bonuses as well as another reaction wheel failure. Now the second extension has provided further rewards in XMO6. And as we look ahead to XMO7, we can expect even more riches and, of course, more challenges (although no more reaction wheel failures).

A daring and exciting interplanetary adventure, journeying through the solar system atop a bluish beam of xenon ions, soaring past Mars and flying well over one million times farther from Earth than the International Space Station, orbiting Vesta and Ceres, the two largest bodies in the main asteroid belt (together representing about 40 percent of the combined mass of the millions of objects between Mars and Jupiter), exploring these mysterious uncharted worlds, revealing dramatic alien landscapes, powered by the collective passions of everyone exhilarated by new knowledge and everyone who longs to know the cosmos, Dawn has already surpassed any reasonable expectation for what it might achieve. What more may come, we do not yet know. That's part of the thrill of exploration and discovery. But when the end does come, it will represent the culmination of a truly extraordinary extraterrestrial expedition.

Dawn is 1,800 miles (2,900 kilometers) from Ceres. It is also 2.73 AU (254 million miles, or 408 million kilometers) from Earth, or 1,010 times as far as the Moon and 2.69 times as far as the Sun today. Radio signals, traveling at the universal limit of the speed of light, take 45 minutes to make the round trip.

Dr. Marc D. Rayman
6:30 pm PDT May 31, 2018


  • Marc Rayman

Hanami Planum

For the first time in almost a year, the Dawn mission control room at JPL is aglow with blue.

The rope lights strung around the room bathe it in a gentle light reminiscent of the beam emitted by an ion engine on the faraway spacecraft as it maneuvers in orbit around Ceres. Dawn had not thrust since June, but it is now using ion engine #2 to fly to a new orbit around the dwarf planet. Thanks to its uniquely capable ion propulsion system, Dawn has accomplished far more powered flight than any other spacecraft, and more is ahead.

Dawn has spent most of the last year revolving around Ceres once every 30 days in extended mission orbit 5 (XMO5), a designation that illustrates the team's flair for the dramatic. (Your correspondent, as passionate as anyone about the exploration of the cosmos, can imagine only a few names more inspiring than that. Fortunately, one of them happens to be "XMO7." Read on!) As the probe followed that elliptical course, it reached down to a little less than 2,800 miles (4,400 kilometers) above the alien world and up to 24,300 miles (39,100 kilometers).

Dawn flew to high altitude late in 2016. Its work there is now complete, and defying expectations, the aged adventurer still has life left in it. As we saw in last month's overview of the two upcoming orbits, Dawn's next assignment is to go much, much lower.

XMO5 and the subsequent two orbits are elliptical, as shown in the illustrations last month and the new one below. Observing Ceres from a very low altitude is possible only in an elliptical orbit, not a circular one. Dawn was not designed to operate at low altitude, and its reaction wheels, which are so important for controlling its orientation, have failed, making the problem even more difficult. We have discussed this before and will address another aspect of it this month for the lowest orbit.

Although the elliptical orbits introduce many new technical challenges for the team, Dawn still takes a spiral route from each orbit to the next, just as it did earlier at Ceres and at Vesta when the orbits were circular. In essence, the ion engine smoothly shrinks the starting ellipse until the new ellipse is the size needed. These trajectories are very complicated to plan and to execute, but with the expert piloting of the experienced team, the maneuvering is going very well. (You can follow the progress with the mission status updates.)

Image showcasing DAWN's flight path from XM05 to XM06.
The blue curve is Dawn's flight path from XMO5 (the outer green ellipse) to XMO6 (the inner one). Image credit: NASA/JPL-Caltech

Dawn began its descent on April 16. On May 15, with the blue lights turned off in mission control, the veteran explorer will begin its observations in XMO6. (As suggested last month, the targeted minimum and maximum altitudes for XMO6 are being updated slightly even as Dawn is on its way. In the next Dawn Journal, we will present the actual altitude range.) If all goes well, the control room will be lit up in blue again from May 31 to June 7, as the ship sails down to XMO7.

In XMO7, Dawn will swoop down to an incredibly low 22 miles (35 kilometers) above the exotic terrain of ice, rock and salt. The last time it was that close to a solar system body was when it rode a rocket from Cape Canaveral over the Atlantic Ocean more than a decade ago. (For readers unfamiliar with solar system geography, that was Earth.) The XMO7 ellipse will then take the spacecraft up to 2,500 miles (4,000 kilometers). Each revolution will last 27 hours and 13 minutes. In considerably less time than that (assuming you read at a typical speed), we will discuss why this orbital period is important.

Last month, we described some of Dawn's planned low-altitude measurements of nuclear radiation to reveal more about Ceres' composition. As a bonus objective, scientists would like to study the elements in one of their favorite places (and perhaps one of yours as well): Occator Crater, site of the highly reflective salt deposits, famous not only on Ceres but also on Earth and everywhere else that readers follow Dawn's discoveries. Studying this one crater and the area around it (together known as a geological unit) could reveal more about the complex geology there. But doing so is quite a challenge, as Dawn would need to pass over that region 20 times to allow the gamma ray and neutron detector (GRaND) to record enough of the faint nuclear radiation. This is the equivalent of taking a long exposure with a camera when photographing a very dim scene.

Attempting to repeatedly fly low over that geological unit presents daunting obstacles, as we will discuss. It may not work, but the team will try. That's part of what makes for a daring adventure! And accomplishing such a feat requires a special trick. Fortunately, the Dawn team has several at its disposal.

Recall that Dawn will loop around Ceres, going south to north at low altitude and back to the south again at high altitude. Meanwhile, Ceres will turn on its axis toward the east, completing one rotation in just over 9 hours, 4 minutes. (Note that Ceres turns quite a bit faster than Earth. A Cerean day is much closer in duration to a day on Jupiter, which is 9 hours, 56 minutes. All three turn east.) Therefore, the flight team will synchronize the orbit so that each time Dawn swoops down to low altitude, it does so at just the right time so that Ceres' rotation will place the Occator geological unit under the probe's flight path.

We mentioned above that Dawn's orbit will take 27 hours, 13 minutes. This period is chosen to be exactly three times Ceres' rotation period. Experts (now including you) describe this as a three-to-one resonant orbit, meaning that for every three times Ceres turns, Dawn turns around it once.

If this synchronization is clear, feel free to skip this paragraph. Perhaps get a snack until it's time for the next paragraph or, better yet, use this time to gaze at the mesmerizing beauty of the night sky and contemplate the magnificence of the cosmos. If the synchronization is not clear, find a globe of Earth. Now imagine a satellite circling it, flying from the south pole to the north pole over one hemisphere and back to the south pole over the opposite hemisphere. Suppose the first passage occurs over your location. If Earth didn't rotate, the second orbit would take it over the same place. (Of course, if Earth didn't rotate, you might run out of patience waiting for tomorrow.) Now rotate the globe a little bit while your imagined satellite goes through one revolution. If it flew over your location the first time, it will not the second time. And you can see that with Earth rotating at a constant speed, it requires a carefully chosen speed for the satellite to pass over the desired target on each revolution. The Dawn flight team will work very hard to help our distant explorer have the orbit needed to achieve the three-to-one resonance.

The accuracy necessary will be difficult to achieve, even for the Dawn flight team at JPL, where the best celestial navigators in the solar system get to work. The problems that must be overcome are manifold. One of them is that, lacking functioning reaction wheels, Dawn fires its small hydrazine-fueled thrusters to control its orientation in space. Whether to turn to keep its sensors trained on the ground, even with the constantly changing altitude and velocity in the elliptical orbit, or to point its main antenna at Earth, the reaction from a little burst of hydrazine not only rotates the spacecraft but also nudges it in its orbit. (We have described this several times in great detail before.) Each small push from the thrusters distorts the orbit a little bit, desynchronizing it from the three-to-one resonance.

Another difficulty is that, just like Earth, Mars, the Moon and other solar system residents (not to mention cookie dough ice cream), Ceres is not uniform inside. Its complex geology has produced some regions of higher density and some of lower density (although not with the same delectable composition as the ice cream). The total gravitational pull on the spacecraft depends on the dwarf planet's internal structure. We have described before how scientists take advantage of it to map the interior. But we have measured the gravity from 240 miles (385 kilometers) high. When Dawn swoops down much lower, our gravity map will not be accurate enough to predict all the subtle details of the mass distribution that may cause slightly larger or slightly smaller pulls at some locations. It will take quite a while to formulate the new gravity map. That new map may reveal more about what's underground, but until then, it will be harder to keep the orbit in sync.

On two occasions in mid-June Dawn will use its ion engine to tweak its orbit (in what we have described before as a trajectory correction maneuver) to help maintain the synchronization, but there will still be residual discrepancies.

We described and depicted last month how the low point of Dawn's orbit will gradually shift southward on each successive revolution. That means we will have only a limited number of opportunities to fly over Occator before the low point is too far south. Given the complexity of the operations, the planned measurements are not at all assured.

There are other aspects of this problem as well. While we will not delve into them here, engineers have been working hard on every one of them.

Image showcasing the view of Juling Crater that was constructed from pictures Dawn took from its lowest orbit so far.
This view of Juling Crater was constructed from pictures Dawn took from its lowest orbit so far, 240 miles (385 kilometers) high. We have presented other views of this 12-mile (20-kilometer) crater, including last month, when we described the discovery that the amount of ice on the shadowed northern wall changed over six months in 2016. Ceres is not a static world. When Dawn dives down lower in June, it will obtain sharper images than this (at other locations). Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

We have mentioned before that photography will be extremely challenging in XMO7, because of both the high speed so close to the ground and the difficulty pointing the camera accurately enough to capture a specific target. Let's take a more careful look at the nature of the orbit to understand more about the problem of trying to see any particular site.

You can think of the motion in an elliptical orbit as being somewhat like that of a swing. Imagine a girl named Dawn on a swing. Perhaps she is 10 and a half years old (like our spacecraft), usually (but not always) does what we instruct (like our spacecraft), feels energized by the light of the Sun (like our spacecraft), loves the idea of exploring uncharted worlds (like our spacecraft) and uses photomultiplier tubes coupled to a bismuth germanate crystal scintillator, lithiated glass and boron-loaded plastic to measure the spectra of nuclear radiation (okay, she is not like our spacecraft in every way).

When Dawn rides her swing, her speed is constantly changing. As she approaches the top of her arc, gravity slows her down and even brings her momentarily to a stop. She then begins to fall, accelerating as she gets lower. As soon as she passes the lowest point, her upward motion and the downward pull of gravity oppose each other, and once again she begins to slow. When her swing is pumped up (whether with her legs or by the push of her friend or her friendly ion engine), her arc will reach higher, and then she will speed through the low point even faster.

Of course, the swing does not trace out an ellipse, and the girl does not loop all the way around, but the fundamental principles of motion are the same, as methodically investigated by Galileo Galilei four centuries ago and explained by Isaac Newton in the second half of the 17th century. Dawn's elliptical orbit around Ceres will behave somewhat like the swing. At high altitude, far above the dwarf planet, the spacecraft will move at only about 120 mph (190 kph). Then, as gravity pulls it back down, the spacecraft will accelerate until it skims over the ground at 1,050 mph (1,690 kph) before starting to swing up again.

Dawn is much, much, much too far away for controllers to point its camera and other instruments as you might with a joystick or other controller in real time. Readers of the final paragraph of every Dawn Journal know that radio signals, traveling at the universal limit of the speed of light, usually take more than half an hour to complete the round trip. When Dawn is in XMO7 this summer, it will be about an hour. While the spacecraft is racing over the Cerean landscape, it can't wait for its radio signal to tell controllers what it sees and then, based on that, for a return radio signal to help it adjust the pointing of its camera. All the instructions from Earth have to be radioed in advance.

It is a very complicated process to go from measuring Dawn's orbit accurately to the probe actually aiming its camera and its spectrometers to collect new data, with many calculations and many steps in between, each of which has to be checked and double checked. The team has a special campaign planned for that purpose, and they will maneuver to XMO7 so that the best viewing will be in late June. But even when they work quickly for this dedicated attempt to get some bonus photographs of Occator, the entire process will take the better part of a week because of the spacecraft's orbital activities (e.g., while it observes Ceres, it cannot communicate with Earth), segments of its orbit where Ceres blocks its radio signal to Earth and so it is not possible to communicate, and the schedule for the large Deep Space Network antennas to shout so Dawn can then listen for what fades to become a long-distance radio whisper. Time needs to be allocated for computers and people to analyze data, to formulate and verify the new plans, to beam the instructions to Dawn and then Dawn finally to execute them. Meanwhile, even after the initial measurement of its orbit, while all this work is occurring on Earth, the ship will continue to be buffeted by the hydrazine winds and the gravitational currents, so its course will continue to change.

The consequence of all this is that by the time Dawn actually conducts its observations, its orbit will be different from what was measured days earlier. The carefully devised prediction that formed the basis of the plans could well be off one way or the other by four minutes or even more. (By the way, calculating now the credible magnitude of the error for this June campaign is a sophisticated science that, in itself, involves thousands and thousands of hours of computer calculations, performed on hundreds of computers working simultaneously. Epistemic knowledge does not come easily.)

From Dawn's perspective, descending and speeding north at 1,050 mph (1,690 kph) to the vicinity of Occator, faithfully pointing its sensors according to the plan worked out days before on a distant planet and stored in its computer, Ceres' rotation will carry the crater to the right at more than 190 mph (310 kph). Dawn's camera will take in a scene about 2.1 miles (3.4 kilometers) across, and at the spacecraft's high velocity, there won't be time to turn right and left to cover a broader swath. Even if the probe arrived at Occator's latitude a mere 20 seconds off schedule, a spot on the ground that was expected to be in the center of the camera would have moved entirely out of view and so would not even be glimpsed. If Dawn were four minutes too early or too late, the ground beneath the spacecraft (known as the ground track) would shift west or east by 13 miles (21 kilometers), and the terrain that's photographed could be entirely different from what was expected.

Occator Crater is 57 miles (92 kilometers) across, so all this work should allow GRaND, with its very wide field of view, to measure the composition in the geological unit that contains the crater. But the narrower view of the camera means we cannot be certain what features we will see. Fortunately, we already know that there is fascinating geology just about everywhere in and near Occator. Indeed, the dwarf planet is vast and varied, with a great many intriguing features. We are going to behold some amazing sights!

Before then, we will gain new perspectives from XMO6 in May. And as Dawn was getting closer to Ceres, together the pair were getting closer to the Sun until yesterday. Dawn isn't the only object in an elliptical orbit. Ceres, Earth, and all the other planets (whether dwarf or not) travel in elliptical orbits too, although they orbit the Sun. Ceres' orbit is more elliptical than Earth's but not as much as some of the other planets. The shape of Ceres' orbit is between that of Saturn's (which is more circular) and Mars' (which is more elliptical). (Of course, Ceres' orbit is larger than Mars' orbit -- it revolves farther from the Sun than the Red Planet does -- and smaller than Saturn's, but our focus here is on how much the orbit deviates from a perfect circle, regardless of the size.)

Image of DAWN's trajectory.
The location of Ceres and Dawn in the solar system is shown on April 28, 2018, when they were at perihelion, the minimum distance to the Sun. We have charted Dawn's progress on this figure many times before, most recently in September. Image credit: NASA/JPL-Caltech

In its 4.6-year-long Cerean year, Ceres, with Dawn in tow, reached the minimum solar distance of just under 2.56 AU (238 million miles, or 383 million kilometers) on April 28. Dawn also was in residence at Ceres when they were at their maximum distance from the Sun in January 2016. Although the dwarf planet's orbit is not elliptical enough that the additional solar heating is expected to have much effect, the upcoming observations in XMO6 will provide scientists with the opportunity to look for any changes just in case. (The change Dawn detected at Juling Crater is more likely related to the seasonal change of the angle of the Sun rather than the distance to the Sun.)

The solar system constantly performs a complex and beautiful choreography, with everything in motion. Dawn will complete its current elegant spiral in another two weeks, and then it will be time for the next act, XMO6 and, after that, the finale, XMO7. A great many challenges are ahead but the allure of the rich rewards of new knowledge, new insight, and a new adventure is irresistible as Dawn delves further into the unknown.

Dawn is 1,400 miles (2,300 kilometers) from Ceres. It is also 2.34 AU (218 million miles, or 350 million kilometers) from Earth, or 900 times as far as the Moon and 2.32 times as far as the Sun today. Radio signals, traveling at the universal limit of the speed of light, take 39 minutes to make the round trip.

Dr. Marc D. Rayman
7:30 pm PDT April 29, 2018


  • Marc Rayman

Occator Crater

A veteran explorer is leisurely orbiting the only dwarf planet in the inner solar system. Measuring space radiation high over Ceres, Dawn revolves once every 30 days in its gravitational master's firm grip. Dawn is well-known for its patience, and the pace of its activities has been decidedly relaxed in this orbit. That is about to change. There is now only one revolution to go before the spacecraft begins the final campaign of its long and rewarding deep-space adventure.

For eight months in 2015-2016, Dawn circled Ceres once every 5.4 hours at only 240 miles (385 kilometers). (The orbit has been variously designated as LAMO, then XMO1, and often as "the lowest orbit.") It then flew higher to pursue new objectives. The probe's orbit now takes it from slightly under 2,800 miles (4,400 kilometers) up to 24,300 miles (39,100 kilometers) and then back down again. (These values are a little different from what we presented in December, principally because the Sun's gravity gradually alters the orbit.) The orbit is known to people who call it extended mission orbit 5, or XMO5, as "extended mission orbit 5" or "XMO5" (following the nomenclature described here). XMO5 is illustrated in a figure below.

In contrast to the distant, serene probe, the operations team has been working quite intensively to prepare for a bold new phase of the mission. They have been assiduously working through all the tasks necessary to prepare for piloting this unique spaceship, late in its life and low on supplies, through maneuvers it was never designed for and to conduct observations never conceived of prior to late last year. Since the previous Dawn Journal, the team has generated more than 45,000 trajectories to study how to fly Dawn to two new orbits. Often there are more than 100 computers operating simultaneously to perform the necessary calculations. Many thousands more trajectories are yet to be computed and analyzed. If all goes well, by June, the probe will have followed an intricate flight plan that will allow it to glide a mere 22 miles (35 kilometers) above the alien landscapes almost every day in an orbit dramatically and poetically designated XMO7 (but occasionally summarized as "Whoa, that's low!").

Juling  Crater in LAMO
Dawn took this picture of Juling Crater in LAMO from an altitude of 240 miles (385 kilometers) on April 30, 2016. When we presented a different view of Juling, taken four months later, we described the surprising discovery of ice there. In October 2016, in XMO2, Dawn successfully accomplished the challenging assignment of acquiring infrared spectra of Juling's north wall, where the ice had been spotted, at three different times of the Cerean day. Comparing these five observations, scientists have determined that the area of ice increased from 1.4 square miles (3.6 square kilometers) to 2.1 square miles (5.5 square kilometers). In other words, the ice grew by 470 acres (190 hectares) over those six months. This is the first detection of a change on Ceres during Dawn's exploration. Scientists attribute the change to a seasonal cycle of solar heating of the crater floor. During that period, late in southern hemisphere winter, the Sun was moving south (toward Juling, which is at 36°S). As the ground warmed, it released water vapor. The vapor then condensed on the colder north wall of the crater, which faces away from the Sun. The crater wall acts as a "cold trap," collecting ice. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/ASI/INAF

Let's take a look at some of the plans the flight team is developing. As always, we will provide more details when Dawn is executing its complex assignments. In addition, as some parts of the plan are still being refined, there may be a few changes, and we will keep you updated on those as well. But plans are firm enough now that a preview is warranted.

On April 17, the spacecraft will fire up ion engine #2 and begin a downward spiral, gradually shrinking its elliptical orbit. Along the way to its final space destination, XMO7, the ship will moor at an intermediate orbit. On May 14, when it is in an orbit that ranges from about 235 miles (375 kilometers) to almost 3,000 miles (4,800 kilometers), it will shut down the engine. (This orbit is illustrated in the next two figures below.)

It is only coincidental that the lowest altitude of this intermediate orbit, XMO6, is so close to height of the lowest orbit so far. Indeed, the lowest point is not the most important point. The motivation for stopping in XMO6 is to collect infrared spectra and take pictures in the southern hemisphere in a range of about 900 miles (1,500 kilometers) to 1,600 miles (2,500 kilometers). It just so happens that when flying from XMO5 to XMO7, an orbit that provides that viewing opportunity dips down to the height of LAMO/XMO1 elsewhere in the orbit.

This figure illustrates two of Dawn's operational orbits around Ceres. The spacecraft has been operating in the outer one, XMO5, since June 2017. It will fly to the inner one, XMO6, to make new observations in May. (Next month we will see the probe's flight path between the two orbits.) The spacecraft will revolve counterclockwise, as seen from this vantage point, and the Sun would be far to the right. XMO6 is also shown in the figure below. Image credit: NASA/JPL-Caltech

The XMO6 altitude in the south was chosen to be comparable to the altitude from which Dawn observed Ceres so extensively in its third and fifth mapping orbits (known as HAMO and XMO2, respectively). XMO6 will afford the probe views of the terrain with the illumination of southern summer that will make for the best comparison with what it has already observed farther north on the dwarf planet. Dawn photographed all of Ceres in full color in those earlier orbits, but it was not possible then to cover the vast surface with the infrared mapping spectrometer, which has a much smaller field of view than the camera. Therefore, scientists had focused their spectral mapping in the northern hemisphere, taking advantage of the lighting then. While some of the southern hemisphere was studied in infrared as well, the opportunity now to observe more of it will allow a more complete understanding of the distribution of minerals.

In XMO6 the spacecraft will fly over the south pole and then head north over the hemisphere of Ceres facing the Sun. It will go lower and lower as it does so. The lowest point in the orbit will occur between 50° and 60°N. Dawn already mapped that territory from LAMO/XMO1, but now it will take advantage of being low again to acquire some new color photography in the northern hemisphere.

As the spacecraft continues farther north, the altitude will increase again. It will sail higher as it travels over the night side before beginning its fall back down. It will take about 37 hours to complete one elliptical revolution.

Some readers may recall that for all of the mapping orbits at Vesta and Ceres, Dawn traveled south over the sunlit side and north over the hemisphere shrouded in the dark of night. (Readers who don't recall that are invited to trust that it's true.) Experts readily recognize that it is very, very difficult to reverse the orbital direction. Dawn did so, however, with the extensive maneuvering in February-April 2017 that allowed it to make the unique observation of opposition. Those who are interested can review the skilled piloting that reversed the direction.

The explorer will observe Ceres on 10 consecutive orbits in XMO6. To conserve precious hydrazine, Dawn will turn to point its main antenna to Earth and radio its findings after every other transit over the sunlit landscapes. In the other orbits, it will wait patiently, saving both data and hydrazine onboard for later.

On May 31, the spaceship will resume maneuvering. It will take about a week of ion thrusting to push down to the final orbit of the mission.

In XMO7 (shown in the two figures below), Dawn will range from as high as 2,500 miles (4,000 kilometers) to as low as about 22 miles (35 kilometers). (The minimum altitude will vary by a few miles, or kilometers, from revolution to revolution, for reasons we will explain in a future Dawn Journal.) It will take a little more than a day to complete one loop.

The two solid ellipses illustrate the relative sizes of Dawn's next two science orbits around Ceres. The outer one is XMO6, which is the inner orbit in the figure above. (As in that figure, the spacecraft orbits counterclockwise here, and sunlight comes from the right.) After completing its work in XMO6 in May, Dawn will set sail for its final orbit, XMO7. The dashed circle represents Dawn's lowest orbit so far, LAMO/XMO1. It demonstrates that XMO7 is low! But assuming the absence of tall trees (or giant Cerean spiders), the operations team will be prepared to pilot the spacecraft safely. Dawn complies with planetary protection protocols, which prohibit coming in contact with Ceres, even for decades after the mission concludes. XMO7 is also shown in the figure below. Image credit: NASA/JPL-Caltech

We have described before that photography will be very challenging, both because of the difficulty pointing the camera accurately enough to capture specific targets and the high speed so close to the ground. We will return to this problem in an upcoming Dawn Journal.

At the high point of XMO7, Dawn will move at only about 120 mph (190 kph). Then as gravity pulls it back down, the spacecraft will accelerate until it streaks northward at 1,050 mph (1,690 kph) above a relatively narrow strip of ground before starting to soar up again. Dawn was designed for mapping uncharted worlds, not making specialized observations under such conditions, and traveling so fast and so low means it cannot take pictures as sharp as you might expect. Nevertheless, even with a little bit of motion-induced blur at low altitude, any sights we photograph certainly will reveal finer details than we have seen before. This is going to be exciting!

The highest priority measurements will be the nuclear spectra, giving scientists the opportunity to take a sharper picture of the elemental composition of the faraway world, making a more accurate map of the concentration of atomic species that are important for Ceres' geology and chemistry. Dawn's gamma ray and neutron detector (GRaND) is not subject to the limitations of pointing accuracy and blur that can affect the photography. You can think of GRaND's gamma ray vision and its neutron vision as being broader but less acute than the camera's visible-light vision. Getting closer to the ground will help ensure the instrument sees a stronger nuclear signal than ever before and takes a clearer picture.

As the spacecraft races over the ground, GRaND will measure gamma rays and neutrons escaping into space from the atoms down to about a yard (meter) underground. It collected a large volume of such data from LAMO/XMO1, but being so much lower in XMO7 will allow scientists to identify and locate elements more accurately.

There are several GRaND (if not grand) objectives for XMO7. One is to see how the elemental composition differs at different latitudes. The instrument has already revealed that water is more plentiful near the surface at higher latitudes than near the equator, and now it may be able to refine this finding. One of the properties of XMO7 is that the low point will shift almost 2° of latitude south on each revolution. That is, each time Dawn swoops down to its lowest point, it will be south of the low point on the previous orbit. That will provide GRaND the opportunity to survey the concentration and distribution of underground ice at different latitudes. GRaND also may tell us more about other constituents, providing clues about the geological processes that shaped this exotic world.

This illustrates how XMO7 shifts from one revolution to the next. It will take a little more than one day for one revolution. Each time Dawn loops around Ceres, the low point of its orbit will be about 2° south of the previous time. From the perspective in this figure, even as Dawn travels counterclockwise around Ceres, the point at which it comes closest to the dwarf planet will progress clockwise. To trace the orbital motion, start in the lower right. Image credit: NASA/JPL-Caltech

Of course, as Dawn orbits Ceres, Ceres turns on its axis, pirouetting beneath her admiring companion. So each time Dawn zooms down for a close look, it will not only be farther south than the time before but it will also be at a different longitude. The next Dawn Journal will focus on this and what it means for GRaND and for photography.

Controlling Dawn's orientation in the zero-gravity of spaceflight is harder at low altitude, where Ceres' gravitational pull is stronger. Dawn will use hydrazine much more quickly in XMO7 than at any other part of the mission, and the last of the propellant will be expended before the end of this year.

Dawn just celebrated the third anniversary of arriving at its permanent residence in the solar system. In the natural perspective of its current home, Dawn arrived about two-thirds of a Cerean year ago, or nearly 3,000 Cerean days ago. The explorer has now completed 1,600 orbits. Although hydrazine is dwindling, and the adventure is nearing its end, there is still plenty to look forward to. Stay onboard as Dawn prepares to delve further into the unknown. It's going to be a great ride!

Dawn is 10,800 miles (17,400 kilometers) from Ceres. It is also 1.87 AU (174 million miles, or 280 million kilometers) from Earth, or 740 times as far as the Moon and 1.88 times as far as the Sun today. Radio signals, traveling at the universal limit of the speed of light, take 31 minutes to make the round trip.

Dr. Marc D. Rayman
9:15 am PDT March 20, 2018


  • Marc Rayman

NASA visualization of the gas giant, Gamma Cephei A b

A massive gas giant more weighty than Jupiter, orbiting an orange star some 45 light years away, might be the most important exoplanet you’ve never heard of.

A massive gas giant more weighty than Jupiter, orbiting an orange star some 45 light years away, might be the most important exoplanet you've never heard of.

The planet, called Gamma Cephei A b – "Tadmor" for short – achieved its 15 minutes of fame in 1988. At least, among astronomers. It was the first planet to be discovered outside our solar system.

Or it would have been. The discovery was withdrawn by the Canadian team that announced it in 1992, after the data backing it up was determined to be too wobbly for astronomers to be sure the planet was real. Tadmor was added to a growing list of mistaken exoplanet detections that began as far back as the 19th century.

In this case, "wobbly" turns out to be the right word. The astronomers who thought they'd found the first exoplanet had developed a technique that allowed them to track the subtle motions of stars. The amount of "wobble" would reveal the mass of an object orbiting the star, tugging it first this way, then that. The researchers' major advance was precision measurement – capturing stellar movements as small as 43 feet (13 meters) per second. That kind of precision was needed to pick up the tiny wobbles, back and forth, that a large orbiting planet caused the star to make.

Despite their advance, the research team, Bruce Campbell, Gordon Walker and Stephenson Yang, worried that periodic changes in the star's magnetic activity might have looked to them like the gravitational tugs of a planet – in other words, that they might have mistaken jitters within the star for a planet in orbit around it.

They bid goodbye to Tadmor.

Riffle forward through the calendar, and stop in 2002. On-again, off-again Tadmor was on again – this time, its presence solidly confirmed. A team of astronomers that included the original discoverers captured strong evidence of the planet. They used four separate data sets from high-precision "wobble" measurements, known as radial velocity, spanning the period from 1981 to 2002.

The radial velocity method today has notched hundreds of exoplanet discoveries. It's been overshadowed only by the "transit" method, responsible for thousands, that looks for a tiny dip in the light from a star as a planet passes in front of it.

And although the list of confirmed exoplanets was just beginning to grow in the early 2000s, Tadmor already had been eclipsed. A planet called 51 Pegasi b, discovered by Michel Mayor and Didier Queloz, stole most of the spotlight in 1995. It was the first confirmed exoplanet detection to capture worldwide public attention.

Tadmor, of course, continues to orbit its big orange sun, somewhere in the constellation Cepheus, presumably unaware of its near-fame on a small blue planet dozens of light-years away. Time rolls on. Happy 30th anniversary, Tadmor.


  • Pat Brennan

Dr. Henry Richter

In 2018 JPL celebrates the 60th anniversary of America’s first satellite, Explorer 1.

Henry Richter started working at JPL in 1955 as an engineer and Supervisor for the New Circuit Elements Group. Later he was a Staff Engineer for the Deep Space Network and then Chief of the Space Instruments Section (322). During the Explorer Project Dr. Richter was project manager for the satellite design, in charge of JPL experiments for the International Geophysical Year, and was liaison between the Satellite Instrumentation Group and the Operations and Data Groups. He published a book in 2015 –America’s Leap into Space: My Time at JPL and the First Explorer Satellites.

On Wednesday, January 31 at 3:30, Dr. Richter will present his JPL Story in the Hub (111-104), followed at 4:30 by a book signing. He’ll share the story of JPL’s role working for the Army/Caltech and of the remarkable people who were part of the Explorer team. During the late 1950s, JPL extended rocket engineering to spacecraft design, using components that were on the cutting edge of technology. When they were finally given the chance to combine the instruments, upper stages, and launch vehicle, they accomplished the task in just a few months.

The JPL documentary Explorer 1 and the 1958 film X Minus 80 Days will be shown in the 111 Hub on Tuesday, January 30 from 12:00-1:15.

Explore the archives at


  • Julie Cooper

Occator Crater

Dawn has now logged 4 billion miles (6.4 billion kilometers) on its unique deep-space adventure. Sailing on a gentle breeze of xenon ions, the ambitious explorer journeyed for nearly four years to what had been only a small, fuzzy orb for over two centuries of terrestrial observations. Dawn spent more than a year there transforming it into a vast, complex protoplanet. Having sent its Vestan riches safely back to distant Earth, Dawn devoted another 2.5 years to reaching another blank canvas and there created another masterpiece of otherworldly beauty. Permanently in residence at dwarf planet Ceres, Dawn is now preparing to add some finishing touches.

The Dawn flight team at JPL did not even take notice as the odometer rolled over to 4,000,000,000. They have been focused on intensive investigations of how to maneuver the spaceship to lower altitudes than ever anticipated and operate there. For more than eight months in 2015-2016, Dawn circled 240 miles (385 kilometers) above the exotic Cerean landscape. From there, the team piloted the probe to higher orbits to undertake new studies, not anticipating that they might devise new methods to safely go much lower.

Occator Crater
Occator Crater, with its famously bright regions (Cerealia Facula in the center and Vinalia Faculae on the left), is seen from the north looking south. A bright region on a planet is known as a facula. The crater is 57 miles (92 kilometers) across and 2.5 miles (4 kilometers) deep. This view and the one above were constructed by combining well over 500 of Dawn's photos taken from an altitude of 240 miles (385 kilometers). (Many of the pictures were taken to provide stereo views to reveal the topography.) Click on the picture to zoom in and see more details of the topography. We have presented quite a few views of Occator Crater before, most recently here, but the landscape never fails to intrigue. You can find this site at 20°N, 239°E on the map provided in September and on a different map below, which plots the locations of many bright areas on the dwarf planet. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

There are many challenges to overcome in flying closer to the dwarf planet, and although progress has been excellent, much more work lies ahead before maneuvering can begin. Indeed, even as some team members took time off in December, work never stopped. Many computers operated continuously, running sophisticated trajectory calculations. Engineers will assess the results when they return at the dawn of the new year and then set the computers to work on the next set of problems.

Meanwhile, Dawn waits patiently, safe and healthy in an orbit that ranges from a little more than 3,000 miles (4,800 kilometers) to nearly 24,000 miles (39,000 kilometers). It takes 30 days to complete one revolution. The spacecraft will continue operating in this elliptical orbit at least until April, the earliest opportunity to start its descent.

Having lost the use of the reaction wheels that controlled its orientation, Dawn now relies on hydrazine propellant fired from the small jets of its reaction control system. But after years of interplanetary travels and extensive maneuvering to observe Ceres, the remaining supply is very low. There simply is not enough left for a circular orbit lower than the one the spacecraft has already operated in. Dawn has plenty of xenon propellant to perform all the thrusting with its ion engine to change its orbit, but the available hydrazine is insufficient to perform all the necessary turns and to maintain a stable orientation for pointing its ion engine, solar arrays, antenna and sensors.

To fly low with a paucity of hydrazine, controllers are devising plans for an elliptical orbit. In the previous Dawn Journal, we saw that they might try to steer Dawn down to less than 125 miles (200 kilometers). While more work remains (including all those calculations that are occupying a cluster of computers), the progress has been encouraging. They are now analyzing orbits in which Dawn might even dive below 30 miles (50 kilometers) and then glide up to about 2,500 miles (4,000 kilometers) almost once a day. With many analyses still to perform and plans to refine, engineers anticipate that Dawn has enough hydrazine to maneuver to and operate in such an orbit for two months, and perhaps even a little longer.

Map of Ceres' Bright Spots
Although the brightest features on Ceres are in Occator Crater, shown above, the dwarf planet has many more such areas, or faculae. This map charts more than 300. All are composed of salts that reflect more sunlight than the rest of the material on the ground. Here they are categorized according to whether they are found on the floor of a crater, as in Occator; on a crater rim or wall; in the surrounding blanket of material ejected when a crater was excavated by the impact of an asteroid; or on the slopes of the cryovolcano Ahuna Mons. (We have seen and discussed the mysterious Ahuna Mons before, most recently here.) You can identify more features on this map by comparing it with the map here. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

If Dawn does go so low, it will be an exciting ride. How cool to skim so close to an alien world! But controllers must be careful that the spaceship doesn't dip too low. We have described before that Dawn complies with a set of protocols called planetary protection (not entirely unrelated to the Prime Directive). The team must ensure that the final orbit is stable enough that Dawn will not contaminate the astrobiologically interesting Ceres even for decades after the mission concludes.

The primary reason to plunge down so close to the mysterious landscapes of rock, ice and salt -- apart from pure awesomeness -- is to sense the nuclear radiation emanating from Ceres with greater clarity than ever before. With its gamma ray and neutron detector (GRaND), Dawn's measurements of this radiation provide insight into the atomic constituents down to about a yard (meter) underground. We have discussed this before in detail, including how the measurements work and why after operating so close to Ceres, Dawn flew to a higher orbit to improve its data.

The radiation is so faint, however, that some elements can only be detected from much closer range than Dawn has been. This is akin to looking at a very dim object or taking a picture of it. From far away, where little light reaches your eyes or your camera, colors are difficult to discern, so the view may be nearly black and white. But if you could move in close enough to capture much more light, you could see more colors. If Dawn can move in much closer to capture more of Ceres' nuclear glow, it may be able to see more of the elements of the periodic table -- in effect, taking a more colorful picture.

We see most objects by reflected light that originates either on the sun or artificial light sources. The nuclear radiation Dawn sees from Ceres is principally caused by cosmic rays. Cosmic rays are a form of radiation that fills space and originates far outside our solar system, mostly from supernovas elsewhere in the Milky Way Galaxy. The brighter the cosmic rays, the brighter Ceres will seem to be. The atoms on and underground don't reflect cosmic rays that strike them. Rather, the cosmic rays cause them to emit neutrons and gamma rays that escape back into space and carry with them the identities of the atoms. So, we can think of this as cosmic rays illuminating a scene, and Dawn will make nuclear photographs, revealing more details of Ceres' composition.

In addition to the advantage of going very low, it turns out that there is a special benefit to performing these measurements in 2018. The sun's magnetic field, which reaches out far beyond the planets, weakens cosmic rays entering our solar system, partially dimming the illumination. But our star's magnetism waxes and wanes in a cycle of 11 years. The sun now is entering the part of this regular cycle in which the magnetic field is weak. And it just so happens that this is an unusually weak solar cycle, so the sun's ability to hold cosmic rays at bay is less than at any time in the history of space exploration. Cosmic rays will be copious in the solar system. This won't matter much for people on or near Earth, because our planet's magnetic field (which extends well above where astronauts, cosmonauts and taikonauts work) resists most of the cosmic rays, and the thick blanket of atmosphere stops the rest. Ceres, like most residents of the solar system, does not have such protections. Thanks to the combination of the forecast of uniquely bright cosmic rays and the latest technology, 2018 will the best year so far in the history of solar system exploration to measure gamma rays or neutrons. Flying so close to the ground, Dawn should get superb readings.

In a future Dawn Journal we will discuss more of the specific objectives for the measurements and what they may reveal about Ceres, but now let's not forget about Dawn's other sensors. What about photography, infrared spectroscopy, visible spectroscopy, and gravity measurements?

In a previous Dawn Journal, we saw one photo of exotic landscape that included Samhain Catenae. Scientists used many more pictures, including stereo pictures, to construct this perspective of that set of fractures, which average more than 125 miles (200 kilometers) in length. Stresses generated within Ceres' interior created underground fractures as well as the ones we see here. The tectonic activity that created these structures may have been caused by convective upwelling of material. Good theoretical studies show that convection could have taken place in the interior. We speculated that convection could produce visible structures, and studies of Samhain Catenae now provide evidence of internal geology. The analysis indicates the fractured outer layer in this region is about 36 miles (58 kilometers) thick. (The global average may be about 9 miles, or 14 kilometers, thinner than that.) You can find Samhain Catenae between 27°S, 210°E and 22°N, 295°E on this map. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

We can look forward to some remarkable pictures. Some will be sharper than the best so far, but not by as much as you might expect. When it is in the low altitude segment of its orbit, Dawn will be moving faster than ever at Ceres. If you were in a plane traveling hundreds of miles (kilometers) per hour, it would not be hard to take a picture of the ground six miles (10 kilometers) beneath you. But if you were in a car driving at that speed or even faster, despite being closer to the ground, your pictures might not be better. (That wouldn't be the greatest of your worries, but the Dawn team is devoting a great deal of work to ensuring the ship's safety, as we'll discuss below.) The situation on Dawn isn't that severe, so the photography certainly will improve somewhat on what we already have.

Because the camera's field of view is so small and the hydrazine imposes such a stubborn limitation on Dawn's lifetime, we will see only a very small fraction of the dwarf planet's vast landscape with the improved clarity of low altitude.

In previous Dawn Journals (see, for example, this one), we have delved into details of how difficult it can be to predict the orbit with great accuracy. The dominant (but not exclusive) cause is that every time the hydrazine jets fire, whether to maintain a stable orientation or to turn (including to keep the sensors pointed at Ceres while Dawn swoops by in its elliptical orbit), they push the probe a little and so distort its orbit slightly. Predicting the subtleties of the changes in the spacecraft's orbit is a very complex problem. Although the outcome is not yet clear, the flight team is making progress in investigating methods to manage these orbital perturbations well enough to be able to have some control over where GRaND measures the atomic composition, because its gamma ray spectrometer and neutron spectrometer have broad views. They can tolerate the deviations in the orbit. But Dawn probably will not have the capability to capture any specific targets with its other spectrometers or cameras. Rather, controllers will take pictures of whatever terrain happens to be in view of the cameras. But on a world with as much fascinating diversity as Ceres, intriguing new details are likely to be discovered.

Dawn took this picture showing part of Kokopelli Crater and its surrounding from an altitude of 240 miles (385 kilometers) during its first extended mission. (Kokopelli is a deity of agriculture, fertility and other fields of responsibility for many groups who have lived in what is now the southwestern United States. Representations of him are familiar to many people even now, but they bear little resemblance to the scenery in this picture.) The crater is 21 miles (33 kilometers) in diameter. The wavy terrain outside Kokopelli is a remnant from the powerful impact that created the enormous Dantu Crater. The many smaller craters here are scars from huge rocks blasted out when Dantu and Kokopelli formed. This scene is at 20°N, 123°E on the map here. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Along with studying the potential for improvements in pictures and spectra, the team is investigating refinements in Ceres' gravity field. They have already measured the gravity much more accurately than expected before Dawn arrived. Whether flying very close to some regions will allow them to improve their determination of the structure deep underground is the subject of ongoing work.

We will see in a Dawn Journal in a few months that the team will try to use certain properties of the orbit besides low altitude to provide attractive scientific opportunities. Nevertheless, it is clear that some goals simply will not be possible to achieve. To accomplish other objectives that are not feasible in that low ellipse, the team is analyzing the merits of pausing the ion-propelled spiral descent for a few weeks before reaching the final orbit. This could allow the spacecraft to view some regions of Ceres with the illumination of southern hemisphere summer, as we described in the previous Dawn Journal.

To ensure our distant ship remains ready to undertake extensive new observations, the infrared spectrometer, visible spectrometer, primary camera and backup camera each will be activated in January and run through their standard health checks and calibrations. For many of the observations in 2018, the two cameras will be used simultaneously to take as many pictures as possible, just as they were for special observations in 2017. Prior to this year, Dawn never used them concurrently.

With the help of a team of dedicated controllers, Dawn has shown itself to be a fantastically capable and resourceful explorer. Many new questions have to be answered and many challenges overcome for it to undertake another (and final) year in its bold expedition. But we can be hopeful that the creativity, ingenuity, and passion for knowledge and adventure that have propelled Dawn so very far already will soon allow it to add rich new details to what is already a celestial masterpiece.

Dawn is 17,200 miles (27,700 kilometers) from Ceres. It is also 1.77 AU (165 million miles, or 265 million kilometers) from Earth, or 705 times as far as the moon and 1.80 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 30 minutes to make the round trip.

Dr. Marc D. Rayman
4:30pm PST December 27, 2017


  • Marc Rayman

Dawn's long and productive expedition in deep space is about to enter a new phase.

Building on the successes of its primary mission and its first extended mission, NASA has approved the veteran explorer for a second extended mission. Dawn will undertake ambitious new investigations of dwarf planet Ceres, its permanent residence far from Earth.

It was not a foregone conclusion that Dawn would conduct further operations. In part, that's because it is only one of many exciting and important missions NASA has underway, and more are being designed and built. But the universe is a big place, as you may have noticed if you've ever gazed in awestruck reflection at the night sky (or had to search for a parking space in Los Angeles). It simply isn't possible to do everything we want. Entrusted with precious taxpayers' dollars, NASA has to make well-considered choices about what to do and what not to do.

In addition, as we have discussed in detail, Earth's ambassador to two giants in the main asteroid belt has had to contend with severe life-limiting problems. Dawn's reaction wheels have failed, and now it has consumed most of its original small supply of hydrazine that it uses in compensation. It has also expended most of the xenon propellant for its uniquely capable ion propulsion system. It was not clear that a truly productive future would be possible for this aged, damaged ship with some supplies that are so limited. Fortunately, Dawn has endless supplies of creativity, ingenuity, dedication and enthusiasm.

For several months, the flight team has been studying the feasibility of flying the spaceship closer to Ceres than had ever been seriously considered. Dawn spent more than eight months in 2015-2016 circling about 240 miles (385 kilometers) above the dwarf planet. It had spectacular views of mysterious landscapes and acquired a wealth of data far beyond what the team had anticipated. Then Dawn flew to a higher altitude during its first extended mission for new observations. Now engineers are making progress on ways to operate the spacecraft in an elliptical orbit that would allow it to swoop down to below 125 miles (200 kilometers) for a few minutes on each revolution. Their results so far are very encouraging. There are still many complex technical problems to solve, and months of additional work remain. Dawn can wait relatively patiently in its current orbit, where it expends hydrazine quite parsimoniously as it measures cosmic rays.

Axomama Crater on Ceres
Dawn had this view from an altitude of about 240 miles (385 kilometers) on July 24, 2016, during its first extended mission. A segment of the western wall of Dantu Crater is visible at lower left. Pressure from underground liquid water is one of the possible explanations for the origin of the fractures visible here in Dantu's floor. (We have seen other views of Dantu, most recently in June. The scene above is in the lower left part of Dantu in that previous photo.) The crater below and right of center is Axomama. (Axomama, literally "potato mother," was an Incan goddess of potatoes.) At three miles (five kilometers) in diameter, Axomama's sharp rim indicates the crater was excavated in the recent geological past. This scene is visible at 23°N, 131°E on the map presented last month. Axomama is one of the newly named features on that map. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The promising potential for observing Ceres in elliptical orbits from closer than ever before makes a second extended mission there extremely attractive. NASA and the panel of scientists and engineers convened to provide an independent, objective assessment concluded that further exploration of Ceres would be the most valuable assignment for the spacecraft. It is noteworthy that Dawn is the only spacecraft ever to orbit two extraterrestrial destinations and even now, having significantly exceeded its original objectives, has the capability to leave Ceres and pay a brief visit to a third (although it does not have enough xenon left to orbit a third), but the prospects for new discoveries at Ceres are too great to pass up.

Ceres is not only the largest object between Mars and Jupiter but also certainly one of the most intriguing. In fact, motivated by what Dawn has found, there is now great interest in the possibility of sending a lander there someday. Anything more Dawn can do to learn about Ceres or to help pave the way for a subsequent mission will be of great importance.

Ceres is just too fascinating to abandon! Dawn has already revealed the dwarf planet to be an exotic world of ice, rock and salt, with organic materials and other chemical constituents, and now we can look forward to more discoveries. After all, the benefit of having the capability to orbit a distant destination, rather than being limited to a quick glimpse during a fleeting flyby, is that we can linger to scrutinize it and uncover even more of the secrets it holds. (Some readers may also draw inspiration from Ceres' ingredients to concoct recipes for treats to give out to Halloween visitors.)

In addition to the possibility of observing Ceres from unprecedentedly close, there are other benefits to keeping our sophisticated probe at work there. For now, let's consider two of them, both related to how long it takes Ceres to complete its stately orbit around the sun. One Cerean year is 4.6 terrestrial years.

The dwarf planet carries its robotic moon with it as it follows its elliptical path around the sun. In fact, all orbits, including Earth’s, are ellipses. Ceres’ orbit is more elliptical than Earth’s but not as much as some of the other planets. The shape of Ceres’ orbit is between that of Saturn (which is more circular) and Mars (which is more elliptical). (Of course, Ceres’ orbit is larger than Mars’ and smaller than Saturn’s, but here we are considering how much each orbit deviates from a perfect circle, regardless of the size.)

When Dawn arrived at Ceres in March 2015, they were 2.87 AU from the sun. That was well before the dwarf planet's orbit carried them to the maximum solar distance of 2.98 AU in January 2016. Now, with the second extended mission, the spacecraft will still be operating when Ceres reaches its minimum solar distance of 2.56 AU in April 2018. Dawn will keep a sharp eye out for any changes caused by being somewhat closer to the sun.

Xevioso Crater on Ceres
Dawn photographed this scene from an altitude of 915 miles (1,470 kilometers) on Oct. 15, 2015, from its third mapping orbit. Near the lower left is the cryovolcano Ahuna Mons, the highest mountain on the dwarf planet. (We have seen many view of Ahuna Mons before, most recently here.) Near the center top is Xevioso Crater, with bright material that was blasted when the crater formed. (Xevioso was a god of thunder who, among his other talents, nourished the land for the Fon people in the Dahomey Kingdom in what is now Benin.) The presence of the ejected material on Xevioso's left must be because the object that hit the ground came from the right. At 5.3 miles (8.5 kilometers) in diameter, Xevioso is relatively small, suggesting that this highly reflective material was relatively shallow. This scene is centered at 4°S, 314°E on the map presented last month. Like Axomama above, Xevioso is one of the recently named features on that map. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The extension also will give scientists the opportunity to examine Ceres with the different lighting caused by the change of seasons. Ceres' slower heliocentric orbit than Earth's means seasons last longer on that distant world. It was near the end of autumn in the southern hemisphere when Dawn took up residence at Ceres. Winter came to that hemisphere on July 24, 2015, when the sun reached its greatest northern latitude. The sun crossed the equator, bringing spring to the southern hemisphere, on Nov. 13, 2016, and summer begins on Dec. 22 of this year. Autumn, when the sun will leave the southern hemisphere, is more than one (terrestrial) year later. Most of Dawn's observations so far were made with the sun in the northern hemisphere. Now Dawn will have new opportunities to see the southern hemisphere with similar illumination.

In the coming months, as the team develops and refines its plans, we will describe how they will pilot the ship down to very low altitudes and what new measurements they will make. Before the new phase gets underway, however, you can explore Ceres (and other planets) yourself with Google maps (some functions don't work in some web browsers). Even though it does not use Dawn's sharpest photos, it should be more than adequate for most of your navigational needs. (It isn't quite adequate for Dawn's needs, but that's no cause for worry, because JPL navigators employ somewhat more sophisticated and accurate methods.)

What will Dawn find when it ventures closer to the ground than ever before? What will the new perspectives reveal about a strange world from the dawn of the solar system? What new challenges will the adventurer confront as it pushes further into uncharted territory? We don't know, but stay onboard as we find out together, for that is an essential element both of the tremendously successful process of science and the powerful thrill of exploration.

Dawn is 21,600 miles (34,700 kilometers) from Ceres. It is also 2.47 AU (229 million miles, or 369 million kilometers) from Earth, or 970 times as far as the moon and 2.49 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 41 minutes to make the round trip.

Dr. Marc D. Rayman
2:30 p.m. PDT October 31, 2017


  • Marc Rayman

An artist’s illustration of a possible ninth planet in our solar system

The super Earth that came home for dinner

It might be lingering bashfully on the icy outer edges of our solar system, hiding in the dark, but subtly pulling strings behind the scenes: stretching out the orbits of distant bodies, perhaps even tilting the entire solar system to one side.

If a planet is there, it’s extremely distant and will stay that way (with no chance – in case you’re wondering – of ever colliding with Earth, or bringing “days of darkness”). It is a possible Planet Nine, a world perhaps 10 times the mass of Earth and 20 times farther from the sun than Neptune. The signs so far are indirect, mainly its gravitational footprints, but that adds up to a compelling case nonetheless.

One of its most dedicated trackers, in fact, says it is now harder to imagine our solar system without a Planet Nine than with one.

“There are now five different lines of observational evidence pointing to the existence of Planet Nine,” said Konstantin Batygin, a planetary astrophysicist at Caltech whose team may be closing in. “If you were to remove this explanation, and imagine Planet Nine does not exist, then you generate more problems than you solve. All of a sudden, you have five different puzzles, and you must come up with five different theories to explain them.”

Batygin and his co-author, Caltech astronomer Mike Brown, described the first three breadcrumbs on Planet Nine’s trail in a January 2016 paper, published in the Astronomical Journal. Six known objects in the distant Kuiper Belt, a region of icy bodies stretching from Neptune outward toward interstellar space, all have elliptical orbits pointing in the same direction. That would be unlikely – and suspicious – enough. But these orbits also are tilted the same way, about 30 degrees “downward” compared to the pancake-like plane within which the planets orbit the sun.

The Bering Strait
Caltech professor Mike Brown and assistant professor Konstanin Batygin have been working together to investigate Planet Nine. Credit: Caltech/Lance Hayashida

Breadcrumb number three: Computer simulations of the solar system with Planet Nine included show that there should be more objects tilted with respect to the solar plane. In fact, the tilt would be on the order of 90 degrees, as if the plane of the solar system and these objects formed an “X” when viewed edge-on. Sure enough, Brown realized that five such objects already known to astronomers fill the bill.

Two more clues emerged after the original paper. A second article from the team, this time led by Batygin’s graduate student, Elizabeth Bailey, showed that Planet Nine could have tilted the planets of our solar system during the last 4.5 billion years. This could explain a longstanding mystery: Why is the plane in which the planets orbit tilted about 6 degrees compared to the sun's equator?

“Over long periods of time, Planet Nine will make the entire solar-system plane precess or wobble, just like a top on a table,” Batygin said.

The last telltale sign of Planet Nine’s presence involves the solar system’s contrarians: objects from the Kuiper Belt that orbit in the opposite direction from everything else in the solar system. Planet Nine’s orbital influence would explain why these bodies from the distant Kuiper Belt end up “polluting” the inner Kuiper Belt.

“No other model can explain the weirdness of these high-inclination orbits,” Batygin said. “It turns out that Planet Nine provides a natural avenue for their generation. These things have been twisted out of the solar system plane with help from Planet Nine and then scattered inward by Neptune.”

The Bering Strait
The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Moreover, when viewed in 3-D, the orbits of all these icy little objects are tilted in the same direction, away from the plane of the solar system. Credit: JPL-Caltech/R. Hurt

The remaining step is to find Planet Nine itself. Batygin and Brown are using the Subaru Telescope in Hawaii’s Mauna Kea Observatory to try to do just that. The instrument is the “best tool” for picking out dim, extremely distant objects lost in huge swaths of sky, Batygin said.

But where did Planet Nine come from? Batygin says he spends little time ruminating on its origin – whether it is a fugitive from our own solar system or, just maybe, a wandering rogue planet captured by the sun’s gravity.

“I think Planet Nine’s detection will tell us something about its origin,” he said.

Other scientists offer a different possible explanation for the Planet Nine evidence cited by Batygin. A recent analysis based on a sky mapping project called the Outer Solar System Origins Survey, which discovered more than 800 new “trans-Neptunian objects,” or TNOs, suggests that the evidence also could be consistent with a random distribution of such objects. Still, the analysis, from a team led by Cory Shankman of the University of Victoria, could not rule out Planet Nine.

If Planet Nine is found, it will be a homecoming of sorts, or at least a family reunion. Over the past 20 years, surveys of planets around other stars in our galaxy have found the most common types to be “super Earths” and their somewhat larger cousins – bigger than Earth but smaller than Neptune.

Yet these common, garden-variety planets are conspicuously absent from our solar system. Weighing in at roughly 10 times Earth’s mass, the proposed Planet Nine would make a good fit.

Planet Nine could turn out to be our missing super Earth.


  • Amanda Hendrix


A decade after leaving its first home in the solar system, Dawn is healthy and successful at its current residence.

Even as the veteran explorer orbits high over dwarf planet Ceres and looks forward to continuing its mission, today it can reflect upon 10 exciting and productive years (or equivalently, with its present perspective, 2.17 exciting and productive Cerean years).

The ambitious adventurer embarked on an extraordinary extraterrestrial expedition on Sept. 27, 2007. With its advanced ion propulsion system, Dawn soared past Mars in 2009. The spacecraft took some of the Red Planet’s orbital energy around the sun to boost itself on its journey. (Nevertheless, this extra energy amounts to less than a quarter of what the ion engines have provided.) Ever a responsible citizen of the cosmos, Dawn fully adheres to the principle of the conservation of energy. So to compensate for speeding up, it slowed Mars down.

Dawn launch
Dawn launched at dawn (7:34 a.m. EDT) from Cape Canaveral Air Force Station, Sept. 27, 2007. Note the sun rising on the right edge of the picture. The intricate sequence of activities between the time this photo was taken and Dawn separated from the rocket to fly on its own is described here. Image credit: KSC/NASA

In 2011, the spacecraft arrived at Vesta, the second largest object in the main asteroid belt between Mars and Jupiter. Dawn gracefully entered into Vesta’s firm but gentle gravitational embrace. The probe maneuvered extensively in orbit, optimizing its views to get the best return possible from its photography and other observations. During 14 months in orbit, Dawn completed 1,298 revolutions around Vesta, taking nearly 31,000 pictures and collecting a wealth of other scientific measurements. From the perspective it had then, Dawn was in residence for nearly a third of a Vestan year (or almost 1,900 Vestan days). The explorer revealed a strange, ancient protoplanet, now recognized to be more closely related to the terrestrial planets (including the one Dawn left 10 years ago) than to the typical and smaller asteroids.

Unlike all other deep-space missions, Dawn had the capability to leave its first orbital destination and voyage to and enter orbit around another. After smoothly disengaging from Vesta, the interplanetary spaceship flew more than 900 million miles (1.5 billion kilometers) in 2.5 years to Ceres, the largest object in the asteroid belt. Indeed, prior to Dawn’s arrival, that dwarf planet was the largest body between the sun and dwarf planet Pluto that a spacecraft had not yet visited. And just as at Vesta, thanks to the maneuverability of ion propulsion, Dawn did not have to be content with a one-time flyby, gathering only as much data as possible during a brief encounter. By going into orbit around Ceres, the spacecraft could linger to scrutinize the exotic, alien world. And that is exactly what it has done.

Both Vesta and Ceres have held secrets since the dawn of the solar system, and both have beckoned since they were first spotted in telescopes at the dawn of the 19th century. For the next two centuries, they appeared as little more than faint smudges of light amidst myriad glittering stellar jewels, waiting for an inquisitive and admiring visitor from Earth. Finally, Dawn answered their cosmic invitations and eventually developed richly detailed, intimate portraits of each.

As the last stop on a unique interplanetary journey of discovery, Ceres has proven well worth the wait. Since arriving in March 2015 (more than half a Cerean year ago, or nearly 2,500 Cerean days ago), Dawn has completed 1,595 revolutions. It has beheld mysterious and fascinating landscapes and unveiled a complex world of rock, ice and salt, along with organic compounds and other intriguing constituents. The dwarf planet may have been covered by an ocean long ago, and there might even be liquid water underground now. The 57,000 pictures and numerous other measurements with the sophisticated sensors will keep scientists busy for many years (both terrestrial and Cerean).

By early 2016, during its ninth year in space, Dawn had accomplished so much that it exceeded all of the original objectives established for it by NASA before the ship set sail. Along the way, Dawn encountered and ultimately overcame many obstacles, including equipment failures that could well have sunk the mission. Against all odds and expectations, however, when its prime mission concluded in June 2016, the spacecraft was still healthy enough that NASA decided to extend the mission to learn still more about Ceres. Since then, Dawn has conducted many investigations that had never even been considered prior to last year. Now it has successfully achieved all of the extended mission objectives. And, once again defying predictions thanks to expert piloting by the flight team (and a small dose of good luck), Dawn still has some life left in it. Before the end of the year, NASA will formulate another new set of objectives that will take it to the end of its operational life.

Dawn has flown to many different orbital altitudes and orientations to examine Ceres. Now the probe is in an elliptical orbit, ranging from less than 3,200 miles (5,100 kilometers) up to 23,800 miles (38,300 kilometers). At these heights, it is measuring cosmic rays. Scientists mathematically remove the cosmic ray noise from Dawn’s 2015-2016 recordings of atomic elements from a low, tight orbit at only 240 miles (385 kilometers).

Juling Crater
Dawn took this picture of Juling Crater on Aug. 25, 2016, during its extended mission at an altitude of 240 miles (385 kilometers). (Juling is a crop spirit of the Orang Asli in the Malay Peninsula. The word also can mean strabismus or squint in the local language, and the spirit has been called the Squinting Demon. We leave it to you to make the connection with this particular crater apart from the general Ceres naming convention.) The 12-mile (20-kilometer) diameter crater is young, as seen by its sharp features and the absence of many smaller craters inside and nearby. Dawn’s infrared mapping spectrometer spotted the clear signature of ice on the ground in Juling. Ice is not stable for long at this location, so although the crater formed in the recent geological past, the ice must have been exposed even more recently. Scientists have found ice elsewhere as well, and other measurements show that there is a vast amount underground. One of the objectives of the second extended mission orbit was to follow up on the detection of ice in Juling by observing it under different lighting conditions and at different times of the Cerean day. Juling is at 36°S, 169°E on the map below. The next picture partially overlaps with this one, displaying more of the scenery in this area. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

In its present orbit, Dawn can make these measurements to clarify Ceres’ nuclear signals while being very frugal with its precious hydrazine, which is so crucial because of the loss of three reaction wheels. (The small supply was not loaded onboard with the intention of compensating for failed reaction wheels.) When the hydrazine is expended, the mission will end. So this high elliptical orbit is a very good place to be while NASA and the Dawn project are determining how best to use the spacecraft in the future.

Meanwhile, this anniversary presents a convenient opportunity to look back on a remarkable spaceflight. For those who would like to track the probe’s progress in the same terms used on past anniversaries, we present here the tenth annual summary, reusing text from previous years with updates where appropriate. Readers who wish to investigate Dawn’s ambitious journey in detail may find it helpful to compare this material with the Dawn Journals from its first, second, third, fourth, fifth, sixth, seventh, eighth and ninth anniversaries.

In its 10 years of interplanetary travels, the spacecraft has thrust with its ion engines for a total of 2,109 days (5.8 years), or 58 percent of the time (and 0.000000042 percent of the time since the Big Bang). While for most spacecraft, firing a thruster to change course is a special event, it is Dawn’s wont. All this thrusting has cost the craft only 908 pounds (412 kilograms) of its supply of xenon propellant, which was 937 pounds (425 kilograms) on Sept. 27, 2007. The spacecraft has used 69 of the 71 gallons (262 of the 270 liters) of xenon it carried when it rode its rocket from Earth into space.

Dawn launch
Dawn observed this rugged terrain on Aug. 24, 2016, during its extended mission at an altitude of 240 miles (385 kilometers). The upper crater is Juling (which we saw above), and the one at lower right is Kupalo, which is 16 miles (26 kilometers) in diameter. Although this and the picture above overlap, they were taken more than 27 hours apart, during which Dawn completed five orbital revolutions of Ceres. This scene is at 38°S, 169°E on the map below. We have seen other views of Kupalo and the area around it, most recently on the ninth anniversary of Dawn’s launch. Full image and caption. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The thrusting since then has achieved the equivalent of accelerating the probe by 25,400 mph (40,900 kilometers per hour). As previous logs have described (see here for one of the more extensive discussions), because of the principles of motion for orbital flight, whether around the sun or any other gravitating body, Dawn is not actually traveling this much faster than when it launched. But the effective change in speed remains a useful measure of the effect of any spacecraft’s propulsive work. Dawn has far exceeded the velocity change achieved by any other spacecraft under its own power. (For a comparison with probes that enter orbit around Mars, refer to this earlier log.) It is remarkable that Dawn’s ion propulsion system has provided nearly the same change in speed as the entire Delta rocket.

Since launch, our readers who have remained on or near Earth have completed 10 revolutions around the sun, covering 62.8 AU (5.8 billion miles, or 9.4 billion kilometers). Orbiting farther from the sun, and thus moving at a more leisurely pace, Dawn has traveled 42.4 AU (3.9 billion miles, or 6.3 billion kilometers). As it climbed away from the sun, up the solar system hill to match its orbit to that of Vesta, it continued to slow down to Vesta’s speed. It had to go even slower to perform its graceful rendezvous with Ceres. In the 10 years since Dawn began its voyage, Vesta has traveled only 40.5 AU (3.8 billion miles, or 6.1 billion kilometers), and the even more sedate Ceres has gone 37.8 AU (3.5 billion miles, or 5.7 billion kilometers). (To develop a feeling for the relative speeds, you might reread this paragraph while paying attention to only one set of units, whether you choose AU, miles, or kilometers. Ignore the other two scales so you can focus on the differences in distance among Earth, Dawn, Vesta and Ceres over the 10 years. You will see that as the strength of the sun’s gravitational grip weakens at greater distance, the corresponding orbital speed decreases.)

Another way to investigate the progress of the mission is to chart how Dawn’s orbit around the sun has changed. This discussion will culminate with even more numbers than we usually include, and readers who prefer not to indulge may skip this material, leaving that much more for the grateful Numerivores. (If you prefer not to skip it, click here.) In order to make the table below comprehensible (and to fulfill our commitment of environmental responsibility), we recycle some more text here on the nature of orbits.

Orbits are ellipses (like flattened circles, or ovals in which the ends are of equal size). So as members of the solar system family (including Earth, Dawn, Vesta and Ceres) follow their individual paths around the sun, they sometimes move closer and sometimes move farther from it.

Dawn launch
Dawn’s interplanetary trajectory (in blue). The dates in white show Dawn’s location every Sept. 27, starting on Earth in 2007. Note that Earth returns to the same location, taking one year to complete each revolution around the sun. When Dawn is farther from the sun, it orbits more slowly, so the distance from one Sept. 27 to the next is shorter. In addition to seeing Dawn’s progress on this figure on previous anniversaries of launch, we have seen it other times as well, most recently in May. (This graphic also will be at a Dawn flight team celebration this afternoon, but it will be in a form that is much more transitory and delectable, although perhaps not much more nutritious, than the way it is displayed here.) Image credit: NASA/JPL

In addition to orbits being characterized by shape, or equivalently by the amount of flattening (that is, the deviation from being a perfect circle), and by size, they may be described in part by how they are oriented in space. Using the bias of terrestrial astronomers, the plane of Earth’s orbit around the sun (known as the ecliptic) is a good reference. Other planets and interplanetary spacecraft may travel in orbits that are tipped at some angle to that. The angle between the ecliptic and the plane of another body’s orbit around the sun is the inclination of that orbit. Vesta and Ceres do not orbit the sun in the same plane that Earth does, and Dawn must match its orbit to that of its targets. (The major planets orbit closer to the ecliptic, and part of the arduousness of Dawn’s journey has been changing the inclination of its orbit, an energetically expensive task.)

Now we can see how Dawn has done by considering the size and shape (together expressed by the minimum and maximum distances from the sun) and inclination of its orbit on each of its anniversaries. (Experts readily recognize that there is more to describing an orbit than these parameters. Our policy remains that we link to the experts’ websites when their readership extends to one more elliptical galaxy than ours does.)

The table below shows what the orbit would have been if the spacecraft had terminated ion thrusting on its anniversaries; the orbits of its destinations, Vesta and Ceres, are included for comparison. Of course, when Dawn was on the launch pad on Sept. 27, 2007, its orbit around the sun was exactly Earth’s orbit. After launch, it was in its own solar orbit.

Minimum distance
from the Sun (AU)
Maximum distance
from the Sun (AU)
Earth’s orbit 0.981.020.0°
Dawn’s orbit on Sept. 27, 2007 (before launch)0.981.020.0°
Dawn’s orbit on Sept. 27, 2007 (after launch)1.001.620.6°
Dawn’s orbit on Sept. 27, 20081.211.681.4°
Dawn’s orbit on Sept. 27, 20091.421.876.2°
Dawn’s orbit on Sept. 27, 20101.892.136.8°
Dawn’s orbit on Sept. 27, 20112.152.577.1°
Vesta’s orbit2.152.577.1°
Dawn’s orbit on Sept. 27, 20122.172.577.3°
Dawn’s orbit on Sept. 27, 20132.442.988.7°
Dawn’s orbit on Sept. 27, 20142.463.029.8°
Dawn’s orbit on Sept. 27, 20152.562.9810.6°
Dawn’s orbit on Sept. 27, 20162.562.9810.6°
Dawn’s orbit on Sept. 27, 20172.562.9810.6°
Ceres’ orbit2.562.9810.6°

For readers who are not overwhelmed by the number of numbers, investing the effort to study the table may help to demonstrate how Dawn patiently transformed its orbit during the course of its mission. Note that six years ago, the spacecraft’s path around the sun was exactly the same as Vesta’s. Achieving that perfect match was, of course, the objective of the long flight that started in the same solar orbit as Earth, and that is how Dawn managed to slip into orbit around Vesta. While simply flying by it would have been far easier, matching orbits with Vesta required the exceptional capability of the ion propulsion system. Without that technology, NASA’s Discovery Program would not have been able to afford a mission to explore the massive protoplanet in such detail. Dawn has long since gone well beyond that. Having discovered so many of Vesta’s secrets, the adventurer left it behind. No other spacecraft has ever escaped from orbit around one distant solar system object to travel to and orbit still another extraterrestrial destination. From 2012 to 2015, the stalwart craft reshaped and tilted its orbit even more so that now it is identical to Ceres’. Once again, that was essential to accomplishing the intricate celestial choreography in which the behemoth reached out with its gravity and tenderly took hold of the spacecraft. They have been performing an elegant pas de deux ever since.

Dawn launch
This map of Ceres has all 138 feature names approved so far by the International Astronomical Union (IAU), including 25 approved last month. (We described the naming convention here.) As more features are named, this official list and map are kept up to date. The dwarf planet is 1.1 million square miles (2.8 million square kilometers). That’s about 36 percent of the land area of the contiguous United States, or the combined land areas of France, Germany, Italy, Norway, Spain, Sweden and the United Kingdom. The scales for horizontal distance in this figure apply at the equator. Rectangular maps like this distort distances at other latitudes. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Even after a decade of daring space travel, flying in deep space atop a blue-green pillar of xenon ions, exploring two of the last uncharted worlds in the inner solar system, overcoming the loss of three reaction wheels, working hard to stretch its shrinking supply of hydrazine, Dawn is ready for more. And so is everyone who yearns for new knowledge, everyone who is curious about the cosmos, and everyone who is exhilarated by bold adventures into the unknown. More is to come. Dawn -- and all those who find the lure of space irresistible -- can look forward to whatever lies ahead for this unique mission.

Dawn is 16,600 miles (26,700 kilometers) from Ceres. It is also 2.92 AU (271 million miles, or 437 million kilometers) from Earth, or 1,080 times as far as the moon and 2.91 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 49 minutes to make the round trip.

Dr. Marc D. Rayman
4:34 am PDT September 27, 2017


  • Marc Rayman