II

 O

Just like NASA's science and engineering pros, use pi to guide an orbiter on a mission to peer through the haze on Saturn's cloaked moon Titan.

Discover more " π in the sky" math problems at:
jpl.nasa.gov/edu/nasapidaychallenge

HAZY HALO

With its methane lakes and hazy atmosphere reminiscent of a primordial Earth, Saturn's moon Titan is an intriguing world - and one that scientists believe may harbor ingredients for life. Though spacecraft have studied Titan up close, and the Cassini mission sent a probe to the surface, much of the moon remains a mystery because a dense, 600-km thick atmosphere masks its rocky surface. To study Titan in more detail, scientists have proposed developing a spacecraft to map the surface of this mysterious moon.

Given Titan's radius of $2,575 \mathrm{~km}$, what percentage of the moon's makeup by volume is atmospheric haze?

If scientists hope to create a global map of Titan, what is the surface area that a future spacecraft would need to map?

LEARN MORE ABOUT TITAN solarsystem.nasa.gov/planets/titan

π

Just like NASA's science and engineering pros, use pi to locate the Mars Reconnaissance
Orbiter as it explores the Red Planet from above.

Discover more " π in the sky" math problems at:
jpl.nasa.gov/edu/nasapidaychallenge

II

Just like NASA's science and engineering pros, use pi to keep Earth's science satellites powered while Mercury transits the sun.

Discover more " π in the sky" math problems at:
jpl.nasa.gov/edu/nasapidaychallenge

SUN SCREEN

A transit occurs when a planet passes in front of the disk of a star. As seen from Earth, only Mercury and Venus transit our star, the sun. During a transit, there is a slight dip in the amount of solar energy reaching Earth, which can be found using this equation:
$B \%=100\left(\frac{\pi r^{2}}{\pi R^{2}}\right)$
$\mathbf{B}=$ percentage drop in the brightness
of the sun
$r=$ the radius of the planet as it appears from
Earth (in arcseconds)
$\mathbf{R}=$ the radius of the sun as it appears from
Earth (in arcseconds)

With many solar-powered satellites orbiting Earth, it's important to know what impact a dip in solar energy might have.

If $1,360.8 \mathrm{w} / \mathrm{m}^{2}$ of solar energy reaches the top of Earth's atmosphere, how many fewer watts reach Earth when Mercury (diameter = 12 arcseconds) transits the sun (diameter $=1,909$ arcseconds)?

$\pi \operatorname{IN~THE~SKY³}^{3}$

Just like NASA's science and engineering pros, use pi to help guide a spacecraft into orbit around the gas giant Jupiter.

Discover more " π in the sky" math problems at:
jpl.nasa.gov/edu/nasapidaychallenge

