Blogs by Julie Cooper

Blogs by Julie Cooper

Julie Cooper is a certified archivist who identifies and processes collections for the JPL Archives, and helps researchers find information about the history of JPL.


NASA Voyager Golden Record Inscription

Most people know about the scenes, greetings, music and sounds from Earth found on the Voyager Golden Record. They may not know that there is also a handwritten message etched into the surface of the record. Timothy Ferris, who worked with Carl Sagan and the rest of the team that produced the record, wanted something done directly by a human hand to appear on the record. “To the makers of music – all worlds, all times” appears on the finished record, in between the photoengraved label and the record grooves.

The inscription can also be seen on some of the 14-inch recording masters that are found in the JPL Archives. There are several sets of the records, with a metal core and lacquer surface. From these masters, the copper records (“mothers”) were cut, then they were gold plated, etched, enclosed in aluminum containers and mounted on the sides of the Voyager 1 and 2 spacecraft.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: VOYAGER, GOLDEN RECORD, MISSIONS, SPACECRAFT

  • Julie Cooper
READ MORE

High gain antenna tower at JPL

In the early 1960s, Mesa Road at NASA's Jet Propulsion Laboratory had not yet been built. Access to buildings on the mesa, like the High Gain Antenna Tower in this photo, was through the residential neighborhood north of JPL.

The antenna tower was built at the end of 1961, and was used by the Telecommunications Division in testing prototypes and various configurations of Deep Space Network antenna equipment. The platform was designed to reduce ground reflections from the sides and bottom of the adjacent canyon.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: DSN, TECHNOLOGY, HISTORY

  • Julie Cooper
READ MORE

Three workers in the Echo Station Control Room

This April 1962 photo of Deep Space Station 12 (DSS-12) in Goldstone, California, was featured in Space Programs Summary 37-15, Volume 3–The Deep Space Instrumentation Facility. The 85-foot (26-meter) Echo antenna can be seen through the window of the control room, and three unidentified men are at the controls. The Echo site was named for its support of Project Echo, an experiment that transmitted voice communications coast to coast by bouncing signals off the surface of a passive balloon-type satellite. The antenna was moved six miles in June 1962 to the Venus site (DSS-13) and in 1979 it was extended to 34 meters in diameter.

The bimonthly Space Programs Summary, or SPS, is an excellent source of information about JPL missions and related research from February 1959 to October 1970. In 1970, the SPS series was replaced by the Technical Reports (32-1 to 32-1606) and other report series.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: DEEP SPACE NETWORK, SPACE COMMUNICATION, TECHNOLOGY, HISTORY

  • Julie Cooper
READ MORE

1954 Inspection Tour

In December 1954, only a few months after becoming the director of JPL, Dr. William Pickering (in the light-colored suit) hosted a visit by Frank H. Higgins, assistant secretary of the Army, and several members of his military entourage. At that time, JPL was under contract to Army Ordnance to develop guided missiles. In this photo, the group is gathered in the control room of the 20-inch wind tunnel. Frank Goddard (in the dark suit), chief of the Supersonic Aerodynamics Division, assisted with the tour and Bud Schurmeier, manager of the Wind Tunnel Section, observed from the back of the room while technicians conducted a demonstration.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: TECHNOLOGY, HISTORY, DEEP SPACE NETWORK

  • Julie Cooper
READ MORE

Mechanical Coordinate Converter

In the early 1960s, a computer known as a coordinate converter was part of the instrumentation and equipment used to position the Deep Space Network, or DSN, antennas. This photograph from September 1960 shows a mechanical coordinate converter. The device converted azimuth-elevation position information to hour angle-declination and vice versa. It was able to coordinate two or more tracking antennas that used different coordinate systems for their pointing. It was likely used in early tracking studies of missiles and spacecraft, and as a visual backup for later antenna operations.

Patent US 3163935A lists JPL employee Richard M. Beckwith as the inventor of this instrument. In 1962, Beckwith was a designer with the Guidance and Control Design Group. The photo appears in the photo album for Communications Engineering and Operations, the JPL organization that managed the DSN antennas.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: TECHNOLOGY, HISTORY, DEEP SPACE NETWORK

  • Julie Cooper
READ MORE

Goldstone Antenna Construction Model

In October 1963, the Advanced Antenna System, also known as the 210-foot (64-meter) Mars antenna, was under construction at the Goldstone Deep Space Instrumentation Facility. The site was being cleared and a foundation dug, an access road was nearing completion, and a reservoir was built to provide water during construction. Assembly of the antenna required a 200-ton guy derrick, used to lift large pieces into place. In preparation for this stage of construction, scale models of the antenna and the guy derrick were built, showing how the derrick would be anchored to the desert floor by long cables.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, DSN, GOLDSTONE, ANTENNA

  • Julie Cooper
READ MORE

one-tenth scale Cassegrain antenna feed system

In the early 1960s, a new large-aperture, low-noise Advanced Antenna System was in its planning and early development stages for the Deep Space Instrumentation Facility (later known as the Deep Space Network). Compared with the 85-ft (26-meter) antennas then in use, the new antenna was to give a 10-decibel performance increase, with an order of magnitude increase in the data rate from future spacecraft. Feasibility studies and testing were conducted by NASA's Jet Propulsion Laboratory in Pasadena, California, and subcontractors for various technologies and antenna components.

This January 1962 photo shows a 960-mc one-tenth scale Cassegrain antenna feed system study for the Advanced Antenna System. The objective was to establish the electrical performance capabilities and operational feasibility of this type of feed system for large antennas. The mount of the test system was covered with epoxy fiberglass and polystyrene foam to limit reflection of energy during testing.

A 210-foot (64-meter) antenna, using the new technology and designs, was built at the Goldstone site in California and became operational in 1966. The antenna, DSS 14, became known as the Mars antenna when it was used to track the Mariner 4 spacecraft. It was later upgraded to 70 meters in order to track Voyager 2 as it reached Neptune.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, DEEP SPACE NETWORK, VOYAGER, MARINER, MARS, NEPTUNE, TECHNOLOGY

  • Julie Cooper
READ MORE

JPL site in 1950

JPL has grown a great deal since this photo was taken in 1950. Just compare the photo to any current map web site or app, and notice the roads and buildings that have been moved, added to, or are no longer there. The JPL Archives collections of online maps, telephone books, and photo albums can help us explore JPL’s past – when there were wind tunnels on Lab, the JPL Store was a cafeteria, and near the parking structure site there was a water-filled towing channel.

With the help of the Huntington Library, we can go back even farther, to 1931. The Huntington Digital Library has a photo of the JPL site, taken from across the lake behind the Devil’s Gate Dam. Zoom in on the foothills on the right side of the photo to see the area that would become the Jet Propulsion Laboratory. Within five years, the lake was a dry river bed, the Arroyo Seco, and was chosen as the site of the famous rocket motor tests that led to the beginning of JPL. Four years after that, the first small wood frame buildings appeared along the edge of the arroyo.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY

  • Julie Cooper
READ MORE

Lunar Roving Vehicle Prototype

In 1964, at least two companies were working under contract to JPL on a Surveyor Lunar Roving Vehicle Study: Bendix Corporation Systems Division, and General Motors Corporation Defense Research Laboratories. This photo shows a prototype General Motors rover, one of several different approaches that were studied to determine their capabilities, limitations, and their impact on overall spacecraft design and performance. Twelve different spacecraft configurations were studied in detail, with variations in weight, power systems, communication method, and spaceframe size.

The final design of the Surveyor 1 through 7 lunar landers did not include a rover. NASA sponsored other lunar rover studies during the 1960s, with a variety of sizes and technical capabilities, and Apollo 15 astronauts became the first to drive a Lunar Roving Vehicle on the moon, during their 1971 mission. JPL continued to develop robotic spacecraft and rovers and, in 1997, landed Mars Pathfinder and its Sojourner rover on the red planet.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, MOON, SPACECRAFT, TECHNOLOGY, ROVER

  • Julie Cooper
READ MORE

sphere drag experiment

In 1962, JPL conducted research in low-density gas dynamics, studying the drag on a sphere in a supersonic low-density flow environment, at various temperatures and speeds (Mach 1.8 to 4.4). Experiments were conducted in JPL’s Low Density Wind Tunnel. Nozzles were wrapped in a copper coil containing liquid nitrogen to cool the apparatus. A steel or bronze ball from 1/32 to 1/8 inch in size was suspended from fine tungsten wire in the jet. Two 8 mm movie projector lamps with built-in reflectors were placed at the edge of the jet and used to raise the sphere temperature to about 1,000 kelvins.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, TECHNOLOGY

  • Julie Cooper
READ MORE