Printer-friendlyIncreaseDecrease

Dr. Fuk K. Li, Mars Exploration Directorate

Dr. Fuk K. Li is director for the Mars Exploration Directorate at NASA's Jet Propulsion Laboratory. He received his bachelor's degree and doctorate in physics from the Massachusetts Institute of Technology. He joined JPL in 1979 and has been involved in radar remote sensing activities. He has developed a number of system analysis tools for spaceborne synthetic aperture radar system design, and participated in the development of and applications for interferometric synthetic aperture radar.

From 1983 to 1988, he was the project engineer for the NASA Scatterometer. He was principal investigator for an airborne rain mapping radar, an airborne cloud mapping radar, an experiment using spaceborne imaging radar to study rainfall effects on ocean roughness, and the development of an airborne active/passive microwave system for ocean salinity and soil moisture sensing. From 1997 to 2001, he managed the New Millennium Program, designed to flight-validate key technologies that bring significant benefits to future science missions.

He became deputy director of JPL's Solar System Exploration Program Directorate in 2001 and deputy director for the Mars Exploration Directorate in 2004. He is currently also the Mars Exploration Program Manager.

 

  • Aerial view of JPL's main facility near Los Angeles

    Aerial view of JPL's main facility near Los Angeles

    About twice the size of California's Disneyland, the Jet Propulsion Laboratory is a 177-building campus situated in the foothills of the San Gabriel Mountains. In addition to a mission control center and 9,600 square-foot clean room, the lab is home to a simulated Mars landscape called the Mars Yard, as well as a 25-foot space simulator. In the fall of 2009, JPL unveiled its newest building, the environmentally friendly Flight Projects Center, which houses missions during their design and development phases.

  • Aquarius Earth ocean satellite

    Aquarius Earth ocean satellite

    The Aquarius satellite, scheduled for launch in June 2011, will break new ground in the investigation of sea surface salinity, a major component of Earth climate studies. Just within a few months, Aquarius will collect as many sea surface salinity measurements as the entire 125-year historical record, offering a better understanding of the water cycle and ocean circulation, and providing an essential missing piece to the global climate change puzzle.

  • Dawn mission to Vesta and Ceres

    Dawn mission to Vesta and Ceres

    Launched in 2007, Dawn is the first spacecraft designed to orbit two different bodies after leaving Earth. In July 2011, it will arrive at the giant asteroid Vesta, which it will orbit before departing to reach the dwarf planet Ceres in 2015. The feat is enabled by Dawn's use of ion engines to gradually accelerate the spacecraft.

  • Juno mission to Jupiter

    Juno mission to Jupiter

    One of four JPL missions set to launch in 2011, the Juno spacecraft will study the giant gas planet Jupiter to help understand its origins and evolution. Because of its mass, Jupiter -- the largest planet in the solar system -- still holds much of its original composition. By investigating Jupiter's core, intense magnetic field, auroras and atmospheric composition, scientists hope to collect important clues about the formation of the solar system when Juno arrives at the planet in 2016.

  • GRAIL lunar gravity mission

    GRAIL lunar gravity mission

    Flying twin spacecraft in tandem orbits, the Gravity Recovery And Interior Laboratory, or GRAIL, mission will launch in September 2011 to measure the moon's gravity field in unprecedented detail. The mission will also answer longstanding mysteries about Earth's moon -- including the possible existence and composition of an inner core -- and the origins of the solar system.

  • Mars Science Laboratory's Curiosity rover

    Mars Science Laboratory's Curiosity rover

    Could Mars ever have hosted environments conducive to life? Mars Science Laboratory will look for answers when the flagship mission launches in fall 2011 taking the largest-ever rover, Curiosity, to the Red Planet. In addition to its science capabilities, the mission boasts innovations in landing and surface exploration technologies, which will allow its Curiosity to land more accurately and explore more terrain than ever before.

  • NuSTAR x-ray telescope

    NuSTAR x-ray telescope

    The Nuclear Spectroscopic Telescope Array, or NuSTAR, will carry the first focusing hard X-ray telescope to study the evolution of massive black holes, supernova explosions and active galaxies. NuSTAR is planned for launch in spring 2012.

  • Deep Space Network antenna at Goldstone, Calif.

    Deep Space Network antenna at Goldstone, Calif.

    One of three antenna's across the globe, the Deep Space Network antenna at Goldstone, Calif. is key in communicating with and even controlling distant spacecraft and robots. The 70-meter-diameter (230-foot) dish is capable of interpreting even the tiniest spacecraft signals from millions of miles away. Together with antennas in Canberra, Australia, and Madrid, Spain, the Goldstone antenna is an essential communication portal for robotic spacecraft throughout the solar system.

  • Nanotechnology research to help diagnose and treat brain tumors

    Nanotechnology research to help diagnose and treat brain tumors

    Technologies originally developed for space missions often find their way to Earth to improve the quality of day-to-day life. As one example, JPL researchers have partnered with the City of Hope to explore the potential of carbon nanotubes -- used in various space applications to help produce electrons -- to diagnose and treat brain tumors. Initial studies on mice have shown that the tubes are an effective and non-toxic means of transporting cancer-fighting agents to the brain.