A rare, infrared view of a developing star and its flaring jets taken by NASA's Spitzer Space Telescope shows us what our own solar system might have looked like billions of years ago.
Add image to your album
Email this page Post this page to your Facebook wall Tweet this page

Baby Picture of our Solar System

Click here for poster version of PIA10119Click here for Visible Light Image for PIA10119Click here for PIA10119 Animation
Click on image for
Poster Version
Click on image for
Visible Light Image
Click on image for
Animation

A rare, infrared view of a developing star and its flaring jets taken by NASA's Spitzer Space Telescope shows us what our own solar system might have looked like billions of years ago. In visible light, this star and its surrounding regions are completely hidden in darkness.

Stars form out of spinning clouds, or envelopes, of gas and dust. As the envelopes flatten and collapse, jets of gas stream outward and a swirling disk of planet-forming material takes shape around the forming star. Eventually, the envelope and jets disappear, leaving a newborn star with a suite of planets. This process takes millions of years.

The Spitzer image shows a developing sun-like star, called L1157, that is only thousands of years old (for comparison, our solar system is around 4.5 billion years old). Why is the young system only visible in infrared light? The answer has to do with the fact that stars are born in the darkest and dustiest corners of space, where little visible light can escape. But the heat, or infrared light, of an object can be detected through the dust.

In Spitzer's infrared view of L1157, the star itself is hidden but its envelope is visible in silhouette as a thick black bar. While Spitzer can peer through this region's dust, it cannot penetrate the envelope itself. Hence, the envelope appears black. The thickest part of the envelope can be seen as the black line crossing the giant jets. This L1157 portrait provides the first clear look at stellar envelope that has begun to flatten.

The color white shows the hottest parts of the jets, with temperatures around 100 degrees Celsius (212 degrees Fahrenheit). Most of the material in the jets, seen in orange, is roughly zero degrees on the Celsius and Fahrenheit scales.

The reddish haze all around the picture is dust. The white dots are other stars, mostly in the background.

L1157 is located 800 light-years away in the constellation Cepheus.

This image was taken by Spitzer's infrared array camera. Infrared light of 8 microns is colored red; 4.5-micron infrared light is green; and 3.6-micron infrared light is blue.

The visible-light picture is from the Palomar Observatory-Space Telescope Science Institute Digitized Sky Survey. Blue visible light is blue; red visible light is green, and near-infrared light is red.

The artist's animation begins by showing a dark and dusty corner of space where little visible light can escape. The animation then transitions to the infrared view taken by NASA's Spitzer Space Telescope, revealing the embryonic star and its dramatic jets.

Image details

ID#:
PIA10119

Date added:
2007-11-29

Target:
L1157

Mission:
Spitzer Space Telescope

Spacecraft:
Spitzer Space Telescope

Instruments:
Infrared Array Camera (IRAC)

Rating:



Views:
4,041

Full-Res TIFF:
PIA10119.tif (5.08 MB)

Full-Res JPG:
PIA10119.jpg (0.15 MB)

Image credit:
IRAC image: NASA/JPL-Caltech/UIUC
Visible image: NASA/JPL-Caltech/AURA