
Custom VLSI ASIC for Automotive Applications
with Recurrent Networks

R. Tawel and N. Aranki
and

G. V. Puskorius, K. A. Marko, L. A. Feldkamp,
J. V. James, G. Jesion, and T. M. Feldkamp

Abstract—
Demands on the performance of vehicle control and di-

agnostic systems are steadily increasing as a consequence of
stiff global competition and government mandates. Neural
networks provide a means of creating control and diagnostic
strategies that will help in meeting these demands efficiently
and robustly. This paper describes a VLSI design that per-
mits such networks to be executed in real time as well as
the application, misfire detection, that served as a focus for
the collaborative effort.

I. Introduction

The control system of a modern automobile involves
several interacting subsystems, almost any one of which
provides interesting theoretical and engineering challenges.
Further, increasingly stringent emissions regulations re-
quire that any malfunctioning component or system with
the potential to undermine the emissions control system be
detected and identified. Neural networks have the poten-
tial for major impact in this work. Benefits may be antici-
pated in design time or performance of a control (Puskorius
and Feldkamp, 1996) or diagnostic strategy (Marko et al.,
1996). We have shown that both of these applications are
suited to the use of recurrent multi-layer perceptrons, the
architecture of which may be regarded as the joint gen-
eralization of a feedforward multi-layer perceptron and a
one-layer fully time-lagged recurrent network. A poten-
tial barrier to the use of such networks, however, arises
from the considerable burden from other functions already
carried by existing powertrain processors. This prompted
an effort to develop a VLSI design that would facilitate
the implementation of recurrent networks in high-volume
products.

II. Neuroprocessor Chip

The design constraints for this project called for the de-
velopment of an inexpensive, fully autonomous, and com-
mercially viable electronic chip. This single chip implemen-
tation was required to be (1) extremely compact in size
(mass market potential) (2) flexible (several neural based
applications would share the hardware and sequentially ex-
ecute on it), and (3) accurate (no miscalls due to limited

R. Tawel and N. Aranki are with the Jet Propulsion Laboratory,
California Institute of Technology Pasadena, CA 91109-8099. E-mail:
raoul@brain.jpl.nasa.gov.

G. Puskorius, K. Marko, L. Feldkamp, J. James, G. Jesion and T.
Feldkamp are with Ford Research Laboratory, Ford Motor Company,
Dearborn, MI 48121-2053.

hardware resolution). Observing that combustion events
occur, even at maximum engine speed, on a millisecond
time scale, a novel and extremely compact and powerful
layer-multiplexed bit-serial neuromorphic architecture was
developed and exploited for the VLSI CMOS implementa-
tion.

A. Architecture

The required computations can be summarized as a se-
ries of parallel multiply and accumulate (MAC) operations
interspersed by an occasional nonlinear operation. We ex-
ploited five basic stategies to achieve our desired goals:
(1) parallel intra-layer topology; (2) single-instruction-
multiple-data (SIMD) architecture; (3) bit-serial fixed-
point computational techniques; (4) inter-layer multiplex-
ing of neuron resources; and (5) nonlinearities handled by
look-up-tables.

The resulting architecture is shown schematically in Fig-
ure 1 and consists of: (1) a global controller; (2) a pool of
16 bit-serial neurons; (3) a ROM based bipolar sigmoid ac-
tivation look-up-table; (4) neuron state registers; and (5) a
synaptic weight RAM.

In this design, both inputs to the network as well as neu-
ron outputs are stored in the neuron state RAM. When
triggered by the global controller, each of the 16 neurons
performs the multiply and accumulate (MAC) operation.
They receive in a bit serial fashion as input the synaptic
weights (from the synaptic weight RAM) and activations
from either (a) input nodes or (b) outputs from other neu-
rons and output the accumulated sum of partial products
onto a tri-stated bus which is commonly shared by all 16
neurons. Because of the computational nature of neural
networks – where information is sequentially computed a
layer at a time – only enough neurons are physically im-
plemented in silicon as exist on the layer with the largest
number of neurons for all applications of interest. As such,
a candidate pool of 16 silicon neurons was chosen. This
intra-layer pool of neurons is organized in a SIMD config-
uration. Single-instruction (SI) means that all active neu-
rons in the pool execute the same instruction at the same
time. Multiple-data (MD) means that each active neuron
acts on its own slice of data, independently of all other pro-
cessors. Thus the chip performs fully parallel computations
under the supervision of the global controller.

A significant reduction in silicon real-estate was achieved
by performing inter-layer multiplexing of the 16 neuron

BIT-SERIAL
NEURONS

(16)

LUT ROM
(1Kx10)

GLOBAL
CONTROLLER

NEURON
REGISTER

RAM
(64X16)

BIAS

SYNAPTIC
WEIGHT

RAM
(2Kx16)

16

16

16

16

16

10

RUN
RST

DATA

DATA

DATA

Figure 1. Schematic representation of forward propagation module.

pool, i.e., the hardware used in calculating the activations
of neurons in one layer is reused for the calculation of neu-
rons in another layer, since neurocomputations are per-
formed a layer at a time. We also used bit-serial algorithms
extensively for arithmetic operations because their canoni-
cal nature and minimal interconnection requirements make
them particularly suitable for efficient VLSI implementa-
tion.

B. Controller

At the heart of the neuroprocessor architecture is the
global controller. The controller contains the logic to en-
able the neurochip to execute its task. This task is to load
an architecture from RAM, and once triggered, to generate
all necessary control signals in addition to orchestrate data
movement on-chip and off-chip. When there are no com-
putations being performed, the global controller remains in
the idle state, signalling its availability by having the active
low BUSY flag set high. When a LOAD command is issued,
the controller reads from RAM a neural network topology
and goes into an idle state. When the RUN command
is subsequently issued, the global controller is in charge
of providing control signals to the RAM, ROM, and the
16 on-chip neurons, in order to proceed with the desired
computation. Input activations are read out of the 64×16
Neuron State RAM, synaptic weights are read out of the
2K×16 Synaptic Weight RAM, and both are propagated
to the bank of 16 neurons. In this way, the global con-
troller keeps track of both intra-layer operations as well as
inter-layer operations. Upon completion of a forward pass
through the network architecture, the global controller as-
serts the BUSY flag and returns to the idle state.

C. Neurons

Fixed-point bit-serial algorithms for operations such as
addition and multiplication are uniquely suitable for effi-
cient VLSI implementations because of their highly com-
pact representations. For example, the size of an n× n bit
multiplier scales quadratically (O(n2)) for a bit-parallel im-
plementation and linearly (O(n)) for a bit-serial one. Bit-
serial techniques were therefore used. A schematic repre-
sentation of a bit-serial neuron is shown in Figure 3.

Precision constraints for the misfire problem called for

4

16
16

16

16

2

16

2

16

2

R

RE

RUN
C

RE GOPRP
RPRP

ILAY
RLAY

GOSTR
RSTR
BUSY

FSM_RUN
16

R

RA
RB
RC
RD

INC
C

RA
RB
RC
RD

RO

GC_CURREG
R

RI

RUN
C

ANRAM
CNRAM
AWRAM
CWRAM
OEBIAS

CN

ANRAM
CNRAM
AWRAM
CWRAM
OEBIAS
CN

GC_PRP

R

RI

RUN
C

ANRAM
CNRAM

OEN
OELUT

ANRAM
CNRAM
OEN
OELUT

GC_STR

RESET

CLOCK

BUSY

RUN

Figure 2. Run-time forward propagation controller.

16 10

R R

X
Y

C

SIN

C

SOUT NET

MULTIPLIER ACCUMULATOR

RESET

CLOCK

WGHT
ACTF[15:0] NET[9:0]

Figure 3. Bit-serial neuron.

the use of a 16×16 bit fixed-point multiplier. In opera-
tion, the multiplier accepts as input either an input stim-
ulus to the neural network or an activation output from a
neuron on a previous layer. It multiplies this quantity by
the corresponding synaptic weight. The input stimulus (or
activation output) is presented to the multiplier in a bit-
parallel fashion, while the synaptic weights are presented
in a bit-serial fashion. The serial output of the multiplier
feeds directly into an accumulator.

A

B S

CO CI

D

C
R

Q

D

C
R

Q

FULL ADDER

FF

FF

S

A

B S

CO CI

D

C
R

Q

C
R

A
B
C

D

C
R

Q

FULL ADDER

FF

FF

CLOCK

FSM

X

Y[n:0]

RESET

A

B S

CO CI

D

C
R

Q

D

C
R

Q

FULL ADDER

FF

FF

Figure 4. Bit-serial multiplier of length n.

The multiplier shown in Figure 4 is a modified and im-
proved version of a previously reported serial multiplier.
Any size multiplier can be formed by cascading the ba-

SERIAL OUT

PARALLEL
OUT

A

B S

CO CI

D

C
R

Q

FULL ADDER

FF

CLK

SERIAL IN

RST

D

C
R

Q

D

C R

Q

D

C
R

Q

D C
R

Q

D

C
RQ

D

C
R

Q

D

C
R

Q

D

CR

Q

D

C
R

Q

DC
R

Q

D

C
R Q

D

C
R

Q

Figure 5. Bit-serial accumulator of length n.

sic multiplier cell. The bit-wise multiplication of the mul-
tiplier and multiplicand is performed by the AND gates.
At each clock cycle, the bank of AND gates compute the
partial product terms of the multiplier Y[15:0] and the se-
rial multiplicand X(t). Two’s complement multiplication is
achieved by using XOR gates on the outputs of the AND
gates. By controlling one of the inputs of the XOR gate,
the finite state machine FSM can form the two’s comple-
ment of selected terms based on its control flow. In general,
for an n× n multiplier (resulting in a 2n bit product), the
multiplier can be formed by using 2n basic cells and will
perform the multiplication in 2n + 2 clock cycles. Succes-
sive operations can be pipelined and the latency of the LSB
of the product is n+ 2 clock cycles.

The accumulator, shown in Figure 5, is also a bit-serial
design. It is extremely compact as it consists of a single
bit-serial adder linked to a chain of data registers. The
length of the accumulator chain is governed by the multi-
plication length. The multiplier takes 2n + 2 clock cycles
to perform a complete n× n multiplication. At each clock
cycle, the accumulator sums the bit from the input data
stream with both the current contents of the data register
on the circular chain as well as any carry bits that might
have been generated from the addition in the previous clock
cycle. This value is subsequently stored onto the chain on
the next clock cycle. This creates a circulating chain of
data bits in the accumulator with period 2n+ 2.

The neuroprocessor design was implemented using HP’s
0.5 µm CMOS design rules. The first generation chip mea-
sured 8mm2 in size. The current design operates at a con-
servative 20 MHz clock speed. A neural application can
be loaded into the hardware in under 1 µs. Because of the
SIMD architecture, it takes 1.6 µs to simultaneously per-
form 16 multiply and accumulate operations. This trans-
lates into an effective computational throughput of 0.1 µs
per MAC operation. The next generation processor will
operate at 50 MHz.

III. The Misfire Diagnostic Problem

Because engine misfire can cause a significant increase in
tailpipe emissions and can damage the catalytic converter,
it is a required diagnostic. Misfire detection must be per-
formed between engine cylinder firings, which can occur
at rates as high as 30,000 events per minute, so that ap-

proximately one billion events must be classified over the
life of each vehicle. While there are many ways of detect-
ing engine misfire, all currently practical methods rely on
observing engine crankshaft rotational dynamics with a po-
sition sensor located at one end of the shaft. Briefly stated,
one looks for a crankshaft acceleration deficit following a
cylinder firing and attempts to determine whether such a
deficit is attributable to a lack of power provided on the
most recent firing stroke. The method is complicated by
several factors: 1) the crankshaft dynamics are influenced
by unregulated inputs from the driver and disturbances in-
troduced through the driveshaft from road irregularities; 2)
the dynamics are obscured by measurement noise; 3) the
crankshaft is not infinitely stiff and exhibits complex dy-
namics which mask the signature of the misfire event and
which are influenced by the event itself. In effect, we are
observing the torsional oscillations of a nonlinear oscilla-
tor with driving forces applied at several locations along
its main axis. While it is straightforward to write down
dynamical equations that approximate the crankshaft ro-
tational dynamics as a function of the combustion pressures
applied to the piston faces, it is difficult to solve those equa-
tions and even more difficult to solve the inverse inference
problem associated with misfire diagnostics. Nonetheless,
it was the expectation of a discoverable dynamic relation-
ship between the observed accelerations and the driving
forces in this system, coupled with the absence of a satisfac-
tory alternative approach, that motivated our exploration
of recurrent networks as a solution to the problem.

A. Network and Training Details

We used the network architecture 4-15R-7R-1, i.e., 4 in-
puts, fully recurrent hidden layers with 15 and 7 nodes, and
a single output node. All activation functions were bipolar
sigmoids. The network executes once per cylinder event
(e.g., 8 times per engine cycle for an 8-cylinder engine).
The inputs at time step k are the crankshaft acceleration
(ACCEL, averaged over the last 90 degrees of crankshaft
rotation), engine load (LOAD, computed from the mass
flow of air), the engine speed (RPM), and a cylinder iden-
tification signal (CID, e.g., 1 for cylinder 1, 0 otherwise),
which allows the network to synchronize with the engine
cylinder firing order. This network contains 469 weights;
thus one execution of the network requires 469 multiply-
accumulate operations and 23 evaluations of the activation
function. This computational load (187,000 MAC s−1) may
be excessive for an already heavily loaded existing proces-
sor.

Training recurrent networks often poses practical difficul-
ties, primary among which is dealing with the recency ef-
fect, i.e., the tendency of a learning network to favor recent
training examples at the expense of those previously en-
countered. To mitigate this difficulty we devised the multi-
stream training technique (Feldkamp and Puskorius, 1994).
This technique is especially effective when weight updates
are performed using the extended Kalman filter method.
Experiments suggest that the present results would not eas-
ily have been obtained with the methods more commonly

-1000

-500

0

500

1000

(a) Acceleration values

Events
0 100 200 300 400 500 600 700

-1

-0.5

0

0.5

1

(b)Neurochip output

Figure 6. Panel (a) is a temporal stream of acceleration values, illustrating the effects of crankshaft dynamics. This
data segment was not used in training the network (it was acquired after the network had been trained). Misfires are
denoted by symbols ‘x’. In the absence of torsional oscillations, the misfires would lie clearly below 0 on the vertical

scale. Panel (b) displays the corresponding outputs of a trained recurrent network implemented in VLSI.

available.
The database used for network training was acquired by

operating a production vehicle over a wide range of opera-
tion, including engine speed-load combinations that would
rarely be encountered in normal driving. Misfire events
are deliberately introduced (typically by interrupting the
spark) at both regular and irregular intervals. Though in
this case the data set used for training consists of more
than 600,000 examples (one per cylinder event), it neces-
sarily only approximates full coverage of the space of oper-
ating conditions and possible misfire patterns. Hence it is
important to carry out a careful analysis of generalization.

IV. Results and Conclusions

For testing, the chip was placed on a PC board and inter-
faced to the engine processor. The weights of a pretrained
network for misfire detection were loaded and the vehicle
was driven on the test track. Since the chip required less
than 80 µs to execute the 4-15R-7R-1 network, real-time
requirements were easily met. Results were logged for a
challenging range of vehicle operation and patterns of ar-
tificially induced misfire.

Figure 6a illustrates cylinder-by-cylinder crankshaft ac-
celerations. The data segment selected corresponds to an
engine speed of approximately 4500 revolutions per minute;
together with the high rate of artificially induced misfire

(about 25%), this represents a very difficult test of any mis-
fire classifier. If the plotted points had not been labeled, it
would certainly not have been obvious which correspond to
misfire. Simple filtering of the acceleration series, even on
a cylinder-specific basis, is not capable of separating the
misfires from the normals. As we hypothesized initially,
however, a recurrent network is capable of performing a
sort of nonlinear deconvolution of the torsional-oscillation-
corrupted acceleration values to perform the separation.
(We have also experimented with feedforward networks
with delay-lines on the inputs. The results have been less
satisfactory.) Figure 6b shows the neural network out-
puts from the chip. These are very close to the corre-
sponding values from the network implemented in software
(with floating-point arithmetic). Both implementations ef-
fectively separate misfires from normal events. The rate of
misclassifications made by the network (here about 1%) is
well within the acceptable range.

V. Acknowledgements

The research described in this paper was performed
by the Center for Space Microelectronics Technology, Jet
Propulsion Laboratory, California Institute of Technology,
and was sponsored by the National Aeronautics and Space
Administration, Office of Space Science.

VI. References

Tawel, R., Aranki, N., Feldkamp, L. A. and Marko, K. A.
(1998) Ultra-compact Neuroprocessor for Automotive Di-
agnostics and Control. Proceedings of the Neurap’98 Con-
ference, Marseille, France.

Tawel, R. (1997) A Novel Bit-Serial Neuroprocessor Ar-
chitecture. JPL New Technology Report.

Tawel, R., Aranki, N., Puskorius, G., James, J. V.,
Marko, K. A., Feldkamp, L. A. (1997) Neuroprocessor for
Detecting Misfire in an Automotive Engine. NASA Tech
Briefs Vol. 21, No. 12, pp. 60–61.

Feldkamp, L. A. and G. V. Puskorius (1994) Training
controllers for robustness: multi-stream DEKF. Proc. of
the IEEE ICNN Orlando, FL, pp. 2377–2382.

Marko, K. A., J. V. James, T. M. Feldkamp, G. V.
Puskorius, L. A. Feldkamp, and D. Prokhorov (1996) Train-
ing recurrent networks for classification: realization of au-
tomotive engine diagnostics. Proc. of the WCNN, San
Diego, CA, pp. 845-850.

Puskorius, G. V., L. A. Feldkamp, and L. I. Davis, Jr.
(1996) Dynamic Neural Network Methods Applied to On-
vehicle Idle Speed Control. Proc. of the IEEE, vol. 84, no.
10, pp. 1407–1420.

Feldkamp, L. A. and G. V. Puskorius (1994) Training
Controllers for Robustness: Multi-stream DEKF. Proceed-
ings of the IEEE International Conference on Neural Net-
works, Orlando, pp. 2377–2382.

Marko, K. A., J. V. James, T. M. Feldkamp, G. V.
Puskorius, and L. A. Feldkamp. (1996b) Signal Process-
ing by Neural Networks to Create “Virtual” Sensors and
Model-Based Diagnostics. Proc. of the International
Conference on Artificial Neural Networks (ICANN’96),
Bochum, Germany, pp. 191-196.

Marko, K. A., J. V. James, T. M. Feldkamp, G. V.
Puskorius, L. A. Feldkamp, and D. Prokhorov (1996c)
Training Recurrent Networks for Classification: Realiza-
tion of Automotive Engine Diagnostics. Proc. of the World
Congress on Neural Networks (WCNN’96), San Diego, CA,
pp. 845-850.

Puskorius, G. V. and L. A. Feldkamp (1994) Neurocon-
trol of Nonlinear Dynamical Systems with Kalman Filter-
Trained Recurrent Networks. IEEE Transactions on Neu-
ral Networks 5, pp. 279-297.

Puskorius, G. V., L. A. Feldkamp, and L. I. Davis, Jr.
(1996) Dynamic neural network methods applied to on-
vehicle idle speed control. Proceedings of the IEEE, vol.
84, no. 10, pp. 1407–1420.

Puskorius, G. V. and L. A. Feldkamp (1996) Signal pro-
cessing by dynamic neural networks with application to au-
tomotive misfire detection. Proceedings of the 1996 World
Congress on Neural Neural Networks, San Diego, pp. 585–
590.

Singhal, S. and L. Wu (1989) Training Multilayer Per-
ceptrons with the Extended Kalman algorithm, In D. S.
Touretzky (ed) Advances in Neural Information Process-
ing Systems 1, pp. 133–140. San Mateo, CA: Morgan
Kaufmann.

