Segmented mirror coronagraph study update

Dimitri Mawet, Jet Propulsion Laboratory, California Institute of Technology

on behalf of Stuart Shaklan (PI), Jet Propulsion Laboratory, California Institute of Technology

AND

<u>Caltech/JPL team</u>: <u>G. Ruane</u>, J. Jewell, S. Shaklan, D. Mawet <u>STScl/Princeton team</u>: Neil T. Zimmerman, Mamadou N'Diaye, Kathryn St. Laurent, Rémi Soummer, Christopher Stark, Laurent Pueyo, Anand Sivaramakrishnan, Marshall Perrin, Robert Vanderbei, Jessica Gersh-Range, Jeremy Kasdin <u>Arizona/AMES/JPL team</u>: O Guyon, J. Codona, R. Belikov, B. Kern

HabEx STDT, JPL, 08-03-2016

Apertures for Segmented Coronagraph Design and Analysis (SCDA)

Figure 1 Apertures and secondary support structures selected for the study include four composed of hexagonal segments, one with keystone segments, and 2 with pie wedges. All are 12 m flat-to-flat or 12 m in diameter with 1.68 m diameter secondary obscurations (except the missing hex segment in the 3-ring L. Feinberg, T. Hull, J. Scott, Knight, J. Krist, P. Lichtsey, G. Matthews, P. Stahl, and S. Shaklan, hex). All segment edge gaps including edge roll-off are 20 mm wide. Secondary support struct widths are 25 mm and 100 mm. Aperture names, from left to right, are: 4-ring Hex, 3-ring Hex, 2-ring Hex, 1-ring Hex, Keystone-24, Pie wedge-12, and Pie wedge-8. Secondary supports are referred to as "Y", "y," "X", and "T," with two versions of "X" and "Y" for the resp@@WeAhextare#wircular apertures. 2

Relative challenges of designs under consideration

	APERTURES							
	4 ring	3 ring	2 ring	1 ring	Keystone 24	Pie wedge 12	Pie wedge 8	
Segment Shape	Hex	Hex	Hex	Hex	Keystone	Pie wedge	Pie wedge	
Max Segm. Dimension	1.54 m	1.98 m	2.77 m	4.62 m	2.5 m x 3.14 m	5 m x 3.14 m	5 m x 4.71 m	
Segments								
Backplane								
Stability								
Launch Configuration								
SM Support								
Overall Ranking								

Throughput vs starlight suppression

G. Ruane et al. 2016, in prep

How much throughput should be sacrificed for starlight suppression?

Relevant metric: integration time

G. Ruane et al. 2016, in prep

Team STScl/Princeton: Apodized/shaped pupil Lyot coronagraph

- <u>Space Telescope Science Institute</u>: Neil T. Zimmerman, Mamadou N'Diaye, Kathryn St. Laurent, Rémi Soummer, Christopher Stark, Laurent Pueyo, Anand Sivaramakrishnan, Marshall Perrin
- <u>Princeton University</u>: Robert Vanderbei, Jessica Gersh-Range, Jeremy Kasdin

APLC designs

Brute force optimization

APLC raw contrast

APLC throughput

10% BW

	Telescope aperture								
FPM rad.	Hex1		Hex2		Hex3		Hex4		
(λ_0/D)	core	rel.	core	rel.	core	rel.	core	rel.	
3.0	7.7%	17.6%	7.8%	17.6%	7.0%	16.0%	6.4%	14.6%	
4.0	17.9%	40.9%	18.9%	42.7%	19.2%	44.0%	19.0%	43.2%	
5.0	16.2%	37.1%	18.6%	42.1%	18.0%	41.4%	18.1%	41.1%	

15% BW

	Telescope aperture									
FPM rad.	Hex1		Hex2		Hex3		Hex4			
(λ_0/D)	core	rel.	core	rel.	core	rel.	core	rel.		
3.0	7.3%	16.6%	7.5%	17.2%	8.0%	18.5%	8.0%	18.1%		
4.0	12.5%	28.4%	18.1%	41.3%	18.0%	41.7%	17.7%	40.3%		
5.0	15.6%	35.4%	18.3%	41.9%	17.9%	41.4%	18.0%	40.7%		

Apodizer manufacturing challenges

Team UoA/AMES/JPL: Phase Induced Amplitude Apodized Complex Mask Coronagraph

 <u>University of Arizona/AMES/JPL</u>: O. Guyon, J. Codona, R. Belikov, B. Kern

Complex Phase Mask Coronagraph: mask design

~1 wave PTP, d ~ 3 λ /D

Current PSF contrast (point source, monochromatic) .8e-9 average in 1.5-8 I/D zone 10% BW(*)

contrast : 2.8e-9 average in 1.5-8 I/D zone ... currently optimizing PIAA shape to improve

^{9.97}e-10 1.99e-09 3.00e-09 4.00e-09 5.00e-09 6.00e-09 7.00e-09 8.01e-09 9.00e-09

wide view:

0.17% of starlight scattered by high spatial frequency noise

9.97e-10 1.99e-09 3.00e-09 4.00e-09 5.00e-09 6.00e-09 7.00e-09 8.01e-09 9.00e-09

Team Caltech/JPL: Apodized vortex (and HLC)

• <u>Caltech</u>: Garreth Ruane, Dimitri Mawet

• JPL: Jeff Jewell, Stuart Shaklan

Apodized vortex design

• Start with ring-apodized vortex (RAVC) analytical solution (Mawet et al. 2013)

• Finish off with a new, game-changing method invented by Jeff Jewell (JPL): *Auxiliary Field Conjugation*

Apodized vortex solutions for SCDA pupils

Apodized vortex solutions for SCDA pupils

Using the DMs to generate phase-induced apodization of spiders

Clippedhex4 w/ 10cm spiders, VC4 (no apod.), Dark hole: 3-10 λ/D annulus, z = 300mm, F = 56, 10% bandwidth (3 λ 's), 500 iterations

Doubles throughput

Clippedhex4 w/ 10cm spiders, VC4 (no apod.), Dark hole: 3-10 λ/D annulus, z = 300mm, F = 56, 10% bandwidth (3 λ 's), 500 iterations

Central obscuration limits the throughput

Unobscured, segmented telescopes

Scientific motivation for larger apertures

Wang, Mawet, Ruane, Hu, Benneke 2016, in preparation

 10^{4}

SNR in the spectral resolution vs starlight attenuation space (tint = 100 hr)

• Impact on telescope architecture: relax contrast requirements, thus stability

5. All ric

 10^{4}

• Impact on instrument architecture: IFS or imager + classical high-R spectrograph [bol] 4.5

tion

23 10

Scientific motivation for larger apertures

Wang, Mawet, Ruane, Hu, Benneke 2016, in preparation

© 2016. All rights reserved.

Clippedhex4 w/o central obscuration

Max. throughput = 76% (PSF core relative to telescope).

Clippedhex3 w/o central obscuration

Max. throughput = 76% (PSF core relative to telescope).

Clippedhex2 w/o central obscuration

Max. throughput = 78% (PSF core relative to telescope).

Using the DMs to generate phase-induced apodization of segment gaps

 Gain additional ~5-10% in throughput, approach lossless coronagraph (>80% throughput)

© 2016. All rights reserved.

Clippedhex4 w/ central obscuration and ring apodizer (for comparison)

Max. throughput = 21% (PSF core relative to telescope).

Piewedge8 w/ central obscuration and ring apodizer (for comparison)

Max. throughput = 37% (PSF core relative to telescope).

Band-limited coronagraphs: work in progress

Band-limited coronagraphs: work in progress

Band-limited coronagraphs: work in progress

Conclusions relevant to HabEx

- There are high-contrast coronagraph solutions for obscured, segmented telescopes
- Throughput is key, more important than starlight suppression
- Unobscured, segmented apertures are coronagraph friendly and much higher throughput (factor ~2 to 4)

=> up to factor 10 in integration time

TBD

- Consolidate unobscured segmented coronagraph designs (APLC, PIAACMC)
- Sensitivity to segment phasing and gap sizes and shapes?
- Tolerancing to alignment
- Manufacturing errors of apodizers and focal plane masks