Jet Propulsion Laboratory Home Page
Jet Propulsion Laboratory Website National Aeronautics and Space Administration CalTech Home Page
JPL Home Page Earth Solar System Stars and Galaxies Technology Search
Images and Videos News Missions Events Kids Education Scientists and Engineers About JPL
Upper-left corner   Upper-right corner
  NEWS
Dot PRESS RELEASES

Dot PRESS KITS

Dot FACT SHEETS

Dot FEATURES

Dot PROFILES

Dot IMAGES / VIDEOS

Dot MEDIA VISITS

Dot MEDIA CONTACTS

Dot EMPLOYEE NEWSPAPER

 
2001 News Releases

All-Terrain Rovers May Scale Mars' Cliffs
December 19, 2001

Cliff-bot rover
Cliff-bot rover
Caption and more images
Go to video 

       NASA researchers are developing new prototype robots that can drive up steep hills and descend almost-vertical cliffs. Working alone or as a team, these autonomous robotic explorers may go where no rover has gone before -- the cliffs of Mars.

       Recent Mars Global Surveyor images suggest water outflows near cliff edges and the possibility of rich water-borne mineral deposits that extend all the way to the cliff base.

       "We know that some of the most exciting Mars science and history will be in very rough, currently inaccessible terrain. Getting to those hard-to-reach spots -- navigating and exploring them -- will require altogether new types of robotic vehicles," said Dr. Paul Schenker, supervisor of the Mechanical and Robotics Technologies Group at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and principal investigator for the All-Terrain Explorer.

       "These include rover systems that can surmount the hilly base of cliffs, even descend from cliff edges to study cliff stratigraphy. Some years from now, rovers may literally be hanging out on Mars," he said.

       In a demonstration near JPL, a new mobility system navigated a cliff face. Two "tether-bot" rovers stationed themselves at the cliff's edge, assisting a third steerable "cliff-bot" as it actively descended and ascended the steep terrain.

       "They're a true team, tightly coordinating their behaviors, sharing what they sense," Schenker said. "They communicate instantaneously, make mutually informed decisions and jointly implement their control actions. We can think of them as a climber with two good friends. We're not yet at the point of human competence, where one robot can go it all alone."

       The rovers can cooperate in a number of ways: controlling tension to avoid slackness in the tethers, matching velocity of tether payouts to cliff-bot navigation, maintaining stability to prevent cliff-bot tip-over and hauling actions to initiate the "climber's" uphill driving when the going gets really rough.

       Over the past year, the JPL researchers also successfully developed and demonstrated a single rover that can traverse sandy natural terrain on slopes of 40 to 50 degrees. Similar to an agile animal, this mechanically reconfigurable All-Terrain Explorer behaviorally adapts its stance and balance, reacting to visually perceived changes in the terrain ahead and motion cues from onboard accelerometers.

       "These technology advances should enable broader robotic exploration of planetary surfaces, letting rovers truly follow the water, thus giving us a better look at possibilities of past or present life on Mars," Schenker said. "Similarly, there are potentially important terrestrial applications, including urban and rural search-and-rescue operations."

       Basic research on the All-Terrain Explorer rovers continues, and engineers envision that their work may well be part of a future Mars mission to explore the steep hills and gullies, nooks and crannies of the red planet.

       More information on this work is available at: http://prl.jpl.nasa.gov/projects/ate/ate_index.html .

       NASA's Cross Enterprise Technology Development Program provided funding for this work. The California Institute of Technology in Pasadena manages JPL for NASA. JPL is the lead NASA center for robotic exploration of the solar system.

Note to Broadcasters: A video file to accompany this release will air on NASA Television Dec. 19, 20 and 21, during the NASA TV video file feed scheduled for noon, 3 p.m., 6 p.m., 9 p.m., and midnight EST. A live satellite interview opportunity with the principal investigator, Dr. Paul Schenker is available via NASA Television on Thursday, Dec. 20, from 3 to 7 p.m. EST. To book an interview, call Jack Dawson at (818) 354-0040. For NASA Television schedule information see http://www.nasa.gov/ntv/breaking.html .

NASA TV is broadcast on GE-2, transponder 9C, C-Band, located at 85 degrees West longitude. The frequency is 3880.0 MHz. Polarization is vertical and audio is monaural at 6.8 MHz. For general questions about the NASA Video File, contact Fred Brown, NASA Television, Washington, D.C. (202) 358-0713.


Contacts: JPL/Carolina Martinez (818) 354-9382

Bottom-left corner   Bottom-right corner  

Privacy / Copyright FAQ Feedback Site Map